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ABSTRACT Dynamic web applications play a vital role in providing resources manipulation and interaction
between clients and servers. The features presently supported by browsers have raised business opportunities,
by supplying high interactivity in web-based services, like web banking, e-commerce, social networking,
forums, and at the same time, these features have brought serious risks and increased vulnerabilities in web
applications that enable cyber-attacks to be executed. One of the common high-risk cyber-attack of web
application vulnerabilities is cross-site scripting (XSS). Nowadays, XSS is still dramatically increasing and
considered as one of the most severe threats for organizations, users, and developers. If the ploy is successful,
the victim is at the mercy of the cybercriminals. In this research, a robust artificial neural network-based
multilayer perceptron (MLP) scheme integrated with the dynamic feature extractor is proposed for XSS
attack detection. The detection scheme adopts a large real-world dataset, the dynamic features extraction
mechanism, and MLP model, which successfully surpassed several tests on an employed unique dataset
under careful experimentation, and achieved promising and state-of-the-art results with accuracy, detection
probabilities, false positive rate, and AUC-ROC scores of 99.32%, 98.35 %, 0.3%, and 99.02%, respectively.
Therefore, it has the potentials to be applied for XSS-based attack detection in either the client-side or the
server-side.

INDEX TERMS Artificial neural network, cross-site scripting attack, detection, multilayer perceptrons, web
application security.

I. INTRODUCTION

Web technology has been increased exponentially in daily
volume and interactions involving web-based services, such
as self-driving finance in web banking, Chatbots /Al assis-
tants and recommendation engines in e-commerce, social
networking sites such as Facebook, Twitter, forums, blogs,
and much more. This technology has become an integral
part of our daily and private lives, and at the same time,
web applications became primary targets of cybercriminals.
Cybercriminals exploit the poor code experiences of web
developers, weaknesses within the code, improper user input
sanitization, and non-compliance with security standards by
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the software package developers [1]. Additionally, the vul-
nerabilities may be found in reusable software components
(i.e., third-party libraries, open-source software, etc.) which
are heavily used to develop web applications, also vulnerable
cyber-defense system where attackers regularly develop their
offensive tactics by devising new ways to bypass the defense
systems, and exploiting the vast sophistication of Al technol-
ogy to facilitate their pernicious tasks [2]. It mandates the
development of more sophisticated web application cyber-
defense systems, which can be accomplished using the latest
Al concepts with high precision to tackle the new web-based
attacks.

One of the common high-risk cyber-attack to web appli-
cation vulnerabilities is Cross-Site Scripting (XSS), which
has placed web applications, users, and even the industrial
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field at high risk [3]. According to the National Vulnerabil-
ities Database (NVD) database [4], the number of reported
issues are dramatically increasing, especially in 2018.
XSS-based vulnerabilities are considered to be the second
most common vulnerability occurring [5], [6], and still on
the top of 10 attacks in 2017 in OWASP [7].

XSS is a security vulnerability that can affect web appli-
cation. If present in any web application, this vulnerability
can allow cybercriminals to add their malicious code into
the HTML pages displayed to receiving end-users. Primarily,
there are three types of XSS based attacks that include stored-
XSS, Reflected-XSS, and DOM-based XSS attacks [8], [9].
The Stored/Persistent-XSS occurs when malicious code takes
place in the web application database. The attacker could
inject malignant code into vulnerability server by (e.g., mes-
sage forums or blog posts), the harmful code is stored in the
application server, and, once the victim visits or navigator the
infected application, they are served with the malignant code
as a part of the legitimate web page. In the end, the victim’s
browser finishes executing the malicious code.

The Non-Persistent/Reflected-XSS occurs during the web-
site echoes, which backs a portion of the request to the
browser, the attacker has to trick the victim into clicking an
evil link (i.e., through malignant JavaScript (JS) on another
page or a phishing an email), that triggers the XSS-attack.
Once the victim clicks the link, an HTTP-Req to the web
server is sent together with the malignant code as a compo-
nent of it. The response from the web server includes the
malignant code part (i.e., reflected). Therefore, the malig-
nant code will execute indifferently by a victim’s browser.
In DOM Based XSS, the downright malicious code flows
from source to sink takes place in the browser (i.e., DOM
objects) XSS-based attacks may damage and change the
behavior or appearance of the enterprise website, stealing
sensitive companies’ information or private users’ data, and
performing actions on behalf of the user [10].

The defense mechanism against these attacks could be
on either the Server-side, Client-side, or both. In terms of
analyzing, there are three approaches to defense against
XSS-based [11] are:

1) Static analysis approach, which reviews web applica-
tion code includes source code, binary code, or byte-
code to find out how the control/ data would flow at
runtime before the program executes.

2) Dynamic analysis analyzes the data obtained through-
out program execution to discern vulnerabilities.
Dynamic analysis is usually performed at a testing
time during development or runtime once the software
package is released.

3) The hybrid approach combines both the static and
dynamic analysis approaches.

Although some solutions have already been proposed, such
as mitigation tools, detection/prevention methods for XSS
attacks, moreover, existing techniques still can’t sufficiently
detect XSS malicious code [12]—[14]. Current research works
attempt to add intelligence to increase detection accuracy by
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using Al concepts, which is evident from the extensive use
of machine learning techniques in the detection of cyber-
attacks [15]. However, the classical machine learning tech-
niques are represented with shallow detection rate and are
incapable of detecting tiny mutants of existing malicious
attacks such as zero-day attacks and etc [16]. Although most
of those attacks are the small variants of the already well-
known malicious code (close to 99% mutations), even the so-
called a unique attacks (1%) rely on the previous concepts
and logic. In other words, malignant behaviors that deviate
sufficiently in feature from those seen before would fail to
be classified; hence, it will override the undetected system.
The success of deep neural network within the big data field
considerable, and it can also be used to combat cyber threats
because mutations of attacks are like small changes in image
pixels. It implies that deep neural network learning in security
learns a real face (benign or malignant) of learning data
on even with small changes or mutations by exploiting the
resiliency and capability of the deep neural network to small
changes in data by producing high-level invariant representa-
tions of the training dataset.

In this research, an ANN-based detection scheme is
introduced for the XSS-based web-applications attack.

A large dataset has been constructed and used for the
training and testing of the detection scheme, along with
proposing a novel technique for features extraction and a
Multilayer Perceptron for the detection task. The detec-
tion scheme successfully surpassed several tests on a newly
employed testing dataset and achieved promising and state-
of-the-art results with detection probabilities, false positive
rate, and AUC-ROC scores of 98.35 %, 0.3%, and 99.02%
respectively.

The main contributions of this paper can be summarized as
follows:

« An extensive real-world data composed of
138,569 unique records to detect XSS attack have been
constructed comprehensively and uniquely.

o A dynamic-features extraction technique has been pro-
posed, which acts as a layer for extracting and providing
training and testing dataset to feed the neural network
model in dynamic behavior.

« Introduced a robust, high precision and low complexity
deep neural network scheme, making it easier to deploy
along with the dynamical feature extraction model,
which is platform independent of detecting XSS-based
attack.

o The proposed scheme is tested on the new test set
composed of 27,714 samples to demonstrate the capa-
bility of our model even XSS-based zero-day attack
detection.

The rest of this paper is organized as follows,

Section II discusses related work with introducing research
gaps that our proposed scheme is capable of entertaining.
Section III presents the key details about literature and mech-
anism of this research that includes, raw data construc-
tion, feature extraction technique, and Multilayer Perceptron
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model for detection. Section IV presents the experimental
design and evaluation mechanism of this research. Section V
presents the results and discussion. Finally, section VI con-
cludes this research by highlighting some future research
directions with the significance of this research.

Il. RELATED WORK

Numerous researches have been proposed concerning
cyber-attacks; still, cybercrimes and fraudulent activities of
cybercriminals are increasing; authors in [17], [18] investi-
gated various types of cyber frauds and introduced useable
and feasible solutions.

