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ABSTRACT The energy conservation of application server clusters is a pressing problem. In this paper,
we propose an online power-aware deployment and load distribution optimization strategy for application
server clusters, whose objective is to minimize the cluster’s power while ensuring that the server’s CPU
utilization is not higher than a preset value. The strategy includes two schemes: a mixed integer linear
programming (MILP)-based scheme and a mixed integer non-linear programming (MINLP)-based scheme.
The former formulates the cluster optimization problem as a MILP problem and adopts a toolkit to solve it.
When the cluster scale is small, it can find the global optimal solution quickly. So, the MILP-based scheme
is applicable to small-scale clusters. In the MINLP-based scheme, we first formulate the cluster optimization
problem as a non-linear programming problem, and then design a method to reduce the number of variables
and reformulate it as anMINLP problem.We finally propose an efficient solutionmethod based on the flower
pollination algorithm. Due to the small number of variables and the high solution efficiency, the solution
method can quickly obtain a high-quality solution, so the MINLP-based scheme can be applied to large-
scale clusters. The experimental results demonstrate the effectiveness of our strategy.

INDEX TERMS Application server cluster, power-aware deployment, load distribution, CPU utilization,
optimization.

I. INTRODUCTION
In a web system, dynamic requests (e.g., the requests for
‘‘.php’’ or ‘‘.jsp’’ files) are usually separated from static
requests (e.g., the requests for ‘‘.png’’ or ‘‘.html’’ files) and
handed by an application server. Dynamic requests usually
cannot be cached and need to consumemore server resources.
An application server cluster is a widely used technique for
improving the performance of application servers. Applica-
tion server clusters have become the infrastructure for large
web-based applications, and many are deployed in datacen-
ters to supply various services.

Server clusters consume a great deal of energy and
thus incur large operational costs [1]–[3]. The Natural
Resources Defense Council estimated that the consumption
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of datacenters in USA reached 91 billion kWh in 2013 and
will increase to roughly 140 billion kWh by 2020 [4]. So the
energy conservation of a cluster is a pressing problem that
must be addressed. Application server clusters are usually
designed and built according to the peak load, but the nor-
mal loads are far below the peak load. Moreover, appli-
cation server clusters must supply quality-assured service
because poor service may lead to customer churn. Therefore,
the cluster’s deployment and (corresponding) load distribu-
tion must be dynamically optimized according to the varying
load online to reduce the cluster’s power consumption while
assuring good Quality of Service (QoS).

Optimizing cluster deployment based on a programming
problem is a popular approach. This approach defines
variables to denote the server’s on/off state and frequency
selection, uses QoS assurance as a constraint, takes power
minimization as the objective, and then obtains a constrained
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programming problem and solves the problem. However,
previous studies have had two types of limitations.

(i) Indicator of QoS. Most previous studies [5]–[14] focus
on the server’s response time but ignore the server’s CPU uti-
lization. This is not advisable for application server clusters
for three reasons. First, it is difficult to ensure the response
time precisely in a practical multi-tier web system [15].
Second, CPU-intensive business logic processing is often
the bottleneck [7] in multi-tier applications, so CPU uti-
lization is an important performance indicator that reflects
the load state of an application server. Finally, for a server,
high utilization usually achieves high power-efficiency, so the
optimization results of these studies make the CPU fully
loaded or near-fully loaded. This is dangerous because even
a minor load burst may make the server unresponsive. There-
fore, the server’s utilization must stay within a reasonable
range [16].

(ii) Real-time solution of the programming problem. Clus-
ter optimization problems are usually constrained non-linear
programming problems that are a type of NP-hard problem.
The previous studies all define variable(s) for each server
in their optimization problems. When applied to large-scale
clusters, it is difficult to solve these problems online because
of the large number of variables. So some studies mainly
use heuristic or greedy algorithms to solve their optimization
problems. However, they cannot obtain the optimal solution.
Some studies design ingenious solution methods, but they
do not evaluate these methods in real time. In addition,
the solution methods proposed in some studies lack practical
feasibility. We will discuss these in detail in Section II.

To address these limitations, we propose an online power-
aware optimization strategy for application server clusters,
whose optimization content involves the on/off state of each
server, the CPU frequency of each running server, and the
load distribution. Our optimization assumes QoS assurance,
and the QoS objective is that the CPU utilization of each
running server is not more than a given value. A schematic
of the strategy is illustrated in Fig. 1.

