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ABSTRACT Let G = (V, E) be a (molecular) graph. For a family of graphs G, the first Zagreb index M and
the second Zagreb index M; have already studied. In particular, it has been presented, the first Zagreb index
M and the second Zagreb index M, of trees T in terms of domination parameter. In this paper, we present
upper bounds on Zagreb indices of unicyclic and bicyclic graphs with a given domination number and also
find upper bounds on the Zagreb indices of trees, unicyclic, and bicyclic graphs with a given total domination

number.

INDEX TERMS Domination, total domination, Zagreb indices, tree, unicyclic, bicyclic graph.

I. INTRODUCTION

Throughout this paper, all graphs are assumed to be simple
connected, undirected with n > 1 vertices and m edges. Let
G = (V, E) be a graph with the vertex set V = V(G) and the
edge set E = E(G). By the neighborhood of a vertex v of G,
we mean the set Ng(v) = N(v) = {u € V : uv € E}. The
closed neighborhood of vertex v is Ng[v] = N(v) U {v}. For
S C V, the neighborhood of S is N(S) = [J,.g N(v) and the
closed neighborhood of S is N[S] = N(S) U S.

A topological index for a graph is a numerical quantity
which is invariant under automorphisms of the graph. The
simplest topological indices are the number of vertices and
edges of the graph. The first Zagreb index M| and the second
Zagreb index M, of G are defined as:

Mi= Y (AW My= )Y de(vdcu)

veV(G) uveE(G)

where dg(v) = deg(v) is the degree of vertex v € G.

Zagreb indices, first is appeared in the topological for-
mula for the total m-electron of conjugated molecules that
has been derived in 1972 [10]. These indices have been
used as a branching indices. Later the Zagreb indices found
applications in Quantitative Structure-Activity Relationships
(QSAR) and Quantitative Structure-Property Relationships
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(QSPR) were studied [7], [13], [16], [17]. This theory is
developed well (for example see [9], [13]).

The main properties of M; and M, were summarized in
[3]1, [5], [13], [19]. In particular, Deng [6] gave a unified
approach to determine extremal values of Zagreb indices for
trees, unicyclic and bicyclic graphs.

A subset D € V(G) is a dominating set of G if every
vertex of V(G) — D has a neighbor in D. The domination
number of G, denoted by y(G), is the minimum cardinality
of a dominating set of G.

A subset D C V(G) is a total dominating set, abbreviated
TDS, of G if every vertex of G has a neighbor in D. The rotal
domination number of G, denoted by y,(G) and introduced
by Cockayne et al. [4].

Domination in graphs has been an extensively researched
branch of graph theory [14]. Graph theory is one of the most
flourishing branches of modern mathematics and computer
applications. The last 30 years have witnessed spectacu-
lar growth of graph theory due to its wide applications to
discrete optimization, combinatorial and classical algebraic
problems [15]. It has a very wide range of applications to
many fields like engineering, physical, social and biological
sciences; linguistics etc. The theory of domination has been
the nucleus of research activity in graph theory in recent
n-times. This is largely due to a variety of new parameters
that can be developed from the basic definition of domina-
tion [11]. The graph G is said to be unicyclic (bicyclic) graph
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respectively if it has only one cycle (exactly two cycles) and
denoted by U, (By,).

The interested readers can see sharp upper bounds for first
and second Zagreb indices of bicyclic graphs with a given
perfect matching [8], [12] and with a given clique number
in [18]. The relation between various topological indices and
domination number of a graph G is in the focus of interest
of the researchers for quite many years and this topic is
vital nowadays as well [1], [7]. This paper is continuation of
these investigations. We discuss on upper bounds of Zagreb
indices of unicyclic and bicyclic graphs with a given dom-
ination number, we also determine the unique tree whose
first and second Zagreb indices attains maximum among the
trees with a given domination number. As a consequence,
we obtain the upper bound on Zagreb indices of trees, uni-
cycles and bicycles with a given total domination number.

