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ABSTRACT Sensors-based and radio frequency (RF)-based indoor localization technology is one of the keys
in location-based services. The IEEE 802.11-2016 introduced the Wi-Fi fine timing measurement (FTM)
protocol, which provides a new approach for Wi-Fi-based indoor localization. However, Wi-Fi signals are
susceptible to complex indoor environments. To improve the positioning accuracy and stability, an enhanced
particle filter (PF) with two different state update strategies, a new criterion for divergence monitoring and
rapid re-initialization is proposed to integrate the advantages of pedestrian dead reckoning (PDR) and Wi-Fi
FTM. In addition, an adaptive tilt compensation is proposed to improve real-time heading estimation of
conventional PDR, and the Wi-Fi FTM outliers are detected by displacement estimation of the PDR. The
experimental results show that the proposed PF has better localization performance than the single source
positioning methods in a typical indoor scenario. The accuracy of final localization is within 1 m in 86.7%
of the dynamic cases and the average calculation time is less than 0.5 s when the number of particles is 2000.

INDEX TERMS Wi-Fi FTM, pedestrian dead reckoning, particle filter, multi-sensors, indoor localization.

I. INTRODUCTION
Indoor positioning methods with higher accuracy have been
discussed in recent years since they can play pivotal roles
in the field of artificial intelligence [1]. Lacking the assis-
tance of the Global Navigation Satellite System (GNSS),
radio frequency (RF)-based and sensors-based techniques,
such as Bluetooth [2], Wi-Fi [3], vision [4], and inertial
positioning [5], have been developed for indoor environ-
ments. Micro-Electro-Mechanical Systems (MEMS) provide
many small but complete and powerful sensors, such as
accelerometers, gyroscopes, and magnetometers, that can be
used to achieve pedestrian dead reckoning (PDR). PDR is
an inertial navigation technology that relies on an inertial
measurement unit (IMU) in which an accelerometer can
determine travelled distance by integration and a gyroscope
and magnetometer can provide heading change and absolute
heading, respectively [6]. The current position can then be
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estimated based on the real-time heading, step-length, and
previous position. There are many different IMU deploy-
ment methods such as handheld [7], hip-mounted [8], leg-
mounted [9], and foot-mounted [10]. Because of the wide
range of sensors built into smartphones, they are suitable for
use in PDR. However, PDR can only give relative positioning
results; small deviations can accumulate over time and make
the results unusable. Therefore, it is necessary to introduce
absolute positioning methods such as Wi-Fi.

Several main characteristics based on Wi-Fi can be taken
advantage of for indoor localization such as time of arrival
(TOA) [11], received signal strength indication (RSSI) [12],
and channel state information (CSI) [13]. The most common
Wi-Fi-based positioning systems use RSSI measurements
such as the path-loss model [14] and fingerprinting [15]. Due
to complex and changeable indoor scenarios, this method
is subject to limitations in accuracy and deployment cost.
Another important reference for Wi-Fi positioning methods
is the TOA. Accurate time-delay estimation produces a pre-
cise range measurement. The 802.11 working group has pro-
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posed the TOF protocol to improve the time resolution [16],
which achieves a time granularity at the microsecond level;
however, this is not sufficient for indoor localization. Other
technologies, such as ultra-wide band (UWB), are applied
to estimate channel responses to acquire a time resolution
of sub-nanosecond [17]. In the latest 802.11ac standard [18]
an improved TOF protocol called Fine Timing Measure-
ment (FTM) has been introduced, which measures the round-
trip-time (RTT) between transmitter and receiver at the same
time resolution as UWB by the exchange of frames and the
compensation of hardware latency. FTM achieves a ranging
accuracy at the meter or even submeter level without any
additional infrastructure [19]. We built a complete system to
capture the signal described above in which the hardware part
follows [20] and the software part is based on the API of
Android P [21]. Despite Wi-Fi FTM having a relatively high
precision, it suffers from problems such as non-line-of-sight
(NLOS) reception [22] and multipath interference, which are
difficult to directly solve from the time domain.

Based on a single positioning source, localization typically
faces many limitations. The multi-source fusion positioning
method integrates various advantages of the single methods
and achieves higher positioning accuracy and stability. Filter
theory usually becomes the adopted approach to fuse different
data. Although Kalman filters (KF) have been widely used,
it is hard to find an analytical solution for a highly nonlin-
ear model. Extended Kalman filters (EKF) [17], [23], [24],
Unscented Kalman filters (UKF) [15], [25], [26], Bayesian
filters (BF) [24], and Monte Carlo simulation (MC) [27] can
be applied to solve nonlinear problems. However, EKF adopts
the Taylor first-order expansion of the nonlinear model and
UKF adopts only a few sigma points to approximate the
probability density distribution, and both have limitations in
accuracy. Therefore, in this study a particle filter (PF) having
higher precision based on Bayesian statistical analysis and
Monte Carlo simulation is selected [28]. The filter estimates
the probability distribution by the statistical properties of a
set of samples called particles. The particles are first sampled
from a uniform distribution, and each of them has a state
that includes position and weight. At each time, each par-
ticle updates position according to PDR information. Wi-Fi
FTM measurements are then used to update the weights. The
final position estimation can be calculated by averaging the
weighted particle set.

In this study, we propose an enhanced particle filter that
fuses smartphone built-in sensors, Wi-Fi FTM ranging, and
simple map constraints to achieve fast and accurate indoor
localization. In summary, themajor contributions of this work
are as follows:
• We add an adaptive tilt compensation to the conventional
PDR algorithm, which can give a real-time and more
accurate azimuth estimation for smartphone pitches
from 0◦ to 90◦.

• We give solutions to two different strategies to update
the particle set state based on two different pedestrian
locomotion activities. Then, a new criterion based on

Wi-Fi FTM outlier detection and the improved weighted
mean-square error (wMSE) method is proposed to judge
whether the particle set diverges. To decrease the cal-
culation time, we adopt a rapid re-initialization method
from the previous posterior distribution under the static
mode.