Our optimization strategy includes two schemes: a MILP
(Mixed Integer Linear Programming)-based scheme and a
MINLP (Mixed Integer Non-Linear Programming)-based
scheme. TheMILP-based scheme formulates the cluster opti-
mization problem as a MILP problem and adopts GLPK
(GNU Linear Programming Kit) [17] to solve the problem.
It is applicable to small-scale clusters. In the MINLP-based
scheme, we first formulate the cluster optimization problem
as a NLP (Non-Linear Programming) problem, reformulate
it as a MINLP problem to reduce the number of vari-
ables, and then propose an efficient FPA (Flower Pollination
Algorithm)-based solution method for the MINLP problem.
The scheme can be applied to large-scale clusters. Experi-
mental results demonstrate the effectiveness of our strategy.
The main contributions of this paper are:
• In our optimization strategy, we focus on server’s utiliza-
tion and the server’s utilization is kept at a reasonable
level.

FIGURE 1. Schematic of our strategy.

• We propose two optimization schemes for application
server clusters. The MILP-based scheme improves the
work in [18] and is applicable to small-scale clusters,
and the MINLP-based scheme can be applied to large-
scale clusters.

• In the MINLP-based scheme, we propose a hypothesis.
Based on the hypothesis and analysis, we define vari-
ables for each server model (but no each server), so the
number of variables is substantially reduced. Moreover,
aimed at the trait of the MINLP problem, we propose
an FPA-based solution method. Due to the small num-
ber of variables and the high solution efficiency, the
FPA-based solution method can obtain a high-quality
solution quickly, so the MINLP-based scheme can be
applied to large-scale clusters.

• We present our evaluation results in detail. The results
validate the feasibility of the hypothesis and the effec-
tiveness of our two schemes.

The remainder of this paper is organized as follows. The
related studies are discussed in Section II. Sections III and IV
propose the MILP- and MINLP-based schemes, respectively.
The experiments and analysis are given in Section V. Finally,
we conclude in Section VI.

II. RELATED STUDIES
Server Dynamic Switch On/Off (DSO) and CPU Dynamic
Frequency Scaling (DFS) are two effective power opti-
mization measures for clusters. Instead of power-off,
suspending-to-RAM is used in practice to shorten the server’s
startup time [18]. Several studies depend only on server
DSO [6], [12], [19]–[22], CPU DFS [8], [14], or the load
distribution [23], [24] to optimize the cluster power. However,
these methods cannot obtain the best optimization results.

The energy conservation of a cluster should be carried out
under the precondition of QoS assurance. As an indicator
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of QoS, most previous studies focus on the server’s response
time but ignore the server’s CPU utilization. As discussed
in the previous section, this is not advisable for application
server clusters. Moreover, CPU utilization and response time
are quite distinct from each other, and they are not symmet-
rical metrics, so response time cannot be simply changed to
CPU utilization in their approaches. Although [25] uses uti-
lization as a QoS indicator, it is based on divide-and-conquer
(it does not consider server DSO and CPU DFS together) and
heuristic methods, so it cannot obtain the best optimization
result. Reference [23] imposes punishment on the servers
whose utilization is greater than 80% when calculating the
power efficiency but does not ensure the server’s utilization.

In the solution method for the cluster optimization prob-
lem, [19], [26]–[28] use heuristic or greedy algorithms on
the whole. Reference [8] first reduces the number of vari-
ables by half through a theoretical analysis and then uses a
binary search; [5] uses Generalized Benders Decomposition;
[18] and [16] use GLPK and CPLEX, respectively; and [14]
proposes a bisection method and several heuristic methods.
However, these studies do not evaluate the efficiency of their
solution methods. Reference [26] uses a genetic algorithm
to solve the optimization problem, but it does not evalu-
ate the algorithm in large-scale clusters. To ensure online
optimization, [18] presents a method to ‘‘first build a load-
solution table offline, then look up the table online’’; how-
ever, the method lacks operability because the table has to
be rebuilt when the servers in the cluster change. Refer-
ence [11] proposes a distributed solution method based on
dual decomposition, but it does not evaluate the efficiency
of the method. Moreover, the servers have already taken on
a heavy workload; if they also take part in solving the opti-
mization problem, it is difficult to ensure a real-time solution.

In addition, the optimization objects of many related stud-
ies [21], [29] are homogenous clusters, but heterogeneous
clusters are much more common in practice.

III. MILP-BASED OPTIMIZATION SCHEME
Reference [18] formulated the cluster optimization problem
as a MILP problem. However, it has two shortcomings:
(i) it lets servers be fully utilized but does not involve CPU
utilization assurance; and (ii) it ignores the standby power
when a server is turned off. In this section, we improve the
work in [18] and propose a new MILP-based optimization
scheme that solves the above two shortcomings. In our two
schemes, we let all of the cores of the multi-core CPU work
at the same frequency to reduce the complexity of the opti-
mization problem.