The Sanitization of JavaScript attack payloads is deemed
to be as an essential approach to obstruct the exploitation
of XSS-based attack on web-based applications. In [19],
the author proposed a cloud-based framework that restrains
the DOM-based XSS vulnerabilities. The idea lies in improv-
ing and optimizing the context-sensitive sanitization process
of HTMLS attack vector with injecting decisive code into the
nested context of suspected variables. In [20], the authors
introduced a JavaScript SANitizer framework that uses the
capabilities of clustering with sanitization mechanisms to
diminish the effect of JS vulnerabilities with the determi-
nation of their level of similarity in context. Furthermore,
in [21], the author proposed to use a PHP-Sensor to iden-
tify the XSS vulnerabilities within web-based applications.
The primary intention is to observe that the HTTP request
and response might carry self-propagation XSS payloads.
Thus, PHP-Sensor observes the scripts present in an outgoing
HTTP Request and checks whether those scripts exists within
the response. However, defense mechanisms to prevent such
attacks using traditional methods of detection are extremely
complicated. There is neither a single solution which may
effectively mitigate XSS attack [12], nor have the capability
to reduce existed flaws in the source code of applications [13].
Furthermore, existing techniques may also fail to detect XSS
malicious for several reasons; and even most of them are not
able to detect sophisticated-XSS attacks [14].

Furthermore, based on the widespread use of Artificial
Intelligence (AI) technique in numerous application domains
with higher detection ability, several researchers also engaged
themselves for the detection of XSS attacks using machine
learning (ML) technique. Likarish ez al. [22] proposed 65 fea-
tures to detect the obfuscated malicious JavaScript and per-
formed classifications using Naive Bays, alternating decision
tree (ADTree), support-vector machines(SVM), and RIPPER
(Repeated Incremental Pruning to Produce Error Reduction)
to evaluate features’ effectiveness. However, the best preci-
sion score of 0.920 is achieved with SVM classifier. There-
fore, the low precision and reduced detection rate which
leads to a high false positive rate does not meet the purposes
of such a model in the real world. The researchers in [23]
proposed a machine learning approach to detect XSS in social
networks. They extracted the web pages’ features manually;
classified them in four groups and each group is composed of
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multiple features where three features are related to the online
social network; they used Adaptive Boosting (AdaBoost)
and ADTree algorithms with 10-fold cross-validation; the
highest precision and recall are obtained with AdaBoost algo-
rithm, the scores are 0.941 and 0.939 respectively. Moreover,
the results represented a shallow detection rate, and most
importantly, the high false positive rate was up to 4.20%.
Similarly, in [24], the detection of XSS attack based on a
machine learning approach is proposed. All the 25 features
are divided into three groups, including URLs, webpage, and
SNSs. They claimed that with Random Forest algorithm,
the accuracy and false positive rate increased up to 0.9720 and
0.087, respectively. However, the False Positive rate is still
high which is equal to 8.7%.

Furthermore, deep learning schemes are also used to
overcome the limitations of the classical machine learning
approaches as they can produce high-level representations
of features and can even predict hidden features using train-
ing data. Wang et al. [25] applied the stacked denoising
autoencoder model for malicious code detection on a web-
based application and used sparse random projections for
dimensions reduction. The results were excellent in term of
accuracy (about 95%). However, the detection rate is between
93% and 95%, and the false positive rate was 4.2%, which is
considered very high.

The authors in [26] proposed an unsupervised end-to-
end deep learning scheme. They used the Robust Software
Modeling Tool (RSMT) as a monitor to capture features and
used autoencoders to learn low dimensional representations.
Performance evaluations were performed by applying super-
vised and unsupervised techniques. However, RSMT has
caused overhead issues; also, experiments performed using
supervised ML technique was poor (around 0.728 at best
case for XSS using SVM). Moreover, the unsupervised deep
learning performance was not efficient (around 0.906).

The study in [27] proposed a deep recurrent neural clas-
sification system called ScriptNet to detect either malicious
JavaScript or VBScript by utilizing a combination of both
static and dynamic analysis. Despite the complexity of the
model, the results were not convincing (best-performing
LaMP model has a 65.9% true positive rate and best CPoLS
model has a 45.3 % true positive rate, all with 1.0% False pos-
itive rate). Thus, applying only word vectors are not suitable
for JavaScript because it uses encapsulation, code rearrange-
ment, rubbish strings insertion, and alternative techniques.

Another research in [28] proposed a DeepXSS detection,
which contains decoding, generalization, and tokenization
techniques. They used word2vec for XSS feature extraction,
which was given as an input to the deep learning model,
based on LSTM for training. They achieved about 0.995 pre-
cision, 0.979 Recall, and a false positive rate tends to 0.019.
However, the webpage includes JavaScript and HTML code,
which is primarily not a standard encoding; therefore, adopt-
ing word vectors make the training process incredibly time-
consuming, tedious, and not suitable.
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FIGURE 1. The framework of the proposed scheme.

Ill. DETECTION METHODOLOGY

The XSS-based attack occurs due to security bugs in the web-
sites, because of the features originating from the dynamic
web applications and supported by web browsers such as
HTML tags, hyperlinks, scripts, and advanced functions.
These features are attractive and useful, but they also bring
severe risks and increased security vulnerabilities for web
applications. Cybercriminals usually exploit these vulnera-
bilities. Based on this problem, this research proposes a new
detection scheme, which consists of three main pillars includ-
ing quality of data, appropriate feature vectors that wholly
and genuinely characterize the XSS anomalous phenomenon
and adopt an ANN technique for detection. For this purpose,
three modules have been developed and work together in one
working environment (Python) to form a final framework.
These three main pillars are shown in the schematic of the
proposed scheme given in Fig. 1, and the details are as
follows:

A. COLLECTING RAW DATA

Currently, there is no open dataset available for XSS based
attacks [29]. Building a new digital dataset of such attacks
containing malicious and benign instances for training and
testing a model is quite challenging. Therefore, to create a
new dataset, one approach is to crawl all the web applications
with different webpages. The size of the web applications
precludes this strategy from being productive. Alternatively,
one can crawl only a part of the web applications. However,
crawling the web in some fixed, and settled manner is prob-
lematic because it potentially biases the dataset, which is not
comprehensive nor miscellaneous, and the model could not
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generalize it. Besides, it is not an obvious way to argue that
a sufficient subset of the websites is representative. For this,
a novel approach is used to create a large real-world dataset
and to make it comprehensive and miscellaneous to tackle
the issues concerned with it. The approach is described as
follows.

For benign samples, our crawler employed a robust python
scraping framework [30] and implemented a random walk
along with a random jumping method to crawl a sufficient
variety of portions of the websites. A mathematical equation
is used to select the probability of sample X, where X is
crawled by the Formula (1) presented by [31].

Pr(X) = Pr (X) % Pr (X|x) (1

where X is sampled, and X is crawled. To estimate Pr (X | X ),

they used the probabilities of each observation in inversely
proportional to its PageRank. Based on their method, the sam-
ples selecting probabilities are developed with a random walk
and jumping method. All crawler rules were written inside
the spider class, and the top 50,000 of websites ranking in
Alexa feed the initial seed of crawler [32]. Our crawler was
configured to obtain maximum samples of 150,000 pages,
the number of independent parallel walks is 100, and the
jumping probability range between [0,1]. Because of the ran-
dom walk and jumping, it is possible to have a small number
of duplicate samples. These duplicate samples are deleted
to form a resultant sample of 148,157 records. Moreover,
uniform random sample pages are selected from the crawled
portion to obtain 100,000 samples from resultant samples,
which makes it uniform, comprehensive and miscellaneous,
to be an optimal case for training and testing model.

VOLUME 7, 2019



F. M. M. Mokbal et al.: MLPXSS: An Integrated XSS-Based Attack Detection Scheme in Web Applications

IEEE Access

For malicious samples, due to the limited availability of
samples, another crawler is designed to crawl the raw data
from XSSed [33] and Open Bug Bounty [34] in some fixed
and deterministic manner. However, the duplicate samples
and the pages of more than 25MB in size are excluded.
The total of 38,569 malicious samples is considered for this
research.