• We applied an enhanced PF algorithm on indoor
localization that combines multi-sensors, Wi-Fi FTM,
and simple map information. Implemented experiments
demonstrate that the proposed PF algorithm achieves
higher accuracy and stability that are not greatly affected
by the PDR deviation and the Wi-Fi FTM outliers.

The remainder of the paper is organized as follows:
Section II presents some existing work on Wi-Fi FTM and
related fusion technologies. Section III describes how the
IMU sensors and Wi-Fi FTM are used for indoor pedestrian
positioning and presents an enhanced particle filter to fuse
PDR and Wi-Fi FTM based on smartphones. In Section IV
the experimental setup and results are demonstrated and
Section V concludes the paper and points out future work.

II. RELATED WORK
The Wi-Fi FTM protocol was developed from the time-of-
flight (TOF) protocol, in which the basic concept is to deter-
mine distances by measuring TOA [16]. In 2013, a research
team from Intel began to pay attention to the development
of this field. This team systematically studied Wi-Fi FTM
from the aspects of protocol, fusion algorithms and machine
learning algorithm, and has achieved good results. In [16],
they introduced how the TOF protocol works in detail and
conducted experiments consisting of both ray tracing simula-
tion and real-life tests in an office environment. To reduce
the negative impacts on unsynchronized time signal and
multipath, they used EKF to fuse TOF measurements with
IMU to enhance the performance of TOF system [17]. Then,
in 2016 the 802.11 working group standardized the FTM
protocol, which allowed the same team to display more
convenient research. This time, they compared the posi-
tioning performance of KF and BF based on fusing Wi-Fi
FTM and map information [19]. Due to the highly nonlin-
ear measurement model, BF was suggested for use. Then,
the team proposed a new protocol called collaborative time
of arrival (CTOA), which allows the access point (AP) to
periodically broadcast a unique beacon [23]. Based on the
time of departure (TOD), the TOA and the MAC address
recorded in the tag, neighbor clients can measure the distance
from the AP and track their locations. Since this mode suf-
fered from a time-tracking challenge, maximum-likelihood
estimates (MLEs) in the absence of clock drifts and an EKF
model under clock drifts were derived to correct the bias [24].
Their final system achieved a positioning accuracy better than
2 m in 95% of real cases. Moreover, they shared a reference
positioning engine and a time-delay measurement database
for developing and evaluating the localization system based
on Wi-Fi FTM [20]. Dvorecki et al. [29] from this team
adopted a ‘‘Siamese’’ artificial neural network (ANN), based
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on the machine learning approach, that aimed at the problem
of the inability to separate signals spaced closer than the reso-
lution limited by the signal bandwidth to improve the ranging
precision of Wi-Fi FTM. The indoor channel simulation was
used to train the model and the real-channel measurements
were used to analyze the performance of the ANN and MLEs
methods; the results showed that the former outperformed the
latter.

To apply Wi-Fi FTM, a specific configuring environ-
ment is needed first. Ibrahim [20] et al. from Rutgers Uni-
versity proposed a complete open hardware and software
platform, including a signal transmitter based on the Intel
Dual Band Wireless-AC8260 and a test tool built in Linux.
They also studied the key factors and parameters that affect
the ranging performance. The indoor experimental results
showed that the ranging accuracy reached 2.5 m and the
positioning accuracy reached 4m.Wide applications ofWi-Fi
FTM, such as indoor and outdoor vehicle location, have
also been studied. Niesen et al. [30] proposed an improved
dedicated short-range communication method byWi-Fi FTM
to perform outdoor inter-vehicle ranging. A timestamp com-
pression method that discards the most significant bits of
each FTM frame has been discussed. Differently from [30],
Neri [31] presented an architecture of mileage estimation in
indoor vehicle localization. The idea of deploying a Wi-Fi
unit on board and placing at least 3 Wi-Fi beacons with
the real/virtual track constraint was confirmed to be able to
track the noise and clock drift. Monte Carlo simulation was
used to analyze the most suitable interval for Wi-Fi beacon
deployment to reduce the material consumption. Other fusion
method combined with multi-sensors and Wi-Fi FTM, such
as UKF, was studied in Yue et al. [25]. They proposed a
real-time ranging model that reduces the impacts of clock
deviation, NLOS, and multipath. With such a ranging model
and a robust PDR algorithm, UKF was introduced to fuse
these data and gave a final positioning error within 2 m.

Compared with PDR and other Wi-Fi-based localization
technologies,Wi-Fi FTM is a relatively newmethod. Because
of its high accuracy and no requirement for additional infras-
tructure deployment, Wi-Fi FTM will receive much attention
in the near future.

III. THEORIES AND METHODS
A. PDR WITH ADAPTIVE TILT COMPENSATION BASED ON
SMARTPHONE BUILT-IN SENSORS
Any discussion about localization becomes meaningful only
within a certain coordinate framework. In PDR, navigation
frame and body frame are involved. The navigation frame
is defined as an absolute reference frame and the body
frame is defined with the screen of the phone and its default
orientation [7]. The body frame uses the right-hand Carte-
sian coordinate system [6]. Then, a coordinate transformation
with Euler angles for pitch, roll and yaw that indicate the
rotation around the x, y and z-axes, respectively, is performed
to describe how a vector is converted from the navigation
frame to the body frame, as shown in Fig. 1.

FIGURE 1. Body frame of smartphone and three Euler angles.

FIGURE 2. Framework of proposed PDR with adaptive tilt compensation.

Based on the definition of coordinate frames and coordi-
nate transformation, the framework of the PDR with adap-
tive tilt compensation based on smartphones is illustrated
in Fig. 2.

1) STEP DETECTION AND STEP-LENGTH ESTIMATION
When a pedestrian walks at a normal speed, his/her center of
gravity has a periodic change that allows an accelerometer to
record and distinguish steps.