A. DEFINITION AND SYMBOLS
Wefirst define load capacity.When a server works at a certain
frequency with 100% CPU utilization, the load (namely, the
request arrival rate) it can bear is defined as the load capacity
of the frequency.

Consider a cluster that consists of c servers Si (0 ≤ i ≤
c−1). The related parameters of server Si are given in Table 1.

TABLE 1. Parameters of server Si .

Suppose that the upper limit of the CPU utilization is 8 and
that the predicted cluster load is Lpredict .

B. MIXED INTEGER LINEAR PROGRAMMING
(MILP) PROBLEM
We define three variables for each frequency of each server:
the binary variable zi,j denotes whether Si works at fi,j or not,
the real variable xi,j denotes the CPU busy ratio (namely, CPU
utilization) when Si works at fi,j, and the real variable yi,j
denotes the CPU idle ratio when Si works at fi,j. Note that
we must ensure that xi,j is not greater than 8.

To describe the server’s on/off state along with the CPU
frequency selection, we supplementally define the frequency
fi,0 that denotes that Si is turned off. Moreover, we let pbusyi,0 =

pidlei,0 = pstandbyi and li,0 = 0. Accordingly, we define three
variables: xi,0, yi,0, and zi,0.

Obviously, if zi,j = 1 (i.e., Si works at fi,j), then
xi,j + yi,j = 1. If zi,j = 0 (i.e., Si does not work at fi,j),
we specify xi,j = yi,j = 0. Therefore, xi,j + yi,j − zi,j = 0.
Then, the cluster optimization problem can be formulated as
the following problem:

min
∑c−1

i=0

∑fi

j=0

(
xi,jp

busy
i,j + yi,jp

idle
i,j

)
, (1)

s.t.
∑c−1

i=0

∑fi

j=0
xi,jli,j = Lpredict ; (2)∑fi

j=0
zi,j = 1, ∀i ∈ {0, . . . , c− 1} ; (3)

xi,j + yi,j − zi,j = 0, (4)

zi,j ∈ {0, 1} , (5)

xi,j ∈ [0, 8] , (6)

yi,j ∈ [0, 1] , ∀i ∈ {0, . . . , c− 1} , ∀j ∈ {0, . . . , fi} .

(7)

In the problem,
• xi,j, yi,j, and zi,j are variables. The on/off state and
frequency selection of Si are determined by

∑fi
j=0 zi,jj.

For example, 0 denotes that Si is power-off (standby),
and 2 denotes that Si works at the 2nd frequency
(namely, fi,2). The load of Si is given by

∑fi
j=0 xi,jli,j.

•

∑fi
j=0

(
xi,jp

busy
i,j + yi,jp

idle
i,j

)
is the power of Si, and (1)

is the total power of all servers (namely, the clus-
ter power). Equation (6) is the constraint for CPU
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utilization assurance. Therefore, the optimization objec-
tive is to minimize the cluster power under the precon-
dition of CPU utilization assurance.

C. SOLUTION METHOD FOR THE MILP PROBLEM
The problem expressed by (1)-(7) is a MILP problem. The
GNULinear Programming Kit (GLPK) is a software package
intended for solving large-scale LP (Linear Programming),
MILP, and other related problems. It uses the branch-and-
bound algorithm with Gomory’s mixed integer cuts for
(mixed) integer problems. In theory, we can use the GLPK
to solve the MILP problem. However, the problem defines
variables for each frequency of each server, so the number
of variables is enormous, especially if the cluster scale is
large. Faced with large numbers of binary variables and
real variables, the GLPK cannot ensure a real-time solution.
Therefore, the MILP-based scheme is only applicable to
small-scale clusters.

IV. MINLP-BASED OPTIMIZATION SCHEME
To ensure the real-time solution of the cluster optimization
problem, we start with two aspects: (i) reducing the number
of variables, and (ii) designing an efficient solution method.
In this section, we first define fewer variables and formulate
the cluster optimization problem as a Non-Linear Program-
ming (NLP) problem. We then propose a hypothesis. Based
on the hypothesis, we redefine the variables (the number of
variables is substantially reduced) and transform the NLP
problem into a MINLP problem. Finally, we propose an
FPA-based method to solve the MINLP problem.

A. NON-LINEAR PROGRAMMING (NLP) PROBLEM
We still use the symbols defined in Subsection III(A).
We define the variable li, li ≥ 0, to denote the load assigned
to Si. If li = 0, then Si is turned off. Because the maximum
load capacity of Si is li,fi and the upper limit for CPU utiliza-
tion is 8, we must ensure that li ≤ li,fi8.