B. DYNAMIC FEATURES EXTRACTION MODEL

In several cases of Natural Language Processing using deep
neural network technique, the text samples are represented
in the form of word vectors, but in case of an XSS attack,
malicious code is often a JavaScript code. Thus, JavaScript
has non-standard encoding; there exist many senseless strings
and Unicode symbols. Additionally, JavaScript uses data
encapsulation, code rearrangement, rubbish strings insertion,
and alternative techniques where the word vectors lead to
generating large dimensions is the very time-consuming case
of XSS.

This research introduces a novel dynamic feature extrac-
tion model which is introduced to get proper feature vectors
that characterize the XSS anomaly. The model is integrated
with the BeautifulSoup library [35] in combination with the
html5lib parser [36] to pull data out of HTML raw files,
and Esprima JavaScript parser [37] to tokenize and extract
the abstract syntax tree from JavaScript code. The goal of
this model is to dynamically find and extract the essential
characteristics of both benign and malicious code from raw
data provided by the crawling model, and subsequently, these
features set are offered to the neural network as a digital
dataset in a dynamic way. To accomplish it the model was
developed uniquely, containing three sub-models, each of
which has a set of features to deal with. These sub-models are
HTML-based features sub-model, JavaScript-based features
sub-model, and URL-based features sub-model, which is
described as follows.

1) HTML-BASED FEATURES SUB-MODEL

The HTML tags are used for constructing the attack vector
(i.e., div, script, iframe, meta, embed, link, SVG, frame, form,
style, video, img, textarea, etc.,) and the attacker has many
ways to embed these tags into JavaScript using the corre-
sponding attributes to insert the malicious code [11], [38].
Additionally, most of them support the pseudo-protocol form
such as JavaScript: [code] and it could be used in the same
manner as a URL when calling an external resource (i.e.,
redirection) [39]. The protocol represents the body of the
attributes which could be any JavaScript code either mali-
cious that calls JavaScript interpreter. The attributes exploited
to insert the malicious code (i.e., href, HTTP-equiv, lowsrc,
src, formation, background, target, action, classid, etc.,) can
trigger JavaScript events. The event acts as an interaction
between JS and HTML, which can trigger based on the user’s
actions (onclick, onmouseover) or even through the web
browser itself (onload, onerror). Since the event itself can
execute JavaScript code, the attacker may use these features
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to carry XSS attacks. Moreover, introducing JavaScript
in an event method (<IMG SRC=# onmouseover ="alert
(°’XSS’)">) will likewise apply to any HTML tag type injec-
tion that utilizes HTML elements. It will thus allow any rele-
vant event for the tag to be substituted (e.g., onclick, onblur)
and results in an extensive amount of variations for many
injection vectors and can bypass most domain filters [40].

Three core features related to HTML are selected in this
study, including tags, attributes, and events. The proposed
model is designed to extract features and JavaScript code
from HTML raw files in combination with the html5lib
parser. The html5lib parser gives us the optimal representa-
tion way and is extremely broad as it parses the pages in the
same manner, as a web browser does. Furthermore, it also
performs the HTMLS parsing algorithm, which is heavily
impacted by modern browsers and based on the WHATWG
HTMLS5 specification [41]. Once the tree structure of HTML
data for the webpage is created, the process of navigating
and searching parse tree is required, i.e., tree traversal. For
this task, a BeautifulSoup python library is used to create
an object for each page which can be executed in parallel
with html5lib. Since the object of this library contains all
the data in a tree structure, the tags, attributes, and event of
each webpage are programmatically extracted as shown in
Algorithm 1.

Algorithm 1 Parsing HTML Documents

Input: set of web pages WP {wp, wp, ... wp,}
Qutput: Html-based Feature Vector (Hgy)

TGI ] < list representing HTML tags
AT ] < list representing HTML attributes
EV[ ] < list representing HTML events
KE[ ] « list representing keywords_evil
P < Null
Hpv{} < @
for each wp;, € WP do
/I parsing each web page using html5lib and BeautifulSoup
for tree traversal
P <—parse_html (wp;)
// Collect and count each TG,AT,EV,KE from each node in
tree

for each node; € P do
for each t; € TG do
Hry [t;]] = Y_t, t; in node;
for each a; € AT do
Hry [ai] = )_ ai, a; in node;
for each ¢; € EV do
Hpy [ei] =) ei, e in node;
for each k; € KE do
Hpy [ki]l = >_ ki, ki in node;
end for
Hpy [hl] = len(p) // html length
end for
Returns features vector (Hgy) for future model uses
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2) JAVASCRIPT-BASED FEATURES SUB-MODEL

JavaScript codes live within a webpage and interact with
the DOM. It can either provide additional features of the
webpage or create an application within the webpage. The
source code written in any programing language can be repre-
sented as an abstract syntactic structure called Abstract Syn-
tax Tree (AST). Each node of the tree represents a construct
in the source code. The resulting syntax tree is beneficial
for different purposes, from program transformation to static
program analysis [42].

The JavaScript code could be either benign or malignant
based on its semantics rather than the syntax. JavaScript-
based features are extracted through the following three main
procedures in this research.

1) The set of features related to an XSS attack are iden-
tified as min_length, max_length (which are higher in
malignant), min_define_function, min_function_calls
(which is more advantageous for benign), methods
(which can cause XSS attacks like getElementsByTag-
Name, write, alert, eval, prompt, confirm, fromChar-
Codefetch), Dom-Objects (windows, location, and
document), and location _properties (cookies, docu-
ment, referrer).

2) Since some of the JavaScript codes are involved in
HTML elements, they can be invoked in various
ways from HTML, for instance from tag (e.g.,
<script>), from attribute of some tags (e.g., href=
“JavaScript:” of ‘a’ tag) and/ or event (e.g.,
onSubmit=""JavaScript:” onload=""JavaScript”) etc.,
as described in W3C Consortium lists [12]. The
JavaScript codes are extracted from all possible places
that can be retrieved from them.

3) The dynamically extracted code is distributed into a
series of tokens and syntax tree using Esprima parser is
produced, which acts in the same manner as JavaScript
engine does. Hence, lexical and syntactical analysis of
JavaScript code can be performed at the same time.

However, it has been observed in some cases that the
JavaScript used by XSS could be broken and cause parser
stop. To deal with this, force a parser to continue parsing, and
produce a syntax tree even the JavaScript does not represent
a valid code. The parser is configured to a tolerant mode
and set the tokens flag to be true in the configuration object
to keep the tokens that found during the parsing process.
To traversing the entire tree, the generator function was made
to take Esprima node and yielding all child nodes at any level
of the tree, which gives us the full ability to visit all branches
of the tree.

The complete processing of above steps are presented in
the following Algorithm 2 which is used to get a JavaScript-
based Feature vector (JSgy) for the future model.

3) URL-BASED FEATURES SUB-MODEL

URL parameters are the critical suspicious of non-persistent
XSS injection point [43]. Cyber-criminals are always trying
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Algorithm 2 Parsing JavaScript codes

Input: set of webpages WP {wp;, wp, ... wp,}
Output: JavaScript-based Feature vector for each webpage
(JSkv)

DOJ ] <« list representing domObject
JP[ ] < list representing JS properties
IJM[ ] < list representing JS method
TGI[ ] < list representing HTML tags
EV[ ] <« list representing HTML events
AT[ ] < list representing HTML attributes
P <« Null
js < Nul
JS_strings =[]
ISpv{}« @
for each wp; € WP do
P < parse_html (wp;)
with P do
for t; € TG do
/I Extract JS code from <script>
if (t; == script and AT [src] == false) then
js = ti.string
if (js # ©) then
JS_strings.append (js)
//Extract JS code from javascript: links
if (t; == a and AT [href] == true) then
J§ = t;.string
if (js # ©) then
JS_strings.append(js)
/[Extract JS code from form
if (t; == form and AT [action] == true) then
JjS§ =t;.string
If (js # @) Then
JS_strings.append(js)
/[Extract JS code from iframe
if (t; == iframe and AT [src] == true)then
JjS =t;.string
if (js # @)then
JS_strings.append(js)
//Extract JS code from frame
if (t; == frame and AT [src] = true) then
JjS =t;.string
if (js = ©) then
JS_strings.append(js)
end for
/I Generate tokens, Extract Abstract Syntax Tree of
JavaScript code
E-Object =esprima.parseScript(JS_strings)
/! Generated tree level (node)
for eachTL; eE-Object[body]do
// subnode in the current level
foreachND; € TL;do
/I Function Declaration e.g. function fun(){...}
if (ND, [type] in{FunctionDeclaration) then
JSFv [js_define_function]+=1