Therefore, several approaches have been proposed
to detect steps, including peak detection [32], zero-
crossing [33], and autocorrelation [15]. The peak detection
approach is adopted in our PDR algorithm. Whether a pedes-
trian is in a static or walking state can be judged based on
the output changes of the accelerometer in the z-axis. Due
to inevitable inertia and minor jitter, a low pass filter can be
used to smooth the accelerometer outputs and improve the
accuracy of step detection [34].

First, the raw data are normalized and the gravity is sepa-
rated to obtain the pedestrian acceleration:

atp =
√
at2x + at2y + at2z − g (1)

where t is the sample timestamp, atp is the pedestrian acceler-
ation, atx , a

t
y, a

t
z indicate the raw accelerometer outputs, and

g is the measured value of local gravity acceleration. Since
a smartphone’s built-in sensors are commonly low-cost and
usually havemany unwanted noise [6], pseudo peaks will fre-
quently appear. The normalized data can be low-pass filtered
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FIGURE 3. Peak detection by accelerometer for 42 counted steps.

with a moving average filter to remove the high frequency
perturbations [8], which makes the data smoother:

atstep =
1
N

t∑
i=t−N+1

aip (2)

where atstep is the filtered value and N is the sliding window
length of the filter, which is a critical factor; in this studyN =
30. When the filtering process is complete, a time threshold
is set to further eliminate pseudo-peak residuals. According
to [15], the stride frequency of normal walking ranges from
1 to 2.5 Hz, and the minimum threshold is thus set to 0.4 s.
If the determined interval between two consecutive adjacent
peaks is less than this threshold, one of those peaks will be
rejected, such that:

1T = tn+1step − t
n
step > 1Tthreshold (3)

where n is the number of adjacent peaks. Fig. 3 shows the
result of step detection; the 42 steps counted are marked with
red circles.

The accelerometer also participates in step-length estima-
tion. In addition to being closely related to the step fre-
quency, the step length is also affected by the pedestrian’s
height, weight and walking habits. Therefore, there is not
a completely universal step length estimation model at the
moment. Many approaches have been proposed such as linear
models [6], [35], [36], nonlinear models [32], and adaptive
models [5], [10]. In this study, the length of each step is
estimated using a linear model [35]:

SL = [0.7+ a (H − 1.75)+ b
(SF − 1.79)H

1.75
]c (4)

where SL is the estimated step length, SF is the real-time
step frequency defined by the time interval between two
consecutive adjacent step peaks that are estimated by the
accelerometer, and H is the pedestrian height, which should

be preset. a, b, and c are the parameters of the model [35],
which are a = 0.371, b = 0.227, and c = 1. This is
an empirical model and can be directly used without any
training samples. Every parameter is simple and the only one
of concern is the pedestrian height.

Based on the adopted step detection and step-length esti-
mationmethods, a verification was took in a long straight cor-
ridor (48.05 m). The tester walked three round trips holding
the smartphone, and the estimated distance was compared to
the actual, results show a total error rate of less than 3%.

2) HEADING ESTIMATION
Heading estimation is pivotal to the entire PDR approach.
With different combinations of IMU sensors, there are many
approaches to obtain heading estimates, such as quater-
nion based on gyroscopes [37], digital compass based on
accelerometers and magnetometers [6], [10], the direction
cosinematrix (DCM) [38], [39], and EKF fusion [40]. In gen-
eral, smartphones can obtain an absolute direction from mag-
netometers as well as a relative direction from gyroscopes.
However, magnetometers can be seriously disturbed indoors
and give unstable outputs. Therefore, quaternion based on a
gyroscope are adopted here to estimate headings.

Quaternion, 4×1 unit-norm vectors inR4 [41], can be used
to describe certain rotation processes. Given an original vec-
tor a and a rotation action q under the body frame, the rotated
vector a

′

can be expressed as:

a
′
= qaq∗ (5)

where q = a + bi + cj + dk, for which i,j, k are imaginary
units, a to d are real numbers, and q∗ is the inverse of q.
The quaternion must be constantly updated to obtain the
real-time rotation result relative to the initial state, which can
be expressed as:

qt+1 = qt +1T q̇t (6)

where q̇t is an ordinary differential equation that can be
written as:

q̇t =
1
2
�(ω)qt (7)

where �(ω) is a matrix consisting of the gyroscope outputs.
The first order Runge–Kutta method is then used to solve for
the q̇t , and the final updated quaternion is written as follows:

qt+1 = qt +
1T
2


0 −ωx
ωx 0

−ωy −ωz
ωz −ωy

ωy −ωz
ωz ωy

0 ωx
−ωx 0

 qt (8)

where 1T is the sampling interval of the gyroscope and
ωx , ωy, ωz are the moving average filtered outputs of the
gyroscope, with a slidingwindow length of 15. Assuming that
the quaternion corresponding to the initial orientation of the
horizontal smartphone is (1, 0, 0, 0), the rotation matrix of
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FIGURE 4. Heading changes from 0◦ to 180◦ when tilt angle is adaptive.

the body frame with respect to the navigation frame at any
timestamp can then be expressed as:

TBNt =

 1− 2c2 − 2d2 2bc+2ad 2bd − 2ac
2bc−2ad 1− 2b2 − 2d2 2ab+2cd
2ac+2bd 2cd−2ab 1−2b2−2c2


t

(9)

where TBNt is the DCM that transforms vectors from the
navigation frame to the body frame at timestamp t . a to d
are given in terms of qt+1. To correct the integration error
and the quantization error of the gyroscope, a numerical
error correction approach is performed as in [39]. Finally, the
real-time heading relative to the given initial orientation is
calculated from (10):

θ = arctan(
2bc+ 2ad

1− 2b2 − 2d2
) (10)

3) ADAPTIVE TILT COMPENSATION
Regarding tilt compensation in PDR, it is common to correct
the bias of a magnetometer with an accelerometer and obtain
heading outputs from the latter [10], [42], [43]. The tilt refers
to the angle between the horizontal plane of the navigation
frame and the screen plane of the smartphone gripped natu-
rally by pedestrians. What we explored is how a big tilt would
bring a negative impact to conventional PDR when the range
of pitch is between 0◦ and 90◦ since the heading estimation
algorithm given in previous section could not work effectively
under the circumstance illustrated in Fig. 4.