Il. ZAGREB INDICES OF UNICYLIC AND BICYCLIC
GRAPHS WITH A GIVEN DOMINATION

Before continuing our discussion of techniques and formulas
for calculating the upper bound of first and second Zagreb
indices of unicyclic and bicyclic graphs with given domina-
tion number recall some definitions and properties that we
need for proof of theorem. In [2], authors introduced some
notations and calculated on extremal Zagreb indices of trees
with given domination number as follow:

Let Ty, be the tree obtained from the star Ky ,—, by
attaching a pendant edge to its y — 1 pendent vertices. If
A =n—yinatree T of order n and domination number y,
then T = T,,,ie. T be a T,, fo given n and y. The
first and second Zagreb indices of a tree 7}, ,, can easily be
calculated as

M(Tyy)=m—y)n—y +D+4y - 1), ey

and
My(Tn,y) = 20—y +D)(y—D+m—y)n—-2y +1) (2)

Theorem 1 ( [2], Theorem 2.1): Let T be a tree with dom-
ination number y. Then

M(T)=(n—y)n—y+D+4y —1D.

The equality holds if and only if T = T}, .
Theorem 2 ( [2], Theorem 2.2): Let T be a tree with dom-
ination number y. Then

MyT) <2n—y + Dy =D+ —y)n—-2y +1).

The equality holds if and only if T = T}, ,,.

The following lemma has straightforward proof and we
leave it.

Lemma 1: Let G be a graph and D be a minimum dom-
inating set with |[D| = y(G). If e is an edge of G, then
¥(G —e) € {y(G),y(G)+ 1}

Proof: Let D be a y(G)-set and e = {u, v} be any edge
of G. Itis clear that y(G—e) > y(G). If {u, viND = {u, v} or
{u, v}N D = @, then D is a dominating set of G —e. If u € D

94144

andv € D (u ¢ Dandv € D), then DU {v} (D U {u}) is
dominating set of G—e. Therefore y (G—e) € {|D|, |D|+1} =
{r(G), y(G)+ 1} U

Now we obtain upper bound for Zagreb indices of unicyclic
and bicyclic graphs with given domination number and max-
imum degree of graph G (denoted by A).

Theorem 3: Let U, be an unicyclic graph with n vertices
and domination number y. Then

Mi(Up) <(n—y)n—y+1)+4y +A)—6.

The bound is sharp.

Proof: Let C be the cycle in U,,. We consider an arbitrary
edge e = uv from C and put T = U, — e. Then using
Lemma 1, we have

M(Up) = M{(T) + (d(u))* — (d(u) — 1)
+@dW)? = (@dv) - 1)?
=M(T)+2du)+dv)—1)
<(—y@M)n—yT)+1)+4yT) -1
+2Q2A —1)
< (—y@M)n—yT)+1)+4y(T)+ A) - 6.

Now there exist two cases.

If y(T) = y(U,) = v, then it is obviously M{(U,) <
(n—y)n—y +1)+4(y +A)—6.

If y(T) = y(U,) + 1, and we replace y(T') with y(U,) +
1 = y + 1 in above equation, then we will have M (U,) <
m—y—-—Dn—y—-1+D+4py+1-D+22A-1)=
n—y)n—y+1)=2m—y)+4y +22A - 1).

Since U, has at least three vertices, then n — y > 2 and
—2(n—1y) < —4. Therefore M{(U,) < (n—y)n—y + 1)+
4(y + A) —6.

For sharpness, if U, is a cycle C3, corona of cycle
C3, or the cycle Cy, then it is obvious the equality holds. [J

By similar discussion and using the same notation as in the
proof of Theorem 3, we can calculate upper bound for second
Zagreb index for unicyclic graphs.