Because the server power is a cubic function of the CPU
frequency [5], [30], [31] but a linear function of the CPU uti-
lization [18], [31], we adopt the following practice—letting
a server work at the lowest possible frequency (with a high
CPU utilization) as long as its CPU utilization is not higher
than 8. The feasibility of this practice is verified by our
experiments in Subsection V(B). Therefore, Si works at the
frequency fi,k , where the integer k satisfies li,k−18 < li ≤
li,k8, k ∈ {1, . . . , fi} (we supplementally define li,0 = 0).
Then, its CPU utilization is li

/
li,k . According to the linear

relationship between power and CPU utilization [18], [31],
the power of Si is

power i (li)

=


pidlei,k +

li
li,k

(
pbusyi,k − p

idle
i,k

)
, li,k−18 < li ≤ li,k8

pstandbyi , li = 0.
(8)

It is easy to prove that power i (li) is a piecewise linear
function and is discontinuous at li,j8 and 0. The cluster
optimization problem can be formulated as the following
problem:

min
∑c−1

i=0
power i(li), (9)

s.t.
∑c−1

i=0
li =Lpredict ; (10)

li ∈ [0, li,fi8], ∀i ∈ {0, . . . , c− 1} . (11)

In the problem,
• li (0 ≤ i ≤ c−1) are variables. The load of Si is directly
given by li, and the on/off state and frequency selection
of Si are derived from li.

• Equation (9) is the cluster power, and (11) is the
constraint for CPU utilization assurance. Therefore,
the optimization objective is still to minimize the clus-
ter power under the precondition of CPU utilization
assurance.

The problem expressed by (9)-(11) is a discontinuous NLP
problem. It only defines one variable (li) for each server,
and its number of variables is far less than that of the MILP
problem expressed by (1)-(7). However, when the cluster
scale is large, the number of variables is still enormous. It is
difficult to solve a large-scale discontinuous NLP problem.
Therefore, to ensure the real-time solution, we must further
reduce the number of variables of the NLP problem.

B. MIXED INTEGER NON-LINEAR PROGRAMMING
(MINLP) PROBLEM
In a practical cluster, it is difficult to guarantee that all
servers are the same. However, we usually purchase, replace,
or upgrade a batch of servers together, so many servers are
the same. We treat homogeneous servers as the same server
model. Generally, the number of server models is more than
an order of magnitude lower than the number of servers in
a practical cluster. If we can define variables for each server
model (but not for each server), number of variables will be
sharply reduced.

TABLE 2. Parameters of server model Mi .

Assume that there are C server models Mi (0 ≤ i ≤
C − 1). The related parameters of server modelMi are given
in Table 2.
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For server modelMi (0 ≤ i ≤ C − 1), (8) can be rewritten
as follows:

Power i (l)

=


Pidlei,k +

l
Li,k

(
Pbusyi,k − P

idle
i,k

)
, Li,k−18 < l ≤ Li,k8

Pstandbyi , l = 0.
(12)

We now examine the servers of the same model. We still
take Mi as an example.
• According to (12), if multiple (e.g., w (2 ≤ w ≤ Ni))
servers work in an identical load range (Li,k−18,Li,k8]
(i.e., they work at the same frequency—Fi,k ), the sum
of their powers (P∑) is a linear function of the sum
of their loads (L∑). Therefore, we can let these servers

bear the same load
L∑
w and consume the same power

P∑
w because this will neither change the sum of their
loads and the sum of their powers nor violate the QoS
assurance.

• Servers usually should work at the highest cost-effective
load. However, there is an equality constraint for the
sum of the loads (namely, (10)); therefore, servers
cannot ‘‘choose’’ their load freely. Even so, they will
still tend to work in a few highly cost-effective load
ranges. Hence, we propose the following hypothesis:
the running servers work at a maximum of two dif-
ferent load ranges (Li,k−18,Li,k8] (i.e., a maximum
of two different frequencies). It is worth emphasiz-
ing that under this hypothesis, we may not be able
to obtain the global optimal solution; nevertheless,
we can obtain at least a very good near-optimal solu-
tion (this is verified by our experiments in Subsec-
tion V(F)). However, based on this hypothesis and the
first point, we can conveniently define variables for each
server model, which substantially reduces the number of
variables.

Based on these two points, we divide the servers of each
server model into three groups. The servers in the first group
bear the same load, the servers in the second group also bear
the same load (note that it could be equal to or not equal to
the load of the first group), and the servers in the third group
are turned off. Below, we redefine the variables and rephrase
the NLP problem expressed by (9)-(11).