When the phone is not horizontal, the gyroscope outputs
can only represent the rotation relative to its initial state under
the body frame. Because the angular velocity of the z-axis has
taken most of the contribution to integration when the phone
is horizontal, whereas only part of the gyroscope outputs
are doing the same thing now, the result obtained from the
abovementioned heading estimation method always diverges
greatly from the actual value. Therefore, a DCM calculated
by an accelerometer and magnetometer is applied to generate
the tilt compensation approach.

The DCM is written in terms of the rotation matrix that
describes the orientation transformation of two different coor-
dinate reference frames. According to the Android API [44],
the rotation matrix CN

B transforming a vector from the body
frame to the navigation frame can be directly calculated as

follows:

CN
B =

 Hx Hy Hz
Mx My Mz
Ax Ay Az

 (11)

where H, M, and A are associated with the sensor outputs;
details can be found in [44]. In general, (11) can be used
directly as a DCM. However, the only parameter we care
about is the pitch, and the heading has been solved by the
quaternion, which means that yaw and roll are redundant
here. Therefore, only the pitch is obtained from CN

B :

p = arcsin(−Ay) (12)

Then, a new DCM is calculated as:

DCM =

 1 0 0
0 Cp Sp
0 −Sp Cp

 (13)

where C is cosine and S is sine. Next, two rotation matrixes
are combined to obtain a tilt compensated matrix:

Rtilt = DCM · TBN (14)

where TBN is obtained from (9). Finally, the tilt-compensated
and real-time heading is calculated as:

θtilt−compensated = arctan(
R12
R22

) (15)

where R12 is the element in row 1 and column 2 and R22 is
the element in row 2 and column 2 of Rtilt .

B. ANALYSIS OF WI-FI FTM RANGING
1) RANGING MODEL
Wi-Fi FTM allows a smartphone (iSTA in the following) to
determine distances with multiple APs (rSTA in the follow-
ing) at the same time by an exchange ofmultiple FTM frames.
With reference to the standard [18], a complete FTM session
can be described as follows.

First, the iSTA should send an initial FTM request frame
to the rSTA to ensure that no communication conflicts
occur. Then, the rSTA will transmit an initial FTM frame
within 10 ms as a response indicating that the negotiation was
complete. To avoid completely saturating either the network
capacity or the processing capacity of the single STA [31], the
burst instance mechanism is applied during the measurement
exchange phase. The interval between two consecutive burst
instances should be longer than 0.1 ms, in units of 100 ms.
A new burst will be triggered by an FTM request according
to the iSTA. Next, the rSTA will record TOD t11 of the first
FTM frame, and the iSTA then measures TOA t12 of the signal
and TOD t13 of the ACK frame. TOA t14 is then captured by
the rSTA, and the timestamps t11 and t14 will be posted to
iSTA in the next FTM frame to calculate the RTT. There can
be multiple FTM frames in a burst, and the interval of each
consecutive FTM frames should be longer than 0.1 ms and
shorter than 25.6 ms, in units of 100 µs. The entire procedure
is illustrated in Fig. 5.
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FIGURE 5. Procedure of Wi-Fi FTM; FTMs per burst = 2.

Finally, the mean distance between iSTA and rSTA within
one burst can be calculated by (16):

DRTT =
c
2n

n∑
k=1

(
tk4 − t

k
1

)
− (tk3 − t

k
2 ) (16)

where c is the speed of light and n is the number of FTM
frames within a burst instance. Then, the least squares (LS)
algorithm can be used to obtain a real-time 2D position from
at least three different APs:

X = (ATA)
−1
ATL

A = 2


(x1 − x2)
(x1 − x3)

(y1 − y2)
(y1 − y3)

...
...

(x1 − xj) (y1 − yj)



L =


D22
RTT − D

12
RTT −

(
x22 − x

2
1

)
− (y22 − y

2
1)

D32
RTT − D

12
RTT −

(
x23 − x

2
1

)
− (y23 − y

2
1)

...

Dj2RTT − D
12
RTT − (x2j − x

2
1 )− (y2j − y

2
1)

 (17)

where X is the position estimation, X = (x, y), j is the
number of APs, xj and yj are the positions of the j-th
AP, and DjRTT is the distance estimation result from the
j-th AP.

2) OUTLIER DETECTION
Because the multipath and NLOS problems cause the
distances to be overestimated or underestimated, indoor
environments are challenging for time-based ranging
systems [20], [25]. One way to detect these outliers based on
spatial relations is to use IMU sensors. As a pedestrian moves
from a previous position to a current position, the amount of
the change in distance between the pedestrian and the AP

FIGURE 6. Framework of proposed PF.

is limited. Assuming the previous and the current distance
estimations dpre, dcur are both known and without errors,
an ideal relationship can then be described as:∣∣dcur − dpre∣∣ = ds (18)

where ds is the displacement estimated by PDR. How-
ever, the outputs of Wi-Fi FTM fluctuate around the
true value under normal conditions, which can make cur-
rent displacement to be overestimated or underestimated.
To make equation (18) more robust, it can be modified as
follows: ∣∣dcur − dpre∣∣ ≤ ηd s (19)

where η is the coefficient to limit the outliers, which can
be determined by experiments. A new measurement can be
considered as an outlier if it does not satisfy (19). Then,
the detected outlier will be replaced by a temporary variable
dtemp for comparison with the next distance estimation, with
dtemp assigned as follows:

dtemp =

{
dpre + dsdcur > dpre + ηd s
dpre − dsdcur < dpre − ηd s

(20)

Note that the temporary variable only works during the outlier
detection phase and would not affect the specific position
estimation.

