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ABSTRACT Seabed acoustic images are image data mosaics derived from seafloor acoustic backscattering
intensity data, which is related to the type of sediment covering the seabed. Therefore, submarine sediment
classification can be realized using seabed acoustic images, and has been studied extensively. Recently,
deep learning has also rapidly advanced; in particular, deep convolutional neural networks (CNNs) are now
being used to achieve remarkable results in the field of image processing—showing that they are well-suited
for image classification tasks. Previous studies have used GoogleNet to classify large-scale side-scan sonar
data, with some sediments being well-classified. However, deep learning is data-driven and, theoretically,
the greater the depth, the stronger is the learning ability of the feature. It is worth noting that the dataset used
for sediment classification can sometimes be small. Hitherto, no related research has analyzed the feasibility
and applicability of a CNN classifier for a small-sized seabed acoustic image dataset, so we adopted two
different CNN classifier models to conduct the classification experiment in this study. As the results show,
the CNN classifier can be applied to the classification of sediments based on a small-sized seabed acoustic
image dataset, and the classification performance of shallow CNN was found to be better than that of the
deep CNN on existing side-scan sonar data. In particular, the accuracy obtained from the results of several
sediment classification experiments using a shallow CNN classifier ranged between 93.4% (SandWave) and
87.54% (Reef).

INDEX TERMS Deep convolutional neural network, seabed acoustic image, seabed sediment classification.

I. INTRODUCTION
The characteristics of marine sediment types are important
environmental information used in the fields of Marine Geo-
logical Surveying, Marine Engineering Construction, and
Seabed Mineral Resources Development. The traditional
means of sediment surveying by direct sampling cannot be
used on a large scale, as it is a cumbersome, complex, and
time-consuming process. An acoustic surveying method for
seabed sediment classification is more feasible [1]. The prin-
cipal method of acoustic sediment classification uses acoustic
information derived from acoustic reflection and scattering
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data, with a defined number of collected samples or visual
observations, combined with the appropriate classification
algorithms to determine the sediment type. This method
is more efficient than traditional surveys and has a wider
application range, which is of great significance for Marine
Geological Surveying and Marine Engineering Construction.

Numerous studies have been conducted on sediment classi-
fication of seabed acoustic data. Lucieer and Lucieer [2] used
Fuzzy C-means (FCM) and fuzzy maximum likelihood esti-
mation (FMLE) to classify sediments based on the Seascapes
datasets. Samsudin and Hansn [3] used K-means clustering
to classify sediments, and Ahmed et al. [4] used K-means
clustering, quality threshold clustering (QTC), and spectral
clustering (SC) to perform sediment classification based
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on multi-beam echosounder data. Snellen et al. [5] used
Bayesian techniques and K-means clustering to classify sed-
iments based on multi-beam echosounder data. Ma et al. [6]
applied the ISODATA clustering algorithm to the classifica-
tion of sediments. Atallah et al. [7] used wavelet analysis
to process side-scan sonar data and employed the multi-
layer perceptron (MLP) and K-nearest neighbors (KNN)
algorithms to classify the sediments. Preston [8] used simu-
lated annealing (SA) algorithms for sediment classification
based on multi-beam data. Wang et al. [9] compared the
performances of different support vector machine (SVM)
models on sediment classification tasks based on multi-beam
and LiDAR data. Stewart et al. [10] combined side-scan sonar
imagery with Back Propagation neural networks (BPNNs) to
classify sediments.