For server model Mi (0 ≤ i ≤ C − 1), we define four
variables: ni,1, li,1, ni,2, and li,2. Specifically, ni,1 and ni,2
are two integers in the range of [0, Ni], and li,1 and li,2 are
two real numbers in the range of (0, Li,Fi8]. They denote
that the servers are divided into three groups; there are ni,1
servers in the first group, and they all work with load li,1;
there are ni,2 servers in the second group, and they all work
with load li,2; and the remaining Ni − ni,1 − ni,2 servers
belong to the third group, and they are turned off. Then, the
NLP program expressed by (9)-(11) can be rephrased as the

FIGURE 2. Flow diagram of the FPA-based solution method.

following MINLP problem:

min
∑C−1

i=0

(
ni,1Power i

(
li,1
)
+ ni,2Power i

(
li,2
)

+
(
Ni − ni,1 − ni,2

)
Pstandbyi

)
, (13)

s.t.
∑C−1

i=0

(
ni,1li,1 + ni,2li,2

)
=Lpredict ; (14)

li,1 ∈ (0,Li,Fi8], li,2 ∈ (0,Li,Fi8], (15)

ni,1 ∈ {0, . . . ,Ni}, ni,2 ∈ {0, . . . ,Ni}, (16)

ni,1 + ni,2 ≤ Ni, ∀i ∈ {0, . . . ,C − 1} . (17)

C. FPA-BASED SOLUTION METHOD
FOR THE MINLP PROBLEM
Because of their good flexibility and generality, intelli-
gent optimization algorithms are effective solution meth-
ods for complicated NLP problems, and they have been
widely used to solve various optimization problems in dif-
ferent fields. However, their solution efficiency and quality
are greatly influenced by the algorithm parameters. Fewer
parameters may be beneficial to ensure the stability of the
algorithm.

The Flower Pollination Algorithm (FPA) is a population-
based optimization algorithm that was proposed in 2012 by
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Algorithm 1 Correction Operator
1: //for (15), (16), and (17)
2: if(ni,1, li,1, ni,2, li,2, or ni,1 + ni,2 is smaller/bigger than its lower/upper bound (i ∈{0,. . . ,C-1}))
3: set it to its lower/upper bound;
4: // for (14)
5: l=

∑C−1
i=0

(
ni,1li,1 + ni,2li,2

)
;

6: while (l > Lpredict ) {
7: select i, j from {i, j|ni,j > 0, i ∈{0, 1, . . . , C-1}, j ∈{1, 2} } whose ni,jli,j is minimal;
8: if (ni,jli,j < l − Lpredict ) {// turn off the server group
9: l = l − ni,jli,j;
10: ni,j = 0; li,j = 0;
11: }
12: else {// only need to reduce the server load of the server group
13: li,j = (ni,jli,j − (l − Lpredict ))

/
ni,j;

14: return;
15: }
16: }
17: while (l < Lpredict ) {
18: select i, j from {i, j |ni,j > 0, ni,1 + ni,2 < Ni or li,j < Li,Fi8, i ∈{0, 1, . . . , C-1}, j ∈{1, 2} }
19: whose li,j/Power i

(
li,j
)
is minimal;

20: if (i, j do not exist) {// need to turn on server(s) of a new server model
21: select i from {i|ni,1 + ni,2 = 0, i ∈{0, 1, . . . , C-1}} whose max{x/Power i (x) , x ∈(0, Li,Fi8)} is the highest;
22: j= 1;
23: }
24: if (Lpredict − l is big enough, such that ni,j can be adjusted to Ni − ni,3−j, and li,j can be adjusted to Li,Fi8) {
25: load = ni,jli,j;
26: ni,j = Ni − ni,3−j; li,j = Li,Fi8;
27: l = l + ni,jli,j − load;
28: }
29: else {// only need to increase ni,jli,j. Meanwhile, we minimize ni,j.
30: load = ni,jli,j + Lpredict − l;
31: ni,j = ceil(load/(Li,Fi8)); li,j = load/ni,j;
32: return;
33: }
34: }

Yang [32]. It is based on the pollination process of flowering
plants and includes two main operators: global pollination
and local pollination. The two pollinations are controlled by a
switch probability. Other than the population size, the switch
probability is the only parameter in the FPA, which allows the
FPA to be easily manipulated. So we adopt the FPA to solve
the MINLP problem expressed by (13)-(17).

Each individual is expressed as (n0,1, l0,1, n0,2, l0,2, n1,1,
l1,1, n1,2, l1,2, . . . , nC−1,1, lC−1,1, nC−1,2, lC−1,2). The opti-
mization variables in the FPA are real numbers, so we add
a rounding operator for the integer variables ni,1 and ni,2,
and use the ceil() and floor() functions at random. After the
pollination and rounding operator, it is nearly impossible for
individuals to satisfy the equality constraint in (14). There-
fore, we add a correction operator to correct individuals,
which makes the individuals satisfy all of the constraints
in (14)-(17). The flow diagram of the FPA-based solution
method is presented in Fig. 2.