C. ENHANCED PARTICLE FILTER ALGORITHM BASED ON
SMARTPHONES
In this section, we propose an enhanced PF to fuse PDR
measurements, Wi-Fi FTM measurements and some simple
map constraints. In this algorithm, two different update strate-
gies for particle set, a criterion of divergence monitoring
that considers the characteristics of Wi-Fi FTM, and a rapid
re-initialization method are applied. The framework of the
proposed PF is illustrated in Fig. 6.

VOLUME 7, 2019 95145



S. Xu et al.: Locating Smartphones Indoors Using Built-In Sensors and Wi-Fi Ranging With an Enhanced Particle Filter

1) NONLINEAR FILTER BASED ON THE BAYESIAN
APPROACH AND THE MONTE CARLO METHOD
ABayesian approach to nonlinear filtering offers a systematic
way to combine all prior knowledge of known states, model-
ing assumptions, and observation information to approximate
the posterior probability density function (pdf) of the system
state [27], [45], [46]. In general, a dynamic system can be
described by a state model and an observation model as
follows:{

Xk = fk (Xk−1,W k) W k ∼ N
(
0,Qk

)
Zk = hk (Xk ,V k) V k ∼ N (0,Rk)

(21)

where Xk∈ Rnx and Zk ∈ Rnz are the system state and
observation at timestamp k , andXk−1 is the state at k-1.W k ∈

Rnw andV k ∈ Rnv are the process noise and the measurement
noise, which are generally assumed to be a Gaussian noise
with null mean and covariance matrix Qk and Rk , respec-
tively. fk :Rnx ×Rnw→Rnx is a nonlinear function that reflects
the relationship between the current and the previous state.
hk :Rnx × Rnv→Rnz expresses the relationship between the
observations and the states. To obtain an optimal estimation
by determining the belief of different state variables, the pos-
terior pdf p(Xk |Z1:k ) is needed. First, it is assumed that the
state transition obeys the Markov process of order one, which
is p(Xk |X0:k−1) = p(Xk |Xk−1). If a sequence of observations
are available at timestamp k , then the updated prior pdf can
be calculated by:

p (Xk |Z1:k−1)

=

∫
p(Xk ,Xk−1|Z1:k−1)dXk−1

=

∫
p(Xk |Xk−1,Z1:k−1)p(Xk−1|Z1:k−1)dXk−1

=

∫
p(Xk |Xk−1)p(Xk−1|Z1:k−1)dXk−1 (22)

where the transition probability distribution p(Xk |Xk−1)
is defined by Xk in (21) and the previous posterior
p(Xk−1|Z1:k−1) is assumed to be known. Then, the current
posterior pdf can be calculated by:

p(Xk |Z1:k ) =
p(Zk |Xk ,Z1:k−1)p(Xk |Z1:k−1)

p(Zk |Z1:k−1)

=
p(Zk |Xk )p(Xk |Z1:k−1)

p(Zk |Z1:k−1)
(23)

where the p(Zk |Z1:k−1) is the normalizing constant:

p(Zk |Z1:k−1) =
∫
p(Zk |Xk )p(Xk |Z1:k−1)dXk (24)

where the p(Zk |Xk ) is the likelihood function defined by Zk
in (21).

Due to the complex integral operation involved in (22)
and (24), it is difficult to solve such a pdf problem when
the system model is nonlinear [46]. The Monte Carlo method
provides an approach to suboptimal estimation by approxima-
tion. By finding a set of weighted and random MC samples
in the state space to represent the posterior pdf, the mean

of this sample set could be substituted for the integration to
obtain results. From the above analysis, it is assumed that
N weighted samples can be obtained from the true posterior
probability. On one hand, the weight is initialized to 1

N and
updated by:

wik ∝ wik−1
p(Zk |X i

k )p(X
i
k |X

i
k−1)

q(X i
k |X

i
k−1,Zk )

(25)

where q(·) is the importance density. On the other hand,
the approximate posterior pdf can be calculated as:

p(Xk |Z1:k ) ≈
N∑
i=1

wikδ(Xk − X i
k ) (26)

where wik and X
i
k are the weight and the state of the i-th sam-

ple, respectively, and δ(·) is the Dirac delta function. When
N → ∞, the approximation approaches the true posterior
density [46].

2) DIFFERENT STRATEGIES DURING THE STATE UPDATE
PHASE BASED ON TWO LOCOMOTION MODES
In this study, the state vector consists of 2-dimensional posi-
tion (x, y) and heading θ (in degrees):

Xk =

 θkxk
yk


The number of samples is assumed to be N . In the ini-

tial phase, each MC sample, called a particle, is generated
from the initial probability distribution p(X0) with equal
weights [28]. Applying the LS method, four Wi-Fi FTM
measurements provide the initial position for the particle set.
The initial heading of each particle is drawn from the uni-
form distribution U (0, 2π ). After initialization, two different
strategies for state update are deployed when a new group of
Wi-Fi FTM measurements is received.