VOLUME 7, 2019



F. M. M. Mokbal et al.: MLPXSS: An Integrated XSS-Based Attack Detection Scheme in Web Applications

IEEE Access

Algorithm 2 (Continued.) Parsing JavaScript codes
// function calls e.g@perio var fun = func-

tion(){...}
else if(ND; [type] in
{CallExpression, FunctionExpression})
then
JSFy [js_function_calls] +=1
end for
end for

tokens = E-Object[tokens]
forTK ;in tokens do
if (TK; [type] == Identifier) then
If (TK; [value] € DO) then
JSEv [DO_Tki[value]]+=1
else if (TK ; [value] € JP) then
JSpv [JP_Tki[value]]+=1
else if (TK ; [value] € JM) then
ISy [IM_Tki[value]]+=1
else if (TK; [value] == string) then
Stringlist.append(TKi[value])
end for
if Stringlist >0 then
JSpy [min_length J=min(len(Stringlist))
JSpv [max_length |=max(len(Stringlist))
end for
Returns features vector JSgy ) for future model use

to obfuscate or encode URLs in different ways to bypass
filtering tools or mask malicious code to trick or redirect
users. A full URL parsing algorithm to obtain the various
features that can be exploited by attackers in this research
is shown in Algorithm 3. The features considered are as
follows:

(1) URL redirection that was used to trick users and redirect
the current page to another web page controlled by an attacker
(i.e., document.URL, document.URLUnencoded, document.
baseURI, document.documentURI, location, window.
location, window.history, window.navigate, window.open,
self.location, top.location) ; (2) 1Ps; (3) domain numbers;
(4) Keyword parameters that are frequent on URL as the
variable names for allocating user input values (i.e., search,
login, signup, query, contact, URL, redirect). (5) The tags
whose presence in the URL indicates a high probability of
an existence XSS (script, iframe, meta, SVG, img, style, etc.,)
and (6) properties of HTML (i.e., href, src, formaction, etc.,)
which can host JavaScript code used in URL. (7) The URL
length that has been used effectively with phishing detection
(8) special characters (i.e., “< ““, ““>""and ‘“/”) which mostly
used to perform XSS attacks [26]; (9) in keyword evil most
of the intruders reveals their signature.

Each URL of each webpage crawled is decoded to extract
URL features and to make it as a string. Then, Regular
Expressions is performed to match text patterns and extract
these features, which is shown in Algorithm 3.
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Algorithm 3 Parsing URL Addresses

Input: Pages URL
QOutput: URL-based Feature vector (Ugy)

URDJ ]« list representingURL redirection
UFP[ ] < list representingURL frequent parameters
KE[ ] « list representing keywords evil
TGI ] <« list representing HTML tags
EV[ ] <« list representing HTML events
AT] ] <list representing HTML attributes
Upv{} < &
Usie [
for each page[URL;] do
Collect encode-lengt
Usy = urldecode(URL;)
Ury [url_length]= Len(Us; )
for t; € TG do
if (¢; exist in Ug;, ) Then
Ury [url_tag(t;]] = Tru
else
Ury [url_tag[i]] = False
end for
/I check tag, event, and attributes existing in URL
for each a; € AT do
if (a; exist in Us;, ) then
Ury [url_parametera;[]] = True
else
Ury [url_parametera;[]] = False
end for
for cach ¢; € EV do
if (e; exist in Usy,) then
Ury [url_event[e;]] = True
else
Ury [url_event[e;]] = False
end for
// find any URL redirection parameters
if (any(urd; € URD exist in Us;,)) then
Ury [URD] = True
else
Ury [URD] = False
if (document .Cookie exist in Us, ) then
Urpy [url_cookie] = True
else
Urv [url_cookie] = False
for each ufp; € UFP do
/I Collect URL frequent parameters existing in UStr
Ury [ufp;] = X ufp;. ufp;inUsyy
for each k; € KE do
/I CollectURL keywords evil existing in UStr
Ury [ki]l = )_ ki, kiinUsy;
for each domain; found in Us; do
/l Collect the number of domai
Ury [number_domain] + = 1
for each IP; found in Us; do

// Collect a number of IP
Ury [number_IP]+ =1
end for

Returns features vector (Ugy) for future model uses
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FIGURE 2. MLPXSS Detection Scheme.

C. ARTIFICIAL NEURAL NETWORK MODEL

Artificial Neural Network (ANN) is inspired by a human
brain operation [44]. It is composed of many layers including,
the input layer, the hidden layer(s) and the output layer.
In this research, an ANN-based multilayer perceptron (MLP)
algorithm which characterized by the dynamic features of
XSS-based attack detection is used.

The model has m-layer (4 - 2 hidden layers) that figures the
dataset input-output pairs(x;, y;), where y; denote to one-
dimensional output y; € 0,1}, where 0 = benign and
1 = malicious, on n-dimensional input X = {x, x2, ...x,}
as shown in Fig. 2. The dataset input-output pairs size N
referred X = {(x_f,yl ,...,(E,y;v)}. The neurons at
hidden layers have fj, activation functions (i.e., ReLU=max
(0, x)) and the neuron at the output layer has f, activation
function (i.e., sigmoid = 1/(1 + e”(—x))). The layers are
fully connected in which every neuron depends on the outputs
of all the neurons in the previous layer [45]. MLP model
training is done through a Back-propagation algorithm [46].

Let wg. denotes to the weight of the link between i neuron

of Iy layer and j* neuron (if k > 1) of [y_; layer, X denotes to
the input vector to the model, and zf be the output of neuron i
in layer /. We introduce an extra weight parameter for each
neuron, bf representing the bias for i neuron in the layer I,
and ry represent the number of neurons in layer ;. The sé‘
representing the product of ilmmation add with the bias for

aneuron i in layer /;. Thus, wf representing the weight vector
—

fornelggns iinthe layer /i, sobe it as wi.‘ = {w]]‘l., el Klrikl}
Also, z* be the output vector for the layer [y, so be it as z¢
zlf, R z’:k. The output z from the MLP model is obtained
through a feed-forward phase. It is started by initializing the
input layer /o, set the values of the outputs z? for neurons in
the input layer Iy to their related inputs in the vector x =

{x1, ..., x,}. For each hidden layer in order from /; to /1,
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calculate the weight sums and outputs as Formula (2) and
Formula (3).

—_— —
Sf-{ = Wf 21 +bf
k _ 1k Te=1 gk _k—1 -
s; = b + W25 fori=1,...,r 2)

i j=1 I
k k
< s >0
d=h(h) =10 07T fori=tin )
0, else

where f, is the activation function (ReLU) at hidden layers.
The computing output y for output layer [,, done as
Formula (4) and Formula (5).

m _n)1 m_:I m m Fm=1_ g k—1
Sl = Wl Z + bl = bl + Zj:l le-Zj (4)
1

4 m m
=Z = S = —m 5
y =2 =Ff(s7) e ®)
where f, activation function for the output layer is a logis-
tic function (sigmoid), the learning depends on iteratively
—

adjusting the values of wf and b;‘ s0 as to minimize the L loss
function. However, the loss function in our case is Cross-
Entropy called a logarithmic function given as Formula (6).