Theorem 4: Let U, be an unicyclic graph with n vertices
and domination number y. Then

My(Up) =2(n—y + Dy =D+ @m—y)n—-2y +1)
+3A% - 2A.
The bound is sharp.
Proof: Let C be the cycle in U,,. We consider an arbitrary

edge e = wv from C and put T = U, — e. Then using
Lemma 1, we have
Y. d

Mr(Up) = Mo(T) +d(w)d(v) +
ZeN(u),z#v

+ ) d

ZeN(v),z#u
<2mn—y(M)+ DT -1
+m—yT)n—-2y(T)+1)
+ A%+ 2A(A = 1.

Now there exist two cases.
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If y(T) = y(U,) = v, then it is obviously M(U,) <
Qn—y+ Dy —D+m—y)n—2y+1)+3A% —2A.

If y(T) = y(Uy) +1 = y + 1, we replace y(T') with
y(Up)+1 = y + 1 in above equation we will have M»(U,,) <
2h—y —1+Dy+1-D+n—y—-Dn—-2y -2+ 1D+
3A2 2A=2n—y+ Dy —D+m—y—Dn—-2y +
D43A2-2A+Qn—4y +2)—2(n—y)—(n—2y — 1) =
2n—y+ Dy —D+@n—y)n—2y +D)+3A2—2A4+3—n <
2n—y+ Dy —D+m—y)n—2y+1)+3A%2 -2A.

For sharpness, if U, is a cycle C3, or the cycle Cy, then it
is obvious the equality holds. 0

As we have already seen, there are sharp bounds for above
results. But we may pose the problem.

Problem: Do there exist any necessary and sufficient con-
ditions such that the equalities in Theorems 3 and 4 hold?

Now we focus on bicyclic graphs B,, and investigate the
first and second Zagreb indices of B,,. First we study the first
Zagreb index.

Theorem 5: Let B, be a bicyclic graph with n vertices and
domination number y. Then

Mi(Bn) = (n—y)n—y + 1)+ 4y +24) = 8.

Proof: Let C, and Cs be two cycles of B,,. Suppose that
D is a dominating set of B, with |[D| = y. Let e = uv and
¢ = xy be two edges of B,, T = (B, — e¢) — ¢’ be a tree,
such that ¢ and ¢’ are edges of C, and Cj, respectively. Then
y(T) e {y,y + 1,y + 2} by 1 and therefor:

Mi(By) < My(T) +4(A% — (A — 1))
< (n—y(T)Nn—y(T)+1)
+4(y(T)— 1D +4R2A - 1)
=n—y@)n—yT)+1)
+4(y(T)+2A) - 8.

Now there are three cases:

If y(T) = y, then it is easy to see that M{(B,) < (n —
Y n—y+1)+4(y +2A) - 8.

Ify(T) =y + 1, then M{(B,) < (n—y — D(n—y —
I+D)4+4y+14+20)—-8=m—y)n—y+1)+4y +
2A) —8 —2(n—y)+4.Since n — y > 2 hence M{(B,) <
m—y)n—y+1D+4y +2A)-8.

Ify(T)=y+2,then M{(By)) <(n—y —2)(n—y —2+
D44y +24+2A)—-8 =(n—y)n—y+1)+4(y +2A)—8—
(n—y—-2)—3(n—y)+8.Since —(n—y —2)—3(n—y)+8 =
—4(n — y)+ 10 and forn > 4 itcan be n — y > 3 hence
MiBy) <(n—y)n—y+1D+4y +24) -8 O

Similarly, we can obtain the upper bound and equality
condition for second Zagreb index of bicyclic graphs.

Theorem 6. Let B, be a bicyclic graph with n vertices and
domination number y. Then

MyBy) <2n—y+ 1)y —D+@n—y)n—-2y+1)
+6A% —4A.
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Proof: Let e = uv and ¢’ = xy be two edges of bicyclic
graph B, with cycles Cand C'. Let T = (B, —e) — €.

Ma(Byp) = Mx(T) + d(wd (v) + d(x)d(y)

+ ) d@+ ) dE

ZEN (u),z7#u ZEN(v),z7#£V

+ Y d@+ Y d@

ZeN(x),z#x ZeN(y),z7£y
=2n—y@+ DHy(T) -1
+(n—yT)Nn-2yT)+1)
+6A% —4A.