In the Bayesian approach, the particle set states are updated
from the prespecified proposal distribution q(·). The closer
the proposed q(·) is to the posterior distribution, the closer
the particle set is to the true value. A typical selection for q(·)
is the transition probability distribution p(Xk |Xk−1), which
had only been applied as one form in some past works, some
of which assumed that the process noise obeys a Gaussian
distribution [47], [48], whereas the other one assumed that
the noise obeys the Student’s t distribution [28]. To achieve
better accuracy and adaptability, we combine these ideas
with the characteristics of PDR and Wi-Fi FTM and divide
pedestrian navigation into static and dynamic modes.
• Static mode
If the displacement estimation of the PDR is 0, the state

transition model at timestamp k of the i-th particle is then
described as:  θ̂ ikx̂ ik

ŷik

 =
 θ ik−1 + δθ

x ik−1 + δlsin(θ̂
i
k )

yik−1 + δlcos(θ̂
i
k )

 (27)
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where θ̂ ik , x̂
i
k , ŷ

i
k are the updated state vector, θ ik−1, x

i
k−1,

yik−1 are previous estimation outputs, and δθ and δl indicate
the uncertainty of heading change and displacement, respec-
tively, both of which are Gaussian noise with null means
and variances σ 2

θ and σ 2
l , respectively. These variances are

significant to the performance of the filter in static mode.
Assuming that the pedestrian is stationary, the PDR has
almost no contribution other than the zero step-length con-
straint, and the localization thus relies more on Wi-Fi FTM
at this moment. According to our test results, the outputs of
Wi-Fi FTM in indoor environments fluctuate within a true
value of ±2 m, which means that the position estimation by
Wi-Fi FTM falls within a circle with a radius of at least 2 m.
In this case, to ensure that all observation-series information
is used and that the range of the particle set is sufficiently
large to cover the entire interesting state-space area, larger
process variances than the actual accuracy of the PDR would
indicate are needed [28].

• Dynamic mode

If a footstep is detected at timestamp k , then the state
transition model can be modified as follows:

 θ̂ ikx̂ ik
ŷik

 =
 θ ik−1 +1θ

i
k + δθ

x ik−1 + (l ik + δl)sin(θ̂
i
k )

yik−1 + (l ik + δl)cos(θ̂
i
k )

 (28)

where 1θ ik is the increment estimation of heading and l ik is
the displacement estimation by PDR. Differently than for the
static mode, we are more willing to believe such definite
variables since the PDR is available and reliable over a short
period. Therefore, the variances δθ and δl are set to the actual
values.

3) WEIGHT UPDATE WITH MAP CONSTRAINTS AND WI-FI
FTM OUTLIER DETECTION
When the state prediction stage is complete, the Wi-Fi
FTM measurements are then used for the update stage.
PF estimates position by the particle set; however, it is
common to mistakes that some particles enter an inacces-
sible area or take an impossible displacement such as wall
collisions [28], [49], [50]. Therefore, a simple map filter is
deployed to reject the particles passing through the wall as
follows:

wik ∝

{
0 rejection occured
wik−1 others

(29)

For the accepted transitions, the weight is updated accord-
ing to (25), in which a Gaussian distribution is adopted
here:

wik = wik−1 · exp

{
−

(
Zk − Zsik

)2
2Rk

}

Zk =


D1
RTT k

D2
RTT k
...

DjRTT k

 ,Zsik =


√
(x̂ ik − x1)

2
− (ŷik − y1)

2√
(x̂ ik − x2)

2
− (ŷik − y2)

2

...√
(x̂ ik − xj)

2
− (ŷik − yj)

2

 (30)

where Zk is a j-dimensional column vector and describes the
observed distances between the current location and each AP,
Zsik = hk

(
X̂
i
k

)
is an estimated distance vector calculated

by the known locations xj, yj of the APs and the predicated
location of the i-th particle, and Rk is the covariance matrix
of observations, written as:

Rk =


0RT T2

σ 2
RTT2

. . .

σ 2
RTTj

 (31)

where σ 2
RTT j is the variance of the j-th AP measurements.

In general, σ 2
RTT is obtained from the actual measured data.

However, if a Wi-Fi FTM outlier is detected, the correspond-
ing variance will be set to a very large value. Then, the nor-
malization of all weights is performed by:

w̃ik =
wik∑N
i=1 w

i
k

(32)

4) DIVERGENCE MONITORING AND RAPID
RE-INITIALIZATION OF PARTICLE SET
Although the PF performs well most of the time, particle
sets could sometimes become invalid when the difference
between the likelihood P(Zsk |X

1:N
k ) and the observation Zk

is too large or when most of the particles occur in invalid
transitions. Different criteria [44], [48], [50] to analyze the
divergence as mentioned above, have been discussed in [28],
which used the KF as a fallback filter to monitor the quality of
the particle cloud. We think it is an extra computational over-
head to perform a parallel KF interleaved in time and propose
a monitoring criterion with an improved wMSE method.

It is pivotal to detect when the particle set exceeds a normal
threshold and deal with the outliers among the observations.
Two parts of (30) describe such a difference between a priori
data and observations, as well as the outliers. The original
covariance matrix is used rather than its inverse, which is
different from equation (30) and source [49]. Then, twice the
RMSE, calculated from a sequence of actualmeasurements of
each AP, is taken as the ranging error threshold. This method
is fast and does not require too many computing resources
because most preparation work has been completed in the
weight update phase. For each particle, the criterion can be
expressed as follows:

wMSE =
(
Zk − Zsik

)T
Rk
(
Zk − Zsik

)
< ξ (33)

where ξ is the threshold determined by twice the RMSE
of the Wi-Fi FTM ranging and by the Rk without con-
sidering outliers. According to the proposed criterion,
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FIGURE 7. Rapid re-initialization from the previous posterior in static
mode.

if the calculated error of one particle exceeds the thresh-
old, we regard it as a failed particle. Moreover, if λ%
of the particles exceed the threshold, we are confi-
dent that divergence occurs; λ is a parameter for which
1� λ ≤ 100.

Since the divergence can be a significant computational
burden for smartphones, it is necessary to quickly recover the
particle set by the operation of re-initialization when the par-
ticles become stuck. The general idea is to use a very diffuse
prior or to infer external information [45]. However, suitable
external information could not easily be found in our system,
and we thus re-initialized the particles from the transition
probability distribution p(Xk |Xk−1) under static mode. Once
the divergence happens, the filter will recover particles based
on the previous posterior P(X1:N

k−1). Because the static mode
can increase the coverage of the particle set more rapidly
than the dynamic mode, more particles are moved into the
region covered by the likelihood function, which is shown
in Fig. 7.