A 1+ A X
T=L (i y)=—=Y_ yilog@)+1—y)log(1=3) (6)
N i=1
where y; indicates the computed output of the MLP model
—
on input x; , whereas y; indicates to the actual value for
—
input-output pair x; , y;. The goal is minimizing J concerning
respect to all wf; and bf.‘ through gradient descent process.
Accordingly, Adam optimizer is used to adjust the parameters
wg. and bf.‘ with « as a learning rate, will produce delta equa-
AL() k _ L)
ow Abj = —a apk
which send backward from layer m, the output layer, to layer
one, the input layer to update weights [47].

tions for each iteration Awg. = —«
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IV. EXPERIMENTAL DESIGN AND EVALUATION

A. THE DATASET

The final dataset that has been created in a randomized
and uniform manner consist of 138,569 samples in total,
where the benign samples are 100,000, and the malicious
samples are 38,569 with dimensional of 41 features. Ideally,
the ultimate model estimation should be performed on a
held-out test dataset that never used before, neither for train-
ing the model nor for tuning the model parameters, so that
they supply an unbiased sense of model effectiveness [48].
However, estimating score may get on a single validation set
and is unlikely to reflect the model performance in general.
Therefore, the dataset was split randomly and separated by
the dynamic feature extractor model into two parts with a
partition ratio of 80%:20%. The first part is training dataset
including 11,0855 samples labeled as [0 Benign, 1 Malicious]
and the second part is a Hold-Out test dataset containing
27,714 samples used only to estimate the performance of the
final and fully-trained model. The dataset subdivisions are
shown in Table 1.

TABLE 1. Dataset Subdivisions.

Dataset Benign Malicious Total
Training 80,033 30,822 110,855
Testing 19,967 7,747 27,714
Total 100,000 38,569 138,569

B. PERFORMANCE EVALUATION METRICS

For the binary classification problem (benign or malignant),
the confusion matrix is employed as an evaluation param-
eter [49]. In a confusion matrix, TN points that a benign
case was correctly labelled as benign, FP denotes that a
benign case was incorrectly labelled as XSS attack. As for
the performance metrics, FN indicates that an XSS was
incorrectly identified as benign, TP represents that an XSS
is correctly identified as an attack. For a comprehensive
evaluation, the proposed scheme performance was tested and
evaluated in various measurements such as Accuracy overall,
Misclassification Rate (Error Rate), Precision, and Detection
rate (DR), False Positive, and F-score. The performance of
the proposed scheme is evaluated as follows, as shown in
Formulas (7)-(13).

(TP + TN)

Accuracy overall = @)
(TP+ TN + FP+ FN)
FP+ FN
Misclassification Rate = P+ ) ®)
(TP+TN +FP+FN)
. P
Precision = ——— ©)]
(TP + FP)
Detection Rate (DR) or Recall
TP
= (10)
(TP + FN)
FP
FP Rate or Fall — out = ——— (11
(TN + FP)
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(Recall x Precision)
F — Score =2 — (12)
(Recall + Precision)
1 TP TN
Area Under the Curve = — + (13)
2\TP+FN TN + FP

C. EXPERIMENTAL ENVIRONMENT

To construct and select a model that accurately captures
the regularities in its training data and skillfully generalizes
unseen data. The performance evaluation of any model with
single parameter accuracy is not sufficient to judge its per-
formance. Since a single large hidden layer is enough for
an approximation of most functions [50], we first start with
the shallow model, including one hidden layer. The size of
the hidden layers was determined by taking the mean of the
number of neurons at the input layer plus a number of neurons
at the output layer as a baseline. More specifically, the initial
model has an input layer with 41 neurons, one hidden layer
with 22 neurons and an output layer with a single neuron.
All the other hyper-parameters were fixed such as Adam
optimizer, activation functions ReLU, sigmoid for hidden and
output layers, respectively, and the epoch equals to 100.

The entire experimental was done on the operating plat-
form LinuxMint-19-tara, Kernel 4.15.0-42-generic, 16 GB
RAM, InteleXeoneCPU E-5-2620 v3 @ 2.40GHz, GPU
NIVIDA (Quadro K220). The Python framework version is
3.6.7 and Keras version (2.2.4) with Tensorflow (1.12.0).

A k-fold cross-validation approach is used as a base-
line estimation of our model on training dataset only by
using a wrapper method for MLP models to be used as
classification estimator in scikit-learn library. This approach
involves randomly splitting the training dataset up into a set
of k-folds, of approximately equal sub-datasets size. Then for
each unique fold, it takes the k sub-dataset as a test dataset,
and the remaining k — 1 sub-datasets is fit to model as a
training data set. Finally, the k outcomes from the folds are
averaged to make a single estimation [49].The importance
of this approach lies in allowing each observation give to be
utilized in the test dataset one time and used to train the model
k-1 times. However, for the initial estimate and bias-variance
tradeoff, an average accuracy of the ten evaluations is
selected and computed the standard deviation to look at
the variance. The results obtained are 0.989788 as mean
accuracy, and the variance equals to 0.001022, which means
that our model falls into the low bias and low variance
category of bias-variance tradeoff categories as shown in
Table 2.

Although for some functions, a single hidden layer is opti-
mal, a single-hidden-layer-solution may be quite inefficient
for others as compared to solutions with more layers [45].
Furthermore, the hidden layers are increased to two and kept
all other hyper-parameters fixed as in a shallow model. The
same estimated approach is used for this, which computes
the mean accuracy and the standard deviation. The results
obtained with additional hidden layer are more promising,
where the mean accuracy equal to 0.991195 and variance
is 0.000759 as seen in Table 2. It can be observed that by
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TABLE 2. The Bias-Variance Tradeoff Validation on Shallow and Deep MLP MOdel.

K-Fold=10 1 2 3 4 5 6 7 8 9 10 Mean Accuracy  Variance
Shallow (%) 99.03  98.99 98.82 9896 99.12 9896 98.80 99.03 9895 99.12 9898 0.10
Deep (%) 99.10  99.11  99.02 99.03 9925 99.09 99.11 99.19 99.08 99.23  99.12% 0.08

increasing the hidden layer to two layers, it also increased the
accuracy and decrease the variance.

The model design is stabilized to obtain optimum per-
formance, and the number of hidden layers is fixed to 2.
Hence, the effectiveness of most Hyper-parameters of our
model was studied including several combinations of these
values such as the number of neurons in hidden layers with
22,32 and 42, mini-batch size with 32,64,128, the number
of epochs with 100,200 and 300, and with the optimiz-
ers such as Adam, rmsprop, and SGD. Furthermore, stan-
dardize the dropout rate for regularization in an attempt to
limit over-fitting and therefore, improve the model’s ability
to generalize. The Grid-search has been used as a model
hyper-parameter optimization technique with 10-fold cross-
validation approach. Table 3 shows the effect of the num-
ber of neurons at the hidden layer and epoch’s number as
well as the best values that were optioned over this testing.
Table 4 shows the drop rate evaluated along with different
optimizer, while the batch size is fixed to 60, the number
of neurons at each hidden layer is fixed to 42 and number
of the epochs are fixed to 300 with 10-fold cross-validation
approach.

TABLE 3. Effect of the Number of Neurons at Hidden Layer.

N.Epoch  N.Neurons l;atch Mean loss Mean
ize Accuracy
100 22 60 0.000716  0.991637
100 32 60 0.000380 0.992043
100 42 60 0.000788  0.992125
200 22 60 0.000849  0.992016
200 32 60 0.000800  0.992215
200 42 60 0.000863  0.992305
300 22 60 0.000805 0.991917
300 32 60 0.000971  0.992251
300 42 60 0.000681 0.992531

V. RESULTS AND DISCUSSION

After tuning the model with selected parameters, the final
model was configured to achieve optimal results. More
specifically, the final model has two hidden layers, one input
that taken the input vector from the DEF model, and the
other is the output layer. Neurons at the input layer, hid-
den layerl, hidden layer 2, and output are 41, 42, 42, and
1 respectively. The activation function at hidden layers is
rectified linear function (ReLLU), whereas the activation func-
tion for the output layer is the logistic function (sigmoid).
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TABLE 4. Effect of Different op Timizers and Drop Rate.