Like previous results there are three cases.

If y(T) = y(B,) = y, then it is clear.

It y(T) =y + 1, then Ma(By) <2n—y — 1+ D(y +
l-D4+@m—y—Dn—2y —2+1)+6A% —4A =
2h—y+ Dy —D -2y +2n—y + )+ —y)n-—
2y +1D)—(n—2y —1)=2(n—y)+6A%2 —4A =2(n —
y+Dy—D4+n—y)n—2y+1)+6A>—4A+3—n <
Qn—y+ Dy —D+m—y)n—2y+1)+6A% —4A.

If y(T) =y +2,then Ma(B,) <2(n—y —2+ 1)(y +
2-D+(—y -2 -2y —4+ 1)+ 6A7 —4A =
2n—y—D(y+D+m—y—=2)n—2y —3)+6A% —4A =
2n—y+ Dy —-DH)+m—py)n-2y+1D)+4n—y +
D—4(y+ D) —4n—y)—20n—2y —3)+6A% —4A =
2n—y+D(y—=D+mn—y)n—2y+1)+6A%2—4A+6—2n <
Qn—y+ Dy —D+@m—p)n—2y+1)+6A%2—4A. O

As we have already seen, we didn’t show the sharp bounds
for Theorems 5 and 6.

Problem: Are the bounds of Theorems 5 and 6 sharp?

llIl. ZAGREB INDICES OF TREES, UNICYCLIC AND
BICYCLIC GRAPHS WITH GIVEN TOTAL DOMINATION
In this section we compute upper bound for Zagreb indices of
trees, unicyclic and bicyclic graphs with given total domina-
tion number.

Theorem 7: Let T be a tree with total domination number
;. Then

M((T) < (n—vyi + D =y +2) +4(y; = 2)

This bound is sharp.

Proof: Let vi,va,...,v44+1 be a longest path in T,
where d is a diameter of 7. Also D be a dominating set of
T, where |D| = y. Clearly v and v, are pendent vertices.

By the definition of total domination number, it is obvious
that A < n — y; + 1. We prove the theorem by induction on
n.If n = 2, then T = K> and inequality holds. Now assume
that the theorem holds for a positive integer n — 1, and prove
that the statement remains true when # is replaced by n + 1.
We note that y,(T) — 1 < y(T — v1) < y(T). By induction
hypothesis, we have two cases.

Let y,(T —v1) = y(T) = y;. Then

M(T) = M(T —v1) +2d(v2)
<(m—y)n—yi+D+4@y —2)+2d(v2)
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==y +D—y+2)+4 —2)
+2[d(v2) — (n =y + 1]

Since d(v2) < n — y; + 1, therefore:

Mi(T) =(n—yi+Dn—yr +2)+4(y: —2)

Suppose next that (T — v1) = y(T) — 1. By definition of

domination number , it must be d(v2) = 2. By the induction,
we have:

M\(T) = M\(T —v1) +2d(v2)
Sm—y)n—y +1D)+4y —2)+2d(v)
=m—-y+Dn—y+2)+40—2)
+2d(vp) — 4
=mn—y+Da—-—y+2)+4y—2)

For sharpness, let T be the star graph K . Then (K1 ) = 2
and M1 (K1 ) = n—+n?. In the other side (n+ 1 —y; + D(n+
1=y +2)+ 4 —2) =nn+ 1) = Mi(Ky n) U

Theorem 8: Let T be a tree with total domination number
;. Then

My(T) < 2(n—y: + 2)(vi = D+(n—y: + D(n = 2y +3).

This bound is sharp.

Proof: We prove the theorem by induction on n. It can
be easily verified that the statement of the theorem holds for
n < 5. Without loss of generality we assume n > 6. Let
the result holds for a positive integer n — 1, and show that
the statements remains true when » is replaced by n + 1. Let
Pit1:vi,va, ..., V441 bealongest pathin T (d is a diameter
of T') and let D be a minimum total dominating set of 7. Then
|D| = y; and both vertices v; and vy are pendent.