Seafloor backscattering intensity is affected by the type
of sediment covering the seafloor; thus, seabed acoustic
images generated using this method can be utilized to clas-
sify seabed sediment type [11]. A deep convolution neu-
ral network (CNN) is a deep learning technique that learns
features and performs well in image recognition, unmanned
driving, and other fields. CNNs have many applications in
remote sensing, such as using CNN combined with remote
sensing image data for geospatial object detection [12], ship
detection [13], and identification of maize leaf diseases [14].
In addition, a CNN can also be applied for remote sensing
image scene classification [15]–[19], remote sensing image
registration [20], and road extraction from a high spatial reso-
lution remote sensing image [21]. Related work in the field of
remote sensing images undoubtedly shows the advantages of
using CNN in image processing, and CNNs are also applied
in the processing of seabed image data [22]–[25]. Deep CNN
(specifically, GoogleNet) has been used to classify large scale
side-scan sonar acoustic image samples with segmentation
sizes of 320× 320, with good classification results achieved
for some sediment types and a sand classification accuracy
of 83% [25].

It is worth noting that different application scenarios put
forward different requirements for the application of CNN’s
structure. However, in some sediment classification tasks,
no large seabed acoustic image dataset is available. There
is no relevant research to analyze CNN classifiers when
using a small-sized seabed acoustic image dataset, so we
have no way of knowing the feasibility and applicability of
this method, which is the core of our research. In theory,
the depth of a CNN determines its feature learning ability,
but its performance varies significantly with different datasets
in practical applications. The selection of the CNN classifier
structure should be based on the characteristics of the dataset
used, and repeated modifications and debugging should be
conducted to obtain the best classifier model. A deeper struc-
ture is not better for every task. Therefore, in our experiment,
we constructed two CNN classifiers to classify small size
seabed acoustic image dataset, with one being a shallowCNN
modified based on LeNet-5 and the other being a deep CNN
modified based on AlexNet. As the results show, CNN can

be applied to the sediment classification task for a small-
sized seabed acoustic image dataset, and the performance of
the two CNN classifier is difference in this case. It can be
seen from the experiment that in such application scenarios
(dataset size is small and single sample size is small), the shal-
low CNN performs significantly better. Although deep CNN
has superior feature learning ability and requires few training
epochs to achieve the objective, it is not applicable in this
case. In this study, we utilized existing data and obtained good
sediment classification results with shallow CNN, with an
accuracy better than 87.5% for seabed sediment classifica-
tion, compared to 66.75% when using deep CNN.

II. PRINCIPLE
The principle underlying the use of a CNN to achieve sed-
iment classification from seabed acoustic images is based
on two factors: (1) seabed acoustic images reflect seabed
sediment type information, and (2) a CNN facilitates effective
feature extraction and learning processes.

A. SEABED ACOUSTIC IMAGES AND THEIR CONNECTION
TO SEDIMENT TYPES
In previous studies, the correlation between seabed backscat-
tering intensity and sediment type was investigated, and
several general theories—such as the relationship between
the acoustic characteristics and physical properties of sed-
iments [26]–[28], the relationship between the geoacoustic
properties and input parameters necessary for sound wave
propagation theory of seabed sediments [29]–[31], and the
relationship between submarine surface roughness and high
frequency acoustic scattering [32]—were developed. There-
fore, classifying seabed sediments based on acoustic images
is theoretically feasible.

After processing the multi-beam echo intensity data and
calculating the latitude and longitude of the beam sampling
points, the positions of the backscattering intensity values
within the geographical coordinate framework can be deter-
mined. After meshing, striping, and mosaicing, a backscatter-
ing intensity graph (i.e. a seabed acoustic image) is obtained.

As shown in Fig. 1, seafloor backscattering intensity is
defined as the ratio of the intensity of the sound scattered

FIGURE 1. Schematic diagram of the definition of seafloor backscattering
intensity.
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FIGURE 2. Principle of single convolution kernel calculation, where A is
the input data, W is the convolution kernel, b is the offset, Output is the
output data, and the shaded area is the field of view. Here, the traversal
mode is 1 pixel in the horizontal direction and 1 pixel in the vertical
direction; thus, it can be inferred that the output size
is 2 × 3.