Optimizer Dropout rate  Mean loss Mean Accuracy
Adam 0.0 0.000743  0.991809
rmsprop 0.0 0.000824  0.990943
SGD 0.0 0.001019  0.981597
Adam 0.1 0.000484  0.992494
rmsprop 0.1 0.000773  0.990609
SGD 0.1 0.001412  0.981092
Adam 0.2 0.000571  0.992368
rmsprop 0.2 0.000656  0.990203
SGD 0.2 0.001618  0.980424

The model used cross-entropy as the loss function; further-
more, the model takes the mini batch approach as the updating
rule for large-scale dataset weights. The mini-batch dataset
was set up to 64. The Adam optimizer is used to minimize the
loss function with learning a rate set to the default value =
0.001, the epochs are fixed to 300, and the drop rate is equal
to 0.1.

Furthermore, to make a real sense of the model accuracy,
which can help in developing greater confidence in the devel-
oped model, the proposed model is tested with a new large-
scale-real-world dataset. Thus, we fitted the final model with
on the whole training dataset and tested on the held-out test
dataset.

The results obtained on held-out test dataset achieved
99.32% of accuracy, as shown in Fig. 3 and model loss over
time in Fig. 4. While the precision is 99.21 % for XSS class
and detection rate up to 98.35%. The false positive rate is ten-
to-zero, which represent 0.31 %. We obtained the global value

MLPXSS Model Accuracy

WW

I

0.995

0.990

0.985

Accuracy

0.980

—— Training accuracy (0.9947)
Testing accuracy (0.9932)

0.975

o] 50 100 150 200 250 300
Epochs

FIGURE 3. Model Accuracy on Training and Testing Dataset.
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TABLE 5. Experimental Results on Test Dataset.

. . Accuracy . .
Class Precision Detection Rate F-score overall FP Rate  Misclassificationrat ROC
Non-XSS 0.9924 0.9969 0.9953
0.9932 0.0031 0.0068 0.9902
XSS 0.9921 0.9835 0.9877
weightedavg 09932 0.9932 0.9932
(micro avg)
macro avg 0.9928 0.9902 0.9915
MLPXSS Model Loss ROC curve for:Test Dataset
0.10 4 —— Training loss (0.0164) 1.0
Testing loss (0.0242) h ,”,
0.08 1 0.8 1 /,/
o 7
e -~
£ 0.06 .EZJ 0.6 //
g = -
8 e
S 0.4 e
0.04 4 = P
\ = e
S 0.2 4 e
0.02 4 M et
i i ‘ ‘ ‘ ‘ ‘ ool L7 —— MLPXSS(area = 0.9902)
o 50 100 150 200 250 300 : . . . . . .
Epochs 0.0 0.2 0.4 0.6 0.8 1.0
False positive rate
FIGURE 4. Model Log Loss Values Over Time. @
a
of quality for the complete taxonomy of our model using the L OOEOC curve for Test Dataset(zoomed in at top left)
weighted averages (micro average), and macro averages of '
0.975 A
both classes. Table 5 shows the full report generated based
on the confusion matrix for testing model performance and g 09501
Fig. 5 shows the confusion matrix. v 0.925 1
2 0.900 |
o
L
S 0.875
17500 =
0.850
Benig(Normal) 61 15000
_ 12500 0.825 1 —— MLPXSS(area = 0.9902)
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g
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5000
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FIGURE 5. Confusion Matrix on Test Dataset.

To demonstrate the detection performance of our proposed
scheme to avoid false classification, and clarify the discrimi-
native robustness of our scheme, the ROC (receiver operating
characteristic) curve of mode testing are plotted as shown
in Fig. 6 (a) and Fig. 6 (b). The proposed method shows state
of the art ROC curve for our model, with an area under the
curve (AUC) equals to 0.9902. While, the False Positive rate
is tend-to-zero, which equal to 0.0031, and the corresponding
True Positive Rate tends to one, which equals to 0.9969 on
the testing dataset. This implies that our proposed scheme is
beneficial in detecting XSS-based attacks. Furthermore, it has
areal ability to detect zero-day XSS-based attacks efficiently
and effectively.
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False positive rate
(b)

FIGURE 6. (a) MLPXSS Model Roc Curve; (b) MPPXSS Model Roc Curve
Zoomed in at top Left.

A. COMPARISON WITH OTHER CLASSIFIERS

For the strict verification of data quality, a new experiment is
implemented using the same dataset with different machine
learning algorithms such as nonlinear SVM Radial Basis
Function (RBF) kernel with ¢ value = 1.0, k-nearest neighbor
(k-NN) with neighbors = 5 and ensemble method AdaBoost
classifier along with proposed methodology motioned above.
The goal is to verify whether the dataset employed by
the proposed method has advantages and able to works on
different techniques as well as to compare MPLXSS with
different algorithms. The results of the various algorithms
proved the efficiency and effectiveness of the proposed mech-
anism through which the data collection and extraction were
obtained as shown in Table 6 (a) and Table 6 (b). Also,
the results of the AdaBoost algorithm are approximate to
the results of neural networks model in terms of accuracy
and less than in terms of detection rate. Therefore, we can
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TABLE 6. (a) Result Comparison MLPXSS with Other Classifiers. (b) Result Comparison MLPXSS With Other Classifiers.

(a)
Non-XSS XSS
Classifier Precision  Detection Rate F-score Precision  Detection Rate F-score
MLPXSS 0.9924 0.9969 0.9953 0.9921 0.9835 0.9877
Gaussian NB 0.9756 0.9852 0.9804 0.9609 0.9365 0.9486
SVM 0.9733 0.9994 0.9862 0.9985 0.9293 0.9626
K-NN 0.9882 0.9957 0.9920 0.9888 0.9694 0.9790
AdaBoost 0.9920 0.9970 0.9945 0.9923 0.9793 0.9858
(b)
Classifier Accuracy overall FP Rate  Misclassificationrat ROC
MLPXSS 0.9932 0.0031 0.0068 0.9902
Gaussian NB 0.9716 0.0148 0.0284 0.9609
SVM 0.9798 0.0005 0.0202 0.9644
K-NN 0.9884 0.0043 0.0116 0.9826
AdaBoost 0.9921 0.0030 0.0079 0.9882
TABLE 7. Result Comparison MLPXSS With Other methods.
Approaches O\fecgﬁcy Precision  Recall/Detectionrate ~ F-score ~ FP Rate Misclassification rate ~ AUC-ROC
Likarish et al. [22] - 92.00%  74.20% 76.40%  13.05% - 80.58%
Wanget al. [23] - 94.10%  93.90% 93.90%  4.20% - 94.85%
Rathore etal. [24] 97.20%  97.70% 97.10% 97.40%  8.70% 2.80% 94.42%
Wanget al. [25] 94.82%  94.90% 94.80% 94.80%  4.14% 5.18% 95.33%
Fanget al. [28] - 99.50% 97.90% 98.70%  1.90% - 98.00%
MLPXSS 99.32% _99.21% 98.35% 98.77% _0.31% 0.68% 99.02%

conclude that data quality and features extraction are the key
components for precision and robustness of these classifiers
since most of them are performing well on the same data set.

B. COMPARISON WITH PREVIOUS WORKS

To objectively evaluate the proposed scheme, MLPXSS is
compared with the methods proposed by Wang et al. [23],
Rathore et al. [24], and Fang et al. [28], since the mali-
cious data coming from the XSSed. Moreover, the detected
scheme is also compared with the methods proposed by
Likarish et al. [22] and Wang et al. [25]. Since the XSS
considerably utilize malicious JavaScript as a portion of
the attack, furthermore, the code injection attack is closely
associated with JavaScript code. All these proposed methods
have been discussed in the related work section. Furthermore,
the best case is selected for each method to be compared
with our MLPXSS. Table 7 compares the results of our
scheme with other proposed schemes. From the results, it can
easily be foreseen that the proposed (MLP-XSS) scheme
supersedes each of the previously proposed schemes with a
significant margin. It maintained to achieve high Precision
and high Recall, which is evident through F-score, which is
another metric widely used to convey these both metric into
one unified metric. Moreover, FPR is also near to zero and
the AUC-ROC curve is also higher than 99.02%, which is
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one of the essential evaluation metrics for any classification
model’s performance that visualizes classification quality and
presents a complete sense of the model performance.