To prevent introducing too much computational overhead,
the correction operator is based on a greedy strategy; that is,
we reduce the number of running servers to as few as possible.
Algorithm 1 gives the pseudocode of the correction operator.
In the algorithm, lines 6-16 handle the situation in which the
total load is higher than the predicted load. In this situation,
we first select a running server group whose total load is
minimal. If possible, we turn off the server group and then
continue the correction operation; otherwise, we only need to
reduce the server load of the server group. Lines 17-34 handle
the situation in which the total load is lower than the predicted
load. In this situation, we first select a running server group
whose power efficiency (defined as the ratio of the load to
the power) is minimal, and the group scale or server load can
be increased. If such a server group does not exist, we need
to turn on server(s) of a new model, and we select the model
whose maximum power efficiency is the highest. If possible,
we maximize the group scale and server load of the server
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TABLE 3. Power and load capacity data of the four server models.

group and then continue the correction operation; otherwise,
we only need to increase the load of the server group.

To ensure a real-time solution, the FPA must also reduce
the overhead and improve the efficiency. In the global pollina-
tion operator, the FPA needs to draw a step vector (each indi-
vidual needs a step parameter in the pollination equation [32])
that obeys a Lévy distribution. This is an expensive operation.
In our implementation, we generate a batch of step vectors
beforehand offline and then randomly select one of these
vectors online. In addition, the evolution of each individual
is separated and independent, so we adopt OpenMP [33] to
parallelize the population evolution process.

V. NUMERICAL EXPERIMENTS
As described in the previous sections, almost all previ-
ous studies focus on the cluster’s power optimization under
response time assurance but not under CPU utilization assur-
ance, so their optimization objectives are different than
ours. Moreover, most do not consider real-time optimiza-
tion. Although a few studies have identified this issue
and proposed methods to address it, their methods lack
practical feasibility. Therefore, we do not compare our strat-
egy to those methods. Instead, our experiments focus on:
• The reasonability of the practice and hypothesis in our
MINLP-based scheme.

• Whether our MILP- and MINLP-based schemes can
find the global optimal or a high-quality solution in an
acceptable amount of time.

• How the two schemes perform in clusters with different
scales.

It is worth emphasizing that our MILP-based scheme is an
improved scheme of [18].

A. EXPERIMENT SCENARIO
Table 3 shows the power and load capacity data of the four
server models supplied in [18]. The standby power of each
server model is assumed to be 3.5W. The clusters used for the
experiments consist of the four server models. We consider
four different cluster scales: 20, 40, 80, and 120 servers,
and the numbers of servers of each model are equal. The
upper limit of the CPU utilization is set to 85%. All exper-
iments are run on a PC with an Intel Xeon E3-1230 v3 CPU,
8 GB of memory, and the Windows 7 64-bit operating
system.

B. POWER AND POWER EFFICIENCY CURVE
For each server model, we plot the function curve between the
power and load of each discrete frequency in the same figure,
as shown in Fig. 3. The results show that

1) A load may correspond to multiple combinations of
frequency and power.

2) In these combinations, the lower the frequency is,
the lower the power is.

To better understand these observations, we consider the
load of 60 req/s in the first subfigure. It corresponds to three
combinations of ‘‘(frequency, power)’’, namely (1.8 GHz,
88.2 W), (2.0 GHz, 92.4 W), and (2.2 GHz, 96.5 W); the
first combination has the lowest power and is the most cost-
effective. According to these observations, we should let a
server work at the lowest possible frequency as long as its
CPU utilization meets the QoS goal, as discussed in Subsec-
tion IV(A). Based on the above analysis, the function curve
of Power i(l) is marked with circles in each subfigure. The
discontinuity of Power i(l) causes our optimization problem
to have many local optimal solutions.

The power efficiency (namely, l
/
Power i(l)) curve of each

server model is given in Fig. 4. We can see that
1) The power efficiency is also discontinuous.
2) The power efficiency generally has an increasing trend,

but it is not a monotonously increasing function.
3) Some server models achieve the maximum power effi-

ciency at the highest load (e.g., server models 0 and
3), whereas some server models achieve the maximum
power efficiency at a higher load but not at the highest
load (e.g., server models 1 and 2).

Many studies only use greedy optimization algorithms that
concentrate the load on some servers and make them as fully
loaded as possible while turning off as many other servers
as possible. However, observations 2) and 3) may cause
the solution of the greedy algorithm to be unsatisfactory.
In addition, observation 3) indicates that the clusters used
in our experiments are ‘‘complicated’’, and it is difficult
to obtain the global optimal solutions of their optimization
problems.