FIGURE 3. Calculation principle of the pooling layer: A is input data, Sj is
output data, the shaded area is the pooled area, and the pooled area
traversal mode is the same as in Fig 1. The size of Sj can be increased to
2 × 3.

per unit area or volume to the intensity of the incident plane
wave (at a reference distance of 1 m) in decibels (dB). The
intensity of the sound scattered ismeasured in the far field and
reduced to the unit of distance. Given an acoustic intensity
emitted by a sound source of Ii, propagation distance R, sub-
marine incident angle θ , backscattering coefficient s(θ ), and
instantaneous acoustic region area A, the accepted acoustic
intensity IS can be expressed as:

Is = Ii
As(θ )
R2

(1)

The resulting seafloor backscatter coefficients are then
calculated from far field measurements:

s(θ ) =
ISR2

IiA
(2)

Expressed in decibels (dB), the seabed backscattering
intensity is:

BSB(θ ) = 10 log10[s(θ )] (3)

B. PRINCIPLES OF A CNN
In [33], the core idea of using CNNs to extract features from
the input data through the convolution kernel and the pooling
layer is shown. After the convolution layer and pooling layer
are processed, a fully connected layer can be terminated for
classification calculation.

A typical CNN classifier comprises of convolutional
layers, pooled layers, and fully connected layers. CNNs
also include feedforward propagation and back propagation.
Considering the relative simplicity of the fully connected

layer, this study focused on the principle of feature extraction
(namely, the convolutional and pooling layers) by formula.

1) FEEDFORWARD PROPAGATION OF A CNN
The feedforward algorithm of a CNN includes convolution
operations, pooling operations, and fully connected layers for
classification calculations. The role of the convolution layers
is to extract features from data, which can be calculated as
follows:

Ci = conv2d
(
A,W i,′ Padding′

)
+ bi (4)

where conv2d (·) is a formula expression of convolving a
two-dimensional image, and Ci is the mapping of the con-
volution kernelW i onto the data A. The field of view and the
moving step size of the kernel W i must be set in advance,
bi is the offset parameter, and ‘Padding ’ is the fill method
used when traversing to the edge of the image. Then the
Ci is transformed into a nonlinear function by an excitation
function:

outputi = σ (Ci) (5)

where σ (·) is the excitation function. In general, the excitation
function in the CNNs uses the Rectified Linear Unit (ReLU)
function. If we assume the input data are given as x, the func-
tion is thus:

Relu(x) = max(0, x) (6)

The output of the convolution layers can be obtained in
accordance with Equations (5) and (6):

outputi = Relu (Ci) (7)

The convolution kernel acts as a filter to extract features from
the input data. The process of extracting these features is
called feature mapping.

Pooling operations are much simpler than convolution
operations. Pooling methods include maximum pooling and
mean pooling, and so on. In CNNs, maximum pooling is
commonly used [33], with the objective of outputting the
maximum value in the pooling window. Traversal of the
pooling window is very similar to that of the convolution
kernel. The supposed maxpool (·) is the public expression of
the maximum pooling, A is the input data, and Sj is the pooled
map. The equation is as follows:

Sj = maxpool
(
A,′ Padding′

)
(8)

The pooling layer can reduce the data size without losing the
features expressed by the data, thereby increasing the speed
of the operation while ensuring feature acquisition.

After a series of convolution and pooling operations, some
of the feature parameters can be extracted from the input data.
These feature parameters are transformed into one dimension
and input into the full connection layer, which is essentially a
BPNN classifier. The specific principle behind this method
is beyond the scope of this paper (see [34] for a detailed
introduction).
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2) ERROR BACKPROPAGATION OF A CNN
In general, a CNN is trained based on an error backpropaga-
tion algorithm. The principle of backpropagation error can
be understood as the optimization and adjustment of each
parameter using the gradient descentmethod, according to the
output mean square error (MSE). This makes the real output
approximate to the ideal output and continuously improves
the performance of the classifier. The process of error back-
propagation can be divided into two parts: error propagation
and parameter update.

a: ERROR PROPAGATION
Error propagation in the convolutional layer and the pooled
layer are not the same. When the sensitivity (or gradient) of
the current layer (layer l) is δl , the S l−1 is the feature map of
the prior layer, and the error back propagation in the pooling
layer is expressed as:

δl−1 =
∂J (W , b)
∂S l−1

= upsample
(
δl
)

(9)

where J ( W , b) is the MSE of the training process, δl−1 is
the sensitivity of the layer before the current layer. Here,
the upsample (·) process completes the logic of pooled error
amplification and error redistribution; that is, it establishes
the corresponding relationship between the sensitivity and the
feature map before pooling.