In the case when the divergence does not occur, the PF
suffers another problem called sample impoverishment due
to particles with low weight disappearing by iteration from
the beginning. Different resampling techniques, such as
random resampling [45], multinomial resampling [51], and
minimum-sampling-variance resampling [52], are used to
ensure particle set diversity. Here, we applied a random
resampling method with uniform distribution U (0, 1) to
select particles, and the selected particle set will become the
initial input for the next iteration.

Finally, the position estimation is calculated as the average
of weighted particle locations:xk =

∑N

i=1
w̃ik x̂

i
k

yk =
∑N

i=1
w̃ik ŷ

i
k

(34)

The entire algorithm is summarized as follows:

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETUP
The proposed PF and single source positioning methods were
all tested in a typical indoor office scenario in which the size

Algorithm 1 Enhanced Particle Filter Based on Smartphones
1. Initialization:
Perform LS to obtain initial position (x0, y0). For each
particle i ∈ 1, . . . ,N , set x i0 = x0, yi0 = y0, wi0 =

1
N ,

θ i0 ∼ U (0, 2π ). Set the time index k := 1.
2. State update:
if a new group of Wi-Fi FTMmeasurements are received

if no footstep is detected, then
for each particle i ∈ 1, . . . ,N generate from
Static mode of p(Xk |Xk−1).

else
for each particle i ∈ 1, . . . ,N generate from
Dynamic mode of p(Xk |Xk−1).

end if
end if

3. Weight update:
For each particle i ∈ 1, . . . ,N ,
if a wall collision is detected then
wik ← 0.

else
according to observations and outlier detection,
wik ∝ wik−1.

end if
Normalize the weights.

4. Divergence monitoring and rapid re-initialization:
if for λ% of N particles, wMSE >ξ then
perform re-initialization as Static mode of
p(Xk |Xk−1)← P(X1:N

k−1), and go to Phase 2.
else
go to Phase 5.

end if
5. Resampling and output:

For each particle i ∈ 1, . . . ,N , resampling as
w̃ik∼U (0, 1)&CDF(w̃

i
k ).

Report the position from weighted particle set
(xk , yk )← w̃1:N

k & X̂1:N
k

if the localization is end then
stop.

else
set k := k+1 and go to Phase 2.

end if

was 11 m ∗ (12.4 m/10 m) ∗ 3 m. A total of 11 check points
were set on the scheduled path, and their locations were man-
ually measured using an SNDWAY SW-M80 rangefinder,
which can supply each observation with ±1.5 mm preci-
sion. The reference trajectory of one lap for all subsequent
experiments was set following the check point order of ‘‘4,
5, 11, 10, 9, 8, 7, 6, 5, 11, 10, 9, 1, 2, 3, 4’’. Our tester
is 1.75 m tall, and the Google Pixel 3 smartphone was
used in all experiments. Since Wi-Fi FTM is limited by
the protocol, its sampling rate was set to 3 Hz, whereas
the IMU sensors remained working at 50 Hz in the back-
ground. The 2D floor plan of the test environment is shown
in Fig. 8.
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FIGURE 8. 2D floor plan of the test environment.

FIGURE 9. Results of comparison experiments in heading estimation.

B. PERFORMANCE EVALUATION OF HEADING
ESTIMATION WITH ADAPTIVE TILT COMPENSATION
The performance of adaptive tilt compensation was evaluated
in the first experiment. The tester held the phone at different
attitudes of pitches 0◦, 30◦, 60◦ and walked 12 laps around
the office. The initial heading was assumed as 0◦. Contrastive
experiments were performed as follows:

• Heading estimation when the pitch was 0◦ with/without
tilt compensation.

• Heading estimation when the pitch was 30◦/60◦ with tilt
compensation.

• Heading estimation when the pitch was 30◦/60◦

with/without tilt compensation.

Fig. 9 describes the heading estimation under different con-
figurations. It was found that, compared with the reference
azimuth, only the results of pitch 30◦/60◦ without tilt com-
pensation had a significant deviation (approximately 30◦),
whereas others showed good adaptability and accuracy.

FIGURE 10. Ranging error of four APs.

The second comparison indicated that the tilt compensation
could adapt to different pitch angles, and the third comparison
found that the tilt compensation does correct the deviation
of the conventional PDR when the phone is not horizontal.
However, due to more jitters that will affect the phone when
it is closer to vertical, the compensation error will sometimes
be relatively large (±4◦).

C. WI-FI FTM RANGING RESULTS AND ANALYSIS
Analysis of Wi-Fi FTM ranging was conducted in the second
experiment. To verify the ranging accuracy of Wi-Fi FTM in
the multipath/NLOS mixed indoor scenario, the phone was
placed on the first 9 check points at a height of 1.2 m in turn,
and each point was tested for 2 minutes to record approx-
imately 200 distance estimations. The true distances were
measured using the rangefinder. Next, outlier detection was
performed for each AP. We varied the ground distance from
10 m to 0 m with steps of 0.6 m. The real-time distance and
step-length estimates were recorded, and the corresponding
monitoring state was set to 1 if the algorithm determined
that an outlier occurred. Each AP was independently tested
3 times, and 51 check results were obtained in total.

Fig. 10 shows the cumulative distribution function (CDF)
of the ranging errors of the four APs. All APs had a ranging
accuracy better than 1.35 m in 80% of the cases. However,
the ranging errors could sometimes become large (4 m), espe-
cially for AP3 for which there was a serious NLOS between
the transmitter and check point 7.

Fig. 11 provides the results of outlier detection. Both true
outliers and detected outliers are marked. It can be seen that
most outliers were correctly marked; however, a few missed
detections and wrong detections also existed. Mistakes could
occur more frequently when one distance was overestimated
and another was underestimated. As shown in Table 1, the
average outlier detection accuracy of the four APswas 85.3%,
which proves that the proposed method can detect outliers to
a large extent.