C. NUMBER OF VARIABLES
In the remainder of this paper, we refer to the problems
expressed by (1)-(7), (9)-(11), and (13)-(17) as the MILP,
NLP, and MINLP problems, respectively. Table 4 lists the
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FIGURE 3. Power curves: (a) Server model 0; (b) Server model 1; (c) Server model 2; (d) Server model 3.

FIGURE 4. Power efficiency curves: (a) Server model 0; (b) Server model 1; (c) Server model 2; (d) Server model 3.

numbers of variables of the three problems with different
cluster scales. As shown in the table,

1) The numbers of variables of the MILP and NLP prob-
lems increase with the cluster scale because they define
variable(s) for each server.

2) The number of variables of the MINLP problem is
determined solely by the number of server models
because it defines variables for each server model.

D. APPLYING THE MILP-BASED SCHEME
IN A SMALL-SCALE CLUSTER
We examine the first cluster scale in Table 4. The maxi-
mum load of the cluster is MaxLoad = (111.4 + 124.6 +
255.2+111.4)∗5∗0.85 = 2561.05 req/s, where 111.4, 124.6,
255.2 and 111.4 are the maximum load capacity of each
server model respectively (see Table 3); 5 is the number of
servers of each model; and 0.85 is the upper limit of the
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TABLE 4. Numbers of variables of the three problems for clusters of different scales.

TABLE 5. Results of solving the MILP problem using GLPK.

TABLE 6. Results for 10 servers of each model.

CPU utilization (see Subsection V(A)). We consider nine
load scenes—10%, 20%, . . . , 90% of MaxLoad. For each
load, we use the standalone solver GLPSOL in GLPK (ver-
sion 4.65) to solve the MILP problem. During the solution
process, it constantly outputs the current optimal solution that
has been found. If the solution process ends, the last output is

the global optimal solution; otherwise, the last output is not
necessarily the global optimal solution. The results are given
in Table 5.

For each scene in Table 5, the solution process ends at
the time listed in the fourth column, so the minimal power
listed in the third column is the global optimum; i.e., we can
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TABLE 7. Results for 20 servers of each model.

TABLE 8. Results for 30 servers of each model.

find the global optimal solution within half a second or less.
Therefore, when the cluster scale is small, we can directly
solve the MILP problem using GLPK to optimize the cluster.
We discuss the column ‘‘server frequency selection’’ in the
next subsection.

E. APPLYING THE MILP-BASED SCHEME
IN LARGE-SCALE CLUSTERS
In this subsection, we consider the last three cluster scales
in Table 4. Similarly, we can determine their MaxLoads. For
each cluster scale, we use nine or five load scenes to test the
MILP-based scheme. There are a total of 19 scenes, and the
solution time is limited to 8 hours. Tables 6, 7, and 8 give
the test results.

We first examine the columns ‘‘computation time’’, ‘‘min-
imal power’’, and ‘‘end time’’ in Tables 6-8. The results show
that:

1) There are 9 scenes (8 in Table 6 and 1 in Table 7) in
which GLPK can find the optimal solution (in 8 hours),
and there are 10 scenes in which GLPK cannot find the
optimal solution (in 8 hours).

2) There are only 10 ∗ 4 = 40 servers in scene 12, but
GLPK fails to find the optimal solution.

3) In scenes 22 and 28, GLPK does not give any solution.
4) In the last 10 large-scale scenes (scenes 19-28), GLPK

finds the optimal solution in only one scene (scene 21).
Therefore, when the cluster scale is large, GLPK is usually

unable to obtain the optimal solution of the MILP problem
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FIGURE 5. Solution efficiency of the MINLP-based scheme: (a) 10 servers of each model, 30% MaxLoad (scene 12); (b) 10 servers of
each model, 70% MaxLoad (scene 16); (c) 20 servers of each model, 30% MaxLoad (scene 20); (d) 20 servers of each model, 70%
MaxLoad (scene 22); (e) 30 servers of each model, 30% MaxLoad (scene 25); (f) 30 servers of each model, 70% MaxLoad (scene 27).

and sometimes even gives no solution, so the MILP-based
scheme cannot be applied to the online optimization of large-
scale clusters.

Next, we examine the column ‘‘server frequency selec-
tion’’ in Tables 5-8, which lists the frequency selection of
each server. For example, 0 denotes that the server is power-
off (standby), and 2 denotes that the server works at the 2nd
frequency (from low to high). There are a total of 18 scenes
(9 in Table 5, 8 in Table 6, and 1 in Table 7) in which GLPK
finds the optimal solution in 8 hours. Of these 18 scenes,
the optimal solution satisfies the hypothesis proposed in Sub-
section IV(B) in 17 scenes (all except scene 14). This indi-
cates that the hypothesis is tenable in the majority of scenes.