In the convolution layer the error propagation is more
complicated. Because the input data have been convolved,
the convolution operation should be taken into account dur-
ing the error propagation process. This relationship is as
follows:

δl−1 =
∂J (W , b)
∂C l−1 =

∂J (W , b)
∂C l

∂C l

∂C l−1 = δ
l ∂C

l

∂C l−1 (10)

In (10), C l is the feature map of the current layer,
and C l−1 is the feature map before the current layer.
According to the derivation, this can be written in another
form:

δl−1 = δl ∗ rot180
(
W l
)
� σ ′

(
C l−1

)
(11)

where rot180 (·) is the operation of flipping the matrix, σ (·) is
the active function and σ ′(·) is the derivative calculation of
the excitation function. This process redistributes the current
sensitivity to obtain the sensitivity δl−1 before the convolu-
tion operation.

b: PARAMETER UPDATE
Parameter updating occurs in the convolution operation. The
convolution kernel parameter and the offset are updated using
the gradient descent method, according to the current gra-
dient (sensitivity), which reduces the output mean square
error (MSE). The CNN classifier then has the ideal output.
The current layer sensitivity is denoted as δl , the layer con-
volution kernel parameter W l , and the offset bl are updated.

First, we calculate the gradient value:

∂J (W , b)
∂W l =

∂J (W , b)
∂C l

∂C l

∂W l = al−1δl

∂J (W , b)
∂bl

=

∑
u,v

(
δl
)
u,v

(12)

According to the obtained gradient value, W l and bl are
updated on the basis of the given learning rate η; and the
relationship can be expressed as follows:

W l
new = W l

− η
∂J (W , b)
∂W l

blnew = bl − η
∂J (W , b)
∂bl

(13)

The combination of feedforward propagation and back-
propagation of CNN training on the input training samples is
such that the output of the classifier is continuously optimized
until a terminal condition is reached, resulting in a classifier
with good performance.

III. CLASSIFICATION EXPERIMENT
The data used in this study are from side-scan sonar images
obtained in the Pearl River Estuary as part of the ‘‘China
Offshore and Ocean Comprehensive Survey and Evaluation
Special.’’ A DF1000/560D digital dual-frequency side-scan
sonar system, differential GPS positioning system, SDH-13D
depth sounder, CAP-6600 shallow profiler system, profes-
sional processing software C-View 1.52, and Sonar Wiz Map
were used. The micro-geomorphology of the Pearl River
Estuary is diverse, with various types of sediment cover.
The side-scan sonar’s operational frequency is 500 KHz,
and the A/D resolution of the side-scan sonar system is
12 bits/sample. The width and height of a pixel in the seabed
acoustic images correspond to 0.2 m each.

The seabed acoustic imagery was divided into multiple
segmented small-scale images, which were used for classi-
fication. The image data used in this experiment are shown
in Fig. 4, comprising three main sediment types: reef, mud,
and sand wave. The type of each sediment was determined
by direct sampling analysis. The acoustic images of each
sediment type have peculiar features, which are the basis
used for the classifier, in theory. In this study, the processing
method used for the original image data was the division of
the original picture into a plurality of moments, as shown
in Fig. 5.

Data partitioning utilized the hold-outmethod. The number
of classified reef, mud, and sand wave images were 234,
217, and 228, respectively. From each sediment type, 20% of
the images were randomly selected as test samples: 46, 43,
and 45 images of reef, mud, and sand wave, respectively.
In order to eliminate any influence of sample partitioning on
the performance of the classifier, the hold-out method was
used to randomly generate 10 datasets to verify the classifier.