VI. CONCLUSION

In this research, the ANN-based scheme is proposed to detect
the XSS-based web-applications attack. Three models are
designed in a novel manner. The first model is concerned with
the quality of the raw data and random crawling. The second
model deals with extracting digital data as features of raw data
and providing neural networks with these digital features,
and the third is ANN-based multilayer perceptron model
that takes the digital data, processes and classifies the final
prediction result of XSS-attack problem. Our model performs
a prediction of security threats such as XSS attack, which can
reflect in the form of a warning to users who can cancel the
subsequent treatment of the pages. It acts as a security layer
either for the client-side or the server-side. The experiments
were conducted effectively on the test dataset, and the com-
parison was performed on existing methods. Based on the
results, it can be concluded that the proposed scheme outper-
formed the state-of-the-art techniques in different aspects of
measurements. In our future work, we will improve and apply
this scheme to detect XSS attacks in the real-time detection
system.

VOLUME 7, 2019



F. M. M. Mokbal et al.: MLPXSS: An Integrated XSS-Based Attack Detection Scheme in Web Applications

IEEE Access

REFERENCES

[1] B. K. Ayeni, J. B. Sahalu, and K. R. Adeyanju, “Detecting cross-site
scripting in Web applications using fuzzy inference system,” J. Comput.
Netw. Commun., vol. 2018, pp. 1-10, Aug. 2018.

[2] WhiteHat. 2018 Application Security Statistics Report Security. Accessed:
Oct. 1, 2018. [Online]. Available: https://info.whitehatsec.com/Content-
2018StatsReport_LP.html

[3] O. Andreeva, S. Gordeychik, G. Gritsai, O. Kochetova, E. Potseluevskaya,
S. I Sidorov, and A. A. Timorin (2016). Industrial Control

[4]
[5]

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

Systems Vulnerabilities Statistics. [Online]. Available: https://media.
kasperskycontenthub.com/wpcontent/uploads/sites/43/2016/07/07190426/
KL_REPORT_ICS_Statistic_vulnerabilities.pdf

National Vulnerability Database (NVD), Vulnerabilities.
Oct. 30, 2018. [Online]. Available: https://nvd.nist.gov/vuln/

H. Adams, A. M. Hoole, S. Kamani, R. Lemos, L. Martin, J. Mello,
N. Shah, and S. Wisseman (2018). 2018 Application Security Research
Update. Micro Focus Fortify Software Security Research Team. Accessed:
Jun. 5, 2018. [Online]. Available: https://www.microfocus.com/en-
us/assets/security/application-security-research-update-2018

S. Elad, S. Renny, M. Martin, and F. Amanda, “State of the Internet
security-credential stuffing attacks report,” Akamai, Cambridge, MA,
USA, Tech. Rep., 2018, vol. 4, no. 4.

OWASP. OWASP Top 10-2017. Accessed: Feb. 1, 2018. [Online].
Available: https://www.owasp.org/images/7/72/OWASP_Top_10-
2017_(en).pdf

S. Gupta and B. B. Gupta, “Cross-site scripting (XSS) attacks and defense
mechanisms: Classification and state-of-the-art,” Int. J. Syst. Assurance
Eng. Manage., vol. 8, no. 1, pp. 512-530, 2017.

S. Gupta and B. B. Gupta, “DS: Browser dependent XSS sanitizer,” in
Handbook of Research on Securing Cloud-Based Databases with Biomet-
ric Applications. Philadelphia, PA, USA: IGI Global, 2015, pp. 174-191.

H. B. Kazemian and S. Ahmed, “Comparisons of machine learning tech-
niques for detecting malicious webpages,” Expert Syst. Appl., vol. 42,
no. 3, pp. 1166-1177, Feb. 2015.

U. Sarmah, D. K. Bhattacharyya, and J. K. Kalita, “A survey of detection
methods for XSS attacks,” J. Netw. Comput. Appl., vol. 118, pp. 113-143,
Sep. 2018.

R. Sajjad, H. Mamoona, G. Zartasha, A. Ansar, and J. Hasan, ““Systematic
review of Web application security vulnerabilities detection methods,”
J. Comput. Commun., vol. 3, no. 9, pp. 28—40, Sep. 2015.

G. Deepa and P. S. Thilagam, “Securing Web applications from injection
and logic vulnerabilities: Approaches and challenges,” Inf. Softw. Technol.,
vol. 74, pp. 160-180, Jun. 2016.

S. Lekies, K. Kotowicz, S. GroB, E. A. V. Nava, and M. Johns, “Code-
reuse attacks for the Web,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., Oct./Nov. 2017, pp. 1709-1723.

J. Murphree, “Machine learning anomaly detection in large systems,” in
Proc. IEEE AUTOTESTCON, Sep. 2016, pp. 1-9.

A. Abeshu and N. Chilamkurti, “Deep learning: The frontier for dis-
tributed attack detection in fog-to-things computing,” IEEE Commun.
Mag., vol. 56, no. 2, pp. 169-175, Feb. 2018.

B. B. Gupta, Computer and Cyber Security: Principles, Algorithm, Appli-
cations, and Perspectives. Boca Raton, FL, USA: CRC Press, 2018.

B. B. Gupta, D. P. Agrawal, and S. Yamaguchi, Handbook of Research
on Modern Cryptographic Solutions for Computer and Cyber Security.
Philadelphia, PA, USA: IGI Global, 2016.

B. B. Gupta, S. Gupta, and P. Chaudhary, “Enhancing the browser-side
context-aware sanitization of suspicious HTMLS code for halting the
DOM-based XSS vulnerabilities in cloud,” Int. J. Cloud Appl. Comput.,
vol. 7, no. 1, pp. 1-31, Jan. 2017.

S. Gupta and B. B. Gupta, “JS-SAN: Defense mechanism for HTMLS5-
based Web applications against javascript code injection vulnerabilities,”
Secur. Commun. Netw., vol. 9, no. 11, pp. 1477-1495, Jul. 2016.

S. Gupta and B. B. Gupta, “PHP-sensor: A prototype method to discover
workflow violation and XSS vulnerabilities in PHP Web applications,” in
Proc. 12th ACM Int. Conf. Comput. Frontiers, May 2015, p. 59.

P. Likarish, E. Jung, and I. Jo, “Obfuscated malicious javascript detec-
tion using classification techniques,” in Proc. 4th Int. Conf. Malicious
Unwanted Softw. (MALWARE), Oct. 2009, pp. 47-54.

R. Wang, X. Jia, Q. Li, and S. Zhang, ‘“Machine learning based cross-
site scripting detection in online social network,” in Proc. IEEE Int. Conf.
High Perform. Comput. Commun., IEEE 6th Int. Symp. Cyberspace Saf.
Secur., IEEE 11th Int. Conf. Embedded Softw. Syst. (HPCC, CSS, ICESS),
Aug. 2014, pp. 823-826.

Accessed:

VOLUME 7, 2019

(24]

(25]

[26]

(27]

(28]

(29]

(30]

(31]

(32]

(33]

(34]

[35]

(36]
(371

(38]

(39]

[40]

(41]

[42]

(43]

[44]
(45]
(46]

(47]

(48]

(49]

[50]

S. Rathore, P. K. Sharma, and J. H. Park, “XSSClassifier: An effi-
cient XSS attack detection approach based on machine learning clas-
sifier on SNSs,” J. Inf. Process. Syst., vol. 13, no. 4, pp. 1014-1028,
2017.

Y. Wang, W.-D. Cai, and P.-C. Wei, “A deep learning approach for detect-
ing malicious javascript code,” Secur. Commun. Netw., vol. 9, no. 11,
pp. 1520-1534, Jul. 2016.

Y. Pan, F. Sun, J. White, D. C. Schmidt, J. Staples, and L. Krause,
“Detecting Web attacks with end-to-end deep learning,” Vanderbilt Univ.,
Melbourne, FL, USA, 2018, pp. 1-14.