By the definition of total domination number, it is obvious
that A < n — y; 4+ 1. If v; is not in total dominating set
clearly y;(T —v1) < y,(T). Itis well known that every support
vertex is in any total dominating set. Thus if v; is in a total
dominating set, then v, is in total dominating set too. Now let

(T —vi) = yi(T).
M)T) = My(T —v)+d(v)+ Y dW)

vi#veN (1)
=My(T —v)+ Y d(v)—d(v)
veV(T)
— Z du) +d(v) — 1

vy ¢E(T)
2=y + Dy =D+ —y)(n =2y +2)
+2n—1)—d() —(n—1—d())
+d(vy) — 1
2=y + Dy —2)
+m—y)n =2y +2)+n—-1+d(v)—1
<2n—yi+ Dy =2+ —y)n—2y +2)
+m—D+n—-—y+1—1
=2n—y +2)(v —2)
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+tn—y+ D=2y +3)+m-1)
+n—y) =2y =2)—(n—w)
—(n=2y+2)—-1

S2n—y + 20 —2)
+@m =y + Do =2y +3).

Now next that (T — vi) = y(T) — 1. By the induction
hypothesis, we have:

My(T) = Mx(T — vi) +d(v3) +d(v2)

<2m—y: +2)(yy —3)
+(n—y+ D=2y +4)+d(v3)+2

<2mn—-y+ 2y —2)
+(—y+ D -2y +3)
22—y +2)+ -y + 1)
+m—y+D+2

=2n—y+2( —2)
+ =y + D=2y +3).

For sharpness, let T be the star graph K ,,. Then y,(K7 ,) = 2
and M> (K1 ,) = n?. In the other side 2(n + 1 — y; + 2)(y, —
)+ 41—y + D+ 1—2y + 3) = n?. Therefore the
result holds. U

Problem: Do there exist any necessary and sufficient con-
ditions such that the equalities in Theorems 7 and 8 hold?

We also pose the following Lemma which use in proof the
two next theorems.

Lemma 2: Let G be a graph and D be a total dominating
set with |D| = y;. Then for any edge e in G, if G — e does not
have isolated vertex, then y,(G —e) € {y;, ¥ + 1, s + 2}.

Proof: 1) It is well known that (G — x) < y; for any
vertex x. Let y be a vertex such that y;(G —y) < y; — 2. Now
let u be an adjacent vertex of y. Since u is adjacent to a vertex
in a y:(G — y)-set, then G is totaly dominated by y;(G — x)-set
union with {u}, a contradiction.

2) It is well known that y,(G — e¢) > y;. Let e = uv be an
edge such that y,(G — e) > y; + 3. Then y,(G — e)-set union
with {u, v} is a total dominating set for G with size |[D| — 1,
a contradiction. |

Theorem 9: Let U, be an unicyclic graph with total dom-
ination number y;. Then

()Mi(Up) = (n— vy + D —yi +2) + 4y +4A — 10.

(it) Moy(Up) = 2yi(n —yi +2)+ (n — v + D(n — 2y, +
3)+3A%2 —6A — 4.

Moreover, these bounds are sharp,

Proof: Let e = uv be an edge of the cycle of U, so that
T = U, — e be atree.

(i) Then there exist three cases.

Let y: (U — €) = y:(Uy) = ;. Then

M (Uy) = My(T) + d*(u) — (d(u) — 1)
+d*(v) — (d(v) — 1)?
< (n—y(T) + D(n — y(T) +2)
+4(y(T) — 2) + 2(d(u) + d(v) — 1)
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=m—y+Dn—y+2)+40y —2)
+2dw)y+dv)—1)

sm—y+Dn—yi+2)+4y, -8
+202A - 1)

=m—y+Dn—y+2)+4y, +4A - 10.