Considering that there is no existing research that analyzed
the application of a CNN classifier on a small-sized seabed
acoustic image dataset, we used two types of CNN in this
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FIGURE 4. Seabed acoustic images of the three sediment types in the dataset.

FIGURE 5. Example of the image cutting process.

experiment: deep CNN based on AlexNet and shallow CNN
based on LeNet-5. As shown in Fig. 6, the structure of the
deep CNN is relatively complicated, based on modifications
of AlexNet. These mainly involved removing the LRN layer
and remotely modifying the structure to fit small-size image
data. In contrast, as shown in Fig. 7, the structure of the
shallow CNN is much simpler and is based on modifications
of LeNet-5. The complexity and depth of the two CNN
classifiers are quite different. The deep CNN consists of
five convolutional layers, three pooling layers, and two fully
connected layers, whereas the shallow CNN contains only
two convolutional layers, two pooling layers, and one fully
connected layer.

The convolution kernel size of the deep CNN was 5 × 5
pixels and the pooled area was 3 × 3 pixels. The traversal
mode of the convolution kernel was 1 pixel in the horizontal
direction and 1 pixel in the vertical direction (abbreviated
as (1,1)), and the traversal mode of the pooled region was
(2, 2). The convolution kernel size in the shallow CNN was
3 × 3 and the pooled area was 2 × 2. The convolution
kernel traversal mode was (1,1) and the pooled area traversal
mode was (2,2). Both types of CNN classifiers used the same
padding model at the edges of the image. The number of
convolutional kernels (or neurons) in each layer is shown
in Table 1.

In this experiment, the 10 datasets outlined previously
were utilized. In order to minimize the impact of randomly

TABLE 1. Number of kernels (or neurons) in each layer.

generated initialization values and to evaluate the real per-
formance of the classifier as best as possible, repeated tests
(set as 10 times) were conducted on each dataset and the
mean value was taken as the result of the classification on this
dataset. In addition, in order to adapt to the subsamples in the
CNN, the original 16× 16 pixel sample data were expanded
to 32× 32 pixels. Considering that the number of samples is
small, all training samples are divided into one batch during
the training process to identify the global optimum in the
batch gradient descent (BGD) process. Finally, in order to
avoid random initialization of the neural network parameters,
the average of the results of 10 datasets was taken as the final
result. The respective final performances of the deep CNN
and shallow CNN classifiers are shown in Table 2.

TABLE 2. Performance of the two CNN classifiers.
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FIGURE 6. Structure of the deep CNN (based on AlexNet).

FIGURE 7. Structure of the shallow CNN (based on LeNet-5).

As shown in Table 2, the performance of both classifiers
on the training samples were 100%, but the performance of
the shallow CNN on the test samples was much better than
that of the deep CNN. Considering that the accuracy of the
two classifiers on the training samples is 100%, they are not
comparable, and to more directly represent the difference
between the two classifiers, their performances on the test
samples are intuitively compared in Fig 8. The classification
accuracy of the shallow CNN is a minimum of 87.5% (Reef)
and a maximum of 93.43% (Sand Wave). The classification
accuracy of the deep CNN is a minimum of 66.75% (Reef)
and a maximum of 79.58% (Sand Wave).

In addition, there are significant differences between the
calculation speeds of the two classifiers, as shown in Table 3.
The program was written in Tensorflow1.12.0 using Python
and executed on a GPU with GTX780M. In order to reflect
the calculation speed, the average value was taken as the
speed after running 10 times. The calculation speed of the
shallow CNN was much higher than that of the deep CNN,
both for the training data and for the testing data. It is worth
noting that the training epoch of the shallow CNN was 500,
whereas that of the deep CNNwas 300, which further reflects
the difference in the speed of the two classifiers, indicating
that the computational power resources consumed by the deep
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TABLE 3. Runtime of the two CNN classifiers.