J. W. Stokes, R. Agrawal, and G. McDonald, ‘“Neural classifica-
tion of malicious scripts: A study with javascript and VBScript,”
2018, arXiv:1805.05603. [Online]. Available: https://arxiv.org/abs/1805.
05603

Y. Fang, Y. Li, L. Liu, and C. Huang, “DeepXSS: Cross site scripting
detection based on deep learning,” in Proc. Int. Conf. Comput. Artif. Intell.,
Mar. 2018, pp. 47-51.

A. E. Nunan, E. Souto, E. M. dos Santos, and E. Feitosa, ‘“Automatic
classification of cross-site scripting in Web pages using document-based
and URL-based features,” in Proc. IEEE Symp. Comput. Commun. (ISCC),
Jul. 2012, pp. 702-707.

scrapy.org. (2018). Scrapy. Accessed: Jul. 1, 2018. [Online]. Available:
https://scrapy.org/

M. R. Henzinger, A. Heydon, M. Mitzenmacher, and M. Najork, “On near-
uniform URL sampling,” Comput. Netw., vol. 33, nos. 1-6, pp. 295-308,
Jun. 2000.

Alexa. Alexa-Static. Accessed: Jul. 1, 2018. [Online]. Available: http://s3.
amazonaws.com/alexa-static/top-1m.csv.zip

F. Kevin and D. Pagkalos. XSSed. Com.XSS (Cross-Site Scripting) Informa-
tion and Vulnerable Websites Archive. Accessed: Jun. 29, 2018. [Online].
Available: http://www.xssed.com/archive

Open Bug Bounty. Accessed: Jun. 30, 2018. [Online]. Available:
https://www.openbugbounty.org/

L. Richardson. (2017). Beautiful Soup Documentation. Accessed:
Jul. 5, 2018. [Online]. Available: https://www.crummy.com/software/
BeautifulSoup/bs4/doc/

J. Graham. HTMLSLIB. Accessed: Jul. 4, 2018. [Online]. Available:
https://pypi.org/project/html5lib/

A. Hidayat. (Oct. 2018). Esprima. [Online]. Available: https://github.
com/jquery/esprima

M. Mohammadi, B. Chu, and H. R. Lipford, “Detecting cross-site scripting
vulnerabilities through automated unit testing,” in Proc. IEEE Int. Conf.
Softw. Quality, Rel. Secur. (QRS), Jul. 2017, pp. 364-373.

B. Cui, Y. Wei, S. Shan, and J. Ma, “The generation of XSS attacks
developing in the detect detection,” in Advances on Broadband and
Wireless Computing, Communication and Applications (Lecture Notes
on Data Engineering and Communications Technologies), vol. 2. Cham,
Switzerland: Springer, 2017, pp. 353-361.

OWASP. XSS Filter Evasion Cheat Sheet. Accessed: Sep. 10, 2018.
[Online]. Available: https://www.owasp.org/index.php/XSS_Filter
_Evasion_Cheat_Sheet

HTML Living Standard. (Sep. 2018). WHATWG. Accessed: Sep. 20, 2018.
[Online]. Available: https://html.spec.whatwg.org/

R. Yan, X. Xiao, G. Hu, S. Peng, and Y. Jiang, ““New deep learning method
to detect code injection attacks on hybrid applications,” J. Syst. Softw.,
vol. 137, pp. 67-77, Mar. 2018.

M. Michael and M. S. Lam, ““Automatic generation of XSS and SQL injec-
tion attacks with goal-directed model checking,” in Proc. 17th USENIX
Conf. Secur. Symp., Jul. 2008, pp. 31-43.

B. Miiller, J. Reinhardt, and M. T. Strickland, Neural Networks: An Intro-
duction. Berlin, Germany: Springer, 2012.

N. Smithing, Supervised Learning in Feedforward Artificial Neural Net-
works. Cambridge, MA, USA: MIT Press, 1999.

K. Gurney, An Introduction to Neural Networks. London, U.K.: CRC Press,
2014.

D. Kingma and J. Ba, “Adam: A method for stochastic optimiza-
tion,” 2014, arXiv:1412.6980. [Online]. Available: https://arxiv.org/abs/
1412.6980

S. J. Russell and P. Norvig, Artificial Intelligence: A Modern Approach.
London, U.K.: Pearson Education, 2016.

G. James, W. Daniela, H. Trevor, and T. Robert, An Introduction to Statisti-
cal Learning (Springer Texts in Statistics). New York, NY, USA: Springer,
2013.

I. Goodfellow, Y. Bengio,
Cambridge, MA, USA: MIT Press,
http://www.deeplearningbook.org

and A. Courville, Deep Learning.
2016. [Online]. Available:

100579



IEEE Access

F. M. M. Mokbal et al.: MLPXSS: An Integrated XSS-Based Attack Detection Scheme in Web Applications

FAWAZ MAHIUOB MOHAMMED MOKBAL
received the B.S. degree in computer science from
Thamar University, Yemen, and the M.S. degree
in information technology from the University of
Agriculture, Pakistan. He is currently pursuing the
Ph.D. degree in computer science and technology
with the Beijing University of Technology, China.
He has served as the Head of the Technical Team of
Information Center Project for the local Authority
and the Manager of information systems at the
Ministry of Local Administration, Yemen. His areas of interests include
artificial neural networks, web application security, and security issues
in the IoT.

WANG DAN received the B.S. degree in computer
application, the M.S. degree in computer software
and theory, and the Ph.D. degree in computer
software and theory from Northeastern University,
China, in 1991, 1996, and 2002, respectively. She
is currently a Professor with the College of Com-
puter Science, Beijing University of Technology.
Her major areas of interests include trusted soft-
ware, web security, and big data.

AZHAR IMRAN received the bachelor’s degree
in software engineering and the master’s degree
in computer science from the University of
Sargodha, Pakistan, in 2012 and 2016, respec-
tively. He is currently pursuing the Ph.D. degree in
software engineering with the Beijing University
of Technology, China. He has served as a Lecturer
with the University of Sargodha for five years.
He is the Reviewer of different journals, includ-
ing IEEE Access. His research interests include
machine learning, medical image analysis, and neural networks.

100580

LIN JIUCHUAN is currently a Professor with the Key Laboratory of Infor-
mation Network Security of Ministry of Public Security, The Third Research
Institute of Ministry of Public Security, China. His major areas of interests
include information security, trusted software, and web security.

FAHEEM AKHTAR received the M.S. degree in
computer science from the National University of
Computing and Emerging Science, NUCES FAST
Karachi, Pakistan. He is currently an Assistant
Professor with the Department of Computer Sci-
ence, Sukkur IBA Univeristy. Meanwhile, he is on
study leave from Sukkur IBA to pursue his Ph.D.
degree with the School of Software Engineering,
Beijing University of Technology, Beijing, China,
from 2016 to 2020. He is the author of various SCI,
EIL and Scopus indexed journals, and international conferences. His research
interests include data mining, machine learning, information retrieval, pri-
vacy protection, Internet security, the Internet of Things, and big data.

WANG XIAOXI received the M.S. degree in com-
puter technology from the Beijing University of
Technology. He is currently an Engineer with the
State Grid Management College. His major areas
of interest includes computer network.

VOLUME 7, 2019



	INTRODUCTION
	RELATED WORK
	DETECTION METHODOLOGY
	COLLECTING RAW DATA
	DYNAMIC FEATURES EXTRACTION MODEL
	HTML-BASED FEATURES SUB-MODEL
	JAVASCRIPT-BASED FEATURES SUB-MODEL
	URL-BASED FEATURES SUB-MODEL

	ARTIFICIAL NEURAL NETWORK MODEL

	EXPERIMENTAL DESIGN AND EVALUATION
	THE DATASET
	PERFORMANCE EVALUATION METRICS
	EXPERIMENTAL ENVIRONMENT

	RESULTS AND DISCUSSION
	COMPARISON WITH OTHER CLASSIFIERS
	COMPARISON WITH PREVIOUS WORKS

	CONCLUSION
	REFERENCES
	Biographies
	FAWAZ MAHIUOB MOHAMMED MOKBAL
	WANG DAN
	AZHAR IMRAN
	LIN JIUCHUAN
	FAHEEM AKHTAR
	WANG XIAOXI