D. WI-FI FTM-BASED LOCALIZATION RESULTS AND
ANALYSIS
In the third experiment, Wi-Fi FTM-based localization algo-
rithms, which included the LS and proposed PF, were
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FIGURE 11. Outlier detection of AP1 and AP3. (a) AP1 with 51 checks. (b) AP3 with 51 checks.

TABLE 1. Comparison of positioning errors of different localization methods.

compared under both static and dynamic modes. The particle
number of the proposed PF was set to 2,000. All test data,
including coordinate estimation and timestamp acquisition,
were recorded in real time by the smartphone. In the static
mode, the phone was placed on the first 9 check points at a
height of 1.2 m in turn. Each point was tested for 2 minutes
of data acquisition at a 1-Hz sampling rate. The measure-
ments were compared with reference positions to calculate
the errors. In the dynamic mode, the tester held the phone
at a pitch of 30◦ and walked 6 laps each time with the
different algorithms. The positioning errors were recorded
whenever the tester passed through the check points. For each
algorithm, 90 positioning errors were collected in total to
compare and analyze with the others.

Since the locomotion activities were divided into static and
dynamic modes, different experiment modes were designed.
Fig. 12(a) and 12(b) depict the positioning errors of the x-axis
and y-axis in the static mode, respectively. It is clear that the
precision of the proposed PF is higher than that of the LS
method at all check points and in both directions. In addition,
the positioning errors of check points 7 and 8 are commonly
greater than other points. This was because these two points
behind the occlusion shown in Fig. 8 suffered a serious block
of LOS, which led to poor accuracies.

Fig. 13 shows the performance of different localiza-
tion algorithms in the dynamic mode. As seen from the
figure, the PDR began to deviate from the reference

FIGURE 12. Positioning errors of the proposed PF and the LS method in
static mode. (a) Positioning errors of the x-axis. (b) Positioning errors of
the y-axis.

trajectory over time, and the LS had a poor accuracy without
NLOS/multipath processing. The proposed PF had a better
stability and higher positioning accuracy than the other algo-
rithms.

Finally, the positioning errors of both the single source
positioning methods and the proposed PF (2,000 particles)
were compared in Table 2 and Fig. 14. As seen from this
analysis, the proposed PF achieved an accuracy better than
1.2 m in 80% of the static cases and better than 1 m in 86.7%
of the dynamic cases, whereas accuracies were better than
2 m and 3.4 m in 80% with PDR and LS, respectively. Based
on the error statistics of Table 2, the proposed PF reduced
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FIGURE 13. Comparison of different localization algorithms in pedestrian
tracking.

TABLE 2. Comparison of positioning error statistics of different
localization algorithms.

the error by approximately 59.7% and 72.3% under static and
dynamicmodes, respectively, comparedwith theWi-Fi FTM-
based LSmethod. The experimental results demonstrated that
the performance of the proposed PF was not greatly affected
by the deviation of PDR and the outliers of Wi-Fi FTM.
In turn, the proposed PF could achieve a higher accuracy and
stability.

E. COMPARISION OF THE PF USING DIFFERENT
NUMBERS OF PARTICLES
In the last experiment, the performance of the proposed PF
with different numbers of particles was displayed, and the
calculation time and precision were compared. The system
time of the smartphone in nanoseconds was recorded when-
ever a new PF output was obtained. The calculation time
was defined as the difference between the two consecutive
recorded system times, which included the Wi-Fi FTM ref-
erence time and the actual PF calculation time. Note that
the reference time is larger than the defined sampling time
(ideally 0.334 s but actually 0.4 s). Then, two groups of real-
time data for 6 laps were collected that included heading,
step length, Wi-Fi FTM ranging and timestamp. A simulation

FIGURE 14. Comparison of positioning errors of different localization
algorithms.

FIGURE 15. Comparison of localization errors and calculation time for
different numbers of particles.

was performed to analyze the positioning accuracy of the
proposed PF with different numbers of particles.

Fig. 15 describes the relationship between the simulated
positioning errors and the average time of actual PF calcu-
lation with the number of particles increasing from 500 to
6,000. The figure shows that the average calculation time
increased at a rate of 0.018 s per 500 particles. Assuming
that the pedestrian walked with a step frequency of 2 Hz,
the proposed PF with less than 3,000 particles could update
the pedestrian’s position in real time and sufficiently quickly
that it obtained a new output within 0.5 s. On the other hand,
the accuracy significantly improved when particle numbers
went from 500 to 2,000; however, using more particles gave
no noticeable improvement after convergence. We think that
this is because 2,000 particles are sufficient to cover the entire
interesting state-space area in this experimental site and that
more particles may cause the probability distribution to be
supersaturated.
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V. CONCLUSIONS
In this paper, an enhanced particle filter algorithm was pre-
sented to fuse multi-sensors, Wi-Fi FTM, and map infor-
mation. The PF algorithm was compared with single PDR
and single FTM-based positioning methods. Adaptive tilt
compensation was used to improve the conventional PDR;
it helped to estimate precise headings when the smartphone
pitch was from 0◦ to 90◦, whereas the conventional PDR
had a general error of 30◦. Wi-Fi FTM is a new protocol
and the LS method was used to calculate the positions. The
performance of the proposed outlier detection resulted in
an average precision of 85.3% over different APs. Finally,
the proposed PF combined two different locomotion modes
and intelligently monitored the particle set. The experiments
indicated that the proposed PF with 2000 particles achieved
a positioning accuracy of approximately 1 m under differ-
ent modes and estimated a new position within 0.5 s. The
algorithm improved the precision by approximately 59.7%
and 72.3% under static and dynamic modes, respectively,
compared with the Wi-Fi FTM-based LS method.

NLOS and multipath problems decreased the performance
of localization. In this paper, no correction is adopted to
filter-out the outliers, and the error would thus sometimes
be relatively large. To reduce the negative impacts, effective
solutions should be taken in the future. In addition, more
detailed map information can be used to further improve the
positioning accuracy of the particle filter.
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