FIGURE 8. Classification results of the two CNN classifiers on the testing
samples.

CNN far exceeded those consumed by the shallow CNN. The
runtime of the deep CNN on the testing samples is approx-
imately five times that of the shallow CNN, which indicate
that the structural complexity and the parameter amount of
the deep CNN far exceed those of the shallow CNN, which
directly reflects the greatly increased computational power
required by the deep CNN over the shallow CNN.

Although the deep CNN has obvious disadvantages
compared to the shallow CNN in terms of classification
performance for testing samples and computing speed, in the
training process, the deep CNN is much faster than the shal-
low CNN for the epochs required to converge to a classifi-
cation accuracy of 100%, as shown in Fig. 9. The difference
in convergence speed can also indicate that the deep CNN
is better than the shallow CNN in terms of learning ability,
because theoretically, the greater the depth, the stronger the
expression ability of neural networks.

However, it also seems possible for the deep CNN to
learn too many features during the learning process, and
some of these features seems to be non-universal, which
leads to the weak generalization ability of the deep CNN
(or overfitting); this may explain its poor performance on
testing samples. Summarizing the above and comparing the
actual performances of the two classifiers, the reasons for
the weak performance of the deep CNN compared to the

FIGURE 9. The accuracy of the two CNN classifiers on training samples.

shallow CNN may be as follows: (1) the stronger learning
ability of the deep CNN leads to overfitting problems and
a weaker generalization ability (even after adoption of the
dropout method to eliminate overfitting as much as possible);
(2) overly small final output featuremap sizes resulted in poor
representation; (3) insufficient number of training samples.

It is clear that the CNNs can be applied to sediment classifi-
cation based on a small-sized seabed acoustic image dataset,
and the classification effect of the shallow CNN classifier
was superior to that of the deep CNN classifier on the small
seabed acoustic image dataset. However, this is only in the
case of a small dataset with few easily distinguishable types.
If the dataset is expanded or if the sample content diversity
and complexity are increased, it is difficult to determine
whether the deep CNN or the shallow CNN are performing
better, which is also the subject of our subsequent research. In
addition, the performance of deep learning is closely related
to its structure and training tricks; thus, we will test more
CNN structures and training methods in the follow-up work,
to better apply deep learning to the processing of seabed
acoustic images.

IV. CONCLUSION
This study verifies that a CNN classifier can be applied to
a small-sized seabed acoustic image dataset, and through a
comparison of the experimental results, it is discovered that
CNN with shallow depth seems to be more effective than
deep CNN in this case. More specifically, the classification
accuracy and calculation speed of a deep CNN classifier and
a shallow CNN classifier were compared using an existing
small-size dataset and the shallow CNN classifier is found to
be more appropriate for such datasets. Theoretically, a deep
CNN has better feature learning ability; however, for the
small-sized seabed acoustic image dataset in this experiment,
the shallow CNN outperformed the deep CNN in terms of
classification accuracy and speed.

Deep learning is an excellent learning algorithm with a
wide range of applications and impressive results for a variety
of tasks, such as classification, object detection, and natural
language processing. Through this experiment, we conclude
that CNNs are feasible for a small-sized seabed acoustic
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image dataset and that shallow CNN is more feasible in this
application scenario. Considering that deep learning theory
and its applications are still developing rapidly, we will con-
tinue to attempt to apply more models and training skills
to the sediment classification task in the following work.
Moreover, we will continue to expand the dataset and enrich
the application scenarios for experiments to consolidate its
theoretical feasibility. Although deep learning has problems
such as randomness, dataset requirements, and being compu-
tationally intensive, it is undeniable that it provides excellent
results in this sediment classification experiment. In addition
to sediment classification, it can also be applied to other tasks
in marine science, such as submarine target detection and
surface remote sensing image processing. Therefore, deep
learning still has potential applications in the field of marine
science.
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