Let (U, — €) = y1(Uy) + 1 = y; + 1. Then

My(Uy) = M(T) + d*(u) — (d(u) — 1)*
+d*w) — (dv) — 1)
<m—y@M+Dn—yT)+2)
+4y(T) = 2) +2(dw) +d(v) — 1)
=mn—-y)n—-—y+D+4y -1
+2(dm)+dv)—1)
Sm=-y+D—-—y+2)-20—-y+1)
+4(y — ) +22A - 1)
S—y+D—y+2)+4y, —4-4
+2(2A — 1)(in this case n > 6)
=m—y + D —y +2)+ 4y, +4A — 10.

Let (U, — e) = y4(Uy) + 2 = y; + 2. Then

Mi(Uy) = Mi(T) + d*(w) — (d(w) — 1)
+d*(v) — (d(v) — 1)
<=M+ Dn—y(T)+2)
+4(y(T) —2)+2(d(w) +d(v) — 1)
=m—y—Dn—y)+4)
+2(dw) +d(v) — 1)
s(n-y+D—y+2)+4n
—2n—y+1D
—2(n—y) +22A 1)
sn-y+D—y+2)+4y,-6-4
4+ 2(2A — 1)(in this case n > 8)
<m—-—yi+Dn—y+2)+ 4y +4A - 10.
(i1) For M»(U,), there exist three cases too.
Let T = U, — e where e = uv is an edge of the cycle and

iUy —e) = v (Up) = v1.
Then

My(Uy) = M(T) + d(w)d(v) +

+ Y d@

zeN(u),z#v
< 2(n — yi(T) +2)(y(T) — 2)
+(n— y(T) + D)(n —2y,(T) + 3)
+AT+2AA 1)
=2 -y +2)(yr —2)
+nn—y+ D -2y +3)
+AT+2AA 1)

Y. d@

ZeN(v),z#u
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=2yn—yr+2)—4n—y; +2)
+m—=y 4+ D -2y +3)
+A24+2AA 1)

=2yn—y+2D)+m—y+ D -2y +3)
—4dn—y +1) =4+ A2+ 2A(A - 1)

2pn—y+2)+m -y + D@ -2y +3)
—4A —4+ AT+ 2A(A 1)

=2yn—y+2)+m—y, +Dn—2y +3)
+3A% —6A — 4.

Let y;(Uy —€) = v:(Uy) + 1 = 4 + 1. Then

M>(Uyn) = My(T) + d(w)d (v) + Z d(x)

XeEN(v),x#u
+ ) doy)

YEN (u),y#v
= 2(n — y(T) +2)(y:(T) — 2)
+ =y + Dn—2y(T)+ 3)
+AT+2AA 1)
=2n—y+ Dy —D+®m—y)n—2y+1)
+AZ4+2A0 1)
<2yn—yi+2)+ -y + Dn -2y +3)
—dn—y+ D=+ 1D+ A%+ 240 - 1)
2pn—y+2)+m -y + D —2y +3)
—4A —(n+ 1)+ AT+ 2AA - 1)
<2yn—yi+2)+(n—y + Dn— 2y +3)
+3A2—6A—(n+1)
2ypn—y+2)+m -y, + D -2y +3)
+3A% —6A — 4.

Let y,(Uy — e) = :(Up) + 2 = y; + 2. Then

M>(Uyn) = Mo(T) + d(u)d(v)

+ ) d@+ ) d@

z inN (v),zu ZEN (u),z7#v
= 2(n — y(T) +2)(y:(T) — 2)
+ @ —y(T)+ D(n—2y(T) + 3)
+AZ42AA = 1)
X2pn—y+2)+m -y + D@ -2y +3)
=2y —2m—y— D) —4n—y —1)
+AZ42AA = 1)
=2yn—y +2)+m—y, +Dn—2y +3)
—2n—y—1
—4n—y + D+ AT +2AA - 1)
<2yn—yi+2)+(n—y + Dn—2y +3)
+3A7—6A —2(n—y, — 1)
2ypn—y+2)+m -y, + D@ -2y +3)
+3A% —6A — 4(sincen — y; — 1 > 2).
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For sharpness of these two cases, if U, is the cycle C3, then
the equalities for both (i) and (ii) hold. ]

Theorem 10: Let B, be a bicyclic graph with total domi-
nation number y;. Then

O Mi(Bp) < (n—yr+ Dn— vy +2)+ 4y, + 6A — 12,
and this bound is sharp.