F. SOLUTION QUALITY OF THE MINLP-BASED SCHEME
FOR LARGE-SCALE CLUSTERS
We use the same 19 scenes as in Subsection V(E) to test the
MINLP-based scheme. One second is an acceptable online
solution time. In each scene, we run the FPA-based solution

method for one second to obtain aminimal power. To evaluate
the quality of the obtained minimal power, we need a refer-
ence standard. In each scene, we use the minimal power of
the MILP problem that is found by GLPK within 8 hours as a
reference power (the column ‘‘minimal power’’ in Tables 6-8)
and deem it a high-quality solution. Four threads are used
for parallelization in the MINLP-based scheme. According
to [32] and [34], in the FPA, 0.8 is a good switch probability
for most applications; therefore, the switch probability is set
to 0.8 in our FPA-based solutionmethod. In addition, the pop-
ulation size is set to 160. The results are shown in Table 9.

Table 9 shows that
1) In most scenes (all except scene 14 and 20),

the MINLP-based scheme obtains a solution that is
equal to or better than the reference standard.

2) In scene 14 and 20, although the obtained minimal
power ismore than the reference power, their difference
is very small; the relative difference is only 0.07%
and 0.1%, respectively.
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TABLE 9. Solution quality of the MINLP-based scheme.

In a word, the MINLP-based scheme can find a high-
quality solution within one second. It is worth noting that in
scene 14, ‘‘1618.3W’’ is the (global) optimal minimal power.
As previously discussed, scene 14 is the only scene in which
the optimal solution does not satisfy the hypothesis proposed
in Subsection IV(B). In this case, even the optimal solution
does not satisfy the hypothesis, but we still can obtain a very
good near-optimal solution online based on the hypothesis.

G. SOLUTION EFFICIENCY OF THE MINLP-BASED
SCHEME FOR LARGE-SCALE CLUSTERS
In this subsection, we use six scenes (scenes 12, 16, 20,
22, 25, and 27; three cluster scales and two load scenes
for each scale) from the previous subsections to evaluate
the solution efficiency of the MINLP-based scheme. When
using our FPA-based method to solve the MINLP problem,
we constantly record the current minimal power and the
corresponding calculation time during the solution process.
Each test is repeated five times. As with Subsection V(F),
we use the minimal power of the MILP problem that is found
by GLPK within 8 hours as a reference standard and deem it
a high-quality solution (the reference standard for scene 22 is
missing). The results are shown in Fig. 5. The dotted line in
each subfigure is the reference standard. We can see that our
FPA-based solution method has high efficiency, and it can
converge to a high-quality solution in 300 ms or less.

According to the analysis in this and the previous subsec-
tions, the MINLP-based scheme can be applied to the online
optimization of large-scale clusters.

VI. CONCLUSION
In this paper, we propose an online power-aware optimization
strategy for application server clusters, whose goal is to min-
imize the cluster’s power consumption while ensuring that
the server’s CPU utilization is not higher than a preset value.

The optimization content involves the on/off state of each
server, the CPU frequency of each running server, and
the load distribution. The strategy includes two schemes:
a MILP-based scheme and a MINLP-based scheme.

The MILP-based scheme formulates the cluster optimiza-
tion problem as a MILP problem and uses GLPK to solve the
problem. When the cluster scale is small, GLPK can find the
global optimal solution quickly. However, when the cluster
scale is large, the number of variables of the MILP problem
will be enormous, and GLPK cannot obtain a satisfactory
solution in a short amount of time and sometimes gives no
solution. Therefore, the MILP-based scheme is only applica-
ble to the online optimization of small-scale clusters.

In the MINLP-based scheme, we first formulate the cluster
optimization problem as an NLP problem, whose number of
variables is less than that of the MILP problem. We then
propose a hypothesis to further reduce the number of vari-
ables. Based on the hypothesis, we redefine the variables
and transform the NLP problem into a MINLP problem.
The test results show that (i) the optimal solution satisfies the
hypothesis in the majority of scenes; and (ii) even though the
optimal solutions of some scenes may not satisfy the hypoth-
esis, we still can obtain very good near-optimal solutions
based on the hypothesis. Finally, we propose an FPA-based
solution method for the MINLP problem that can quickly
obtain a high-quality solution. Due to the small number of
variables and the high solution efficiency, the MINLP-based
scheme can be applied to the online optimization of large-
scale clusters. Experimental results demonstrate the feasibil-
ity and validity of the two schemes.

We plan to study how to dynamically adjust the interval
between two optimizations and extend our strategy to virtu-
alized servers in future work.
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