(i) Ma(By) < 2yi(n— v +2)+ (n — yr + D(n — 2y, +
3) + 6A% — 4A.

Proof: Lete € B, be an edge. Then by Lemma 2 y; (B, —
e) € {yi(Bn), vi(Bp) + 1, v1(Bn) + 2}.

Let U, = B, — e, where e = uv be an edge of one of the
cycles C, of B,,. Then M1(B,,) = M1(U,))+2d(u)+2d(v)—2.
Now there exist three cases:

Let y4(B, — e) = y:(B) = ;. Then by Theorem 9

Mi(By) = Mi(Up) +2Q2A — 1))
< (n—=y(Up) + D(n = y1(Up) +2)
+4y,(Uy) +2A — 104+ 2Q2A — 1)
=M=y +Dn—y +2)+4y +6A —12.
Let y;(By — €) = y1(Bn) + 1 = ¥ + 1. Then by Theorem 9

Mi(By) = Mi(Up) +2Q2A — 1))

< m—yUy)+ Dn—y(Uy) +2)
+4y(Uy,) +2A —104+22A — 1)

<m—y)n—yi+DH+4y+ 1)
+2A-10+22A -1)

=m—-y+Do—-—y+2)—4n -y +1)
+4y; +4+6A — 12

S—y+Dn—y+2)+4y
—2A+446A —12

=m—-—y+Dn—y+2)+4y, +6A —12.

Let y;(By — €) = y:(By) + 2 = ¥, + 2. Then by Theorem 9

Mi(By) = Mi(Up) +2Q2A - 1))

< (n—y(Up) + D(n— v(Uy) +2)
+4y:(Up) + 6A — 12

sm—y—Dn—y)+4y+2)
+6A — 12

=n—y+Dn—y+2)-2m—y, -1
—2n—y)+4y, +8+6A —12

S (m—y+ D -y +2)4y
—2A —44+84+6A—12

<m—y+1Dn—yr+2)+4y: + 6A —12.

For sharpness, if B, is the complete graph K4 dropping an
edge K4 — e, then the equality holds.
(i1) For M»(B,,), there exist three cases too.
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Let U, = B,, — e where e = uv is an edge of the cycle and
Vt(By — €) = y1(By) = y;. Then
Y. dE

M>(By) = Ma(Uy) + d(w)d(v) +
z€N (u),z7#u

+ ) d@

ZEN(v),z#£V
<2y (Up)(n — v (Up) +2)
+(n — v (Up) + D)(n — 2y:(Uy) + 3)
+3A2 —2A 4+ A2+ 2A(A - 1)
<2yn—y+2)+(n—y+ Dn—2y +3)
+6A% — 4A.

Let y,(Uy) = y4(B, — e) = y:(By) + 1 = y: 4+ 1. Then
My(By) = My(Up) +dwyd(v) + > d()

ZEN (u),z7#u
+ ) dE
zeN(v),z#£v

< 2y (Up)(n — y1(Uy) + 2)
+ (@ — y(Uyp) + D(n — 2y, (Up) + 3)
+3A2 —2A+ A2 42AA 1)

L2+t D=y + D+ —y)(n =2y + 1)
+6A% —4A

=2yn—yv+2)+ -y +Dn -2y +3)
=2y, —(n =2y + 1)+ 6A% —4A

S2pn—yr+2)+ m— v + D =2y +3)
+6A% — 4A.

Let y:(U,) = y4(By — ) = 1(By) + 2 = ¥ + 2. Then it is
easy to see that
My(B,) <2y(n—yi +2)+(n—y; + D(n =2y +3) +
6A% —4A. O
Problem: Is the bounds of Theorem 10 (ii) sharp?
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