
Received May 17, 2019, accepted July 4, 2019, date of publication July 8, 2019, date of current version July 29, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2927263

A Decomposition-Based Development Method
for Industrial Control Systems
JIAWEN XIONG , JU LI, JIANQI SHI , AND YANHONG HUANG
National Trusted Embedded Software Engineering Technology Research Center, East China Normal University, Shanghai 200062, China

Corresponding author: Jianqi Shi (jqshi@sei.ecnu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61602178, in part by the
Shanghai Science and Technology Committee Rising-Star Program under Grant 18QB1402000, and in part by the
China HGJ Project under Grant 2017ZX01038102-002.

ABSTRACT Industrial control systems (ICSs), especially distributed control systems (DCSs), are usually
composed of several subsystems. Each subsystem is controlled by a control unit such as a programmable
logic controller (PLC) or a micro-controller and collaborates with other subsystems via the field bus,
Ethernet, or other communication links. In the traditional development process, engineers program for each
PLC separately and skillfully orchestrate the collaboration among subsystems, which is difficult and error-
prone. The larger the scale of the ICS is, the higher the complexity of the collaboration is, and the more error-
prone the development process is. In this paper, we propose a decomposition-based development method for
distributed ICSs to reduce the difficulty of developing distributed ICSs whose subsystems cooperate with
each other. First, we present a general event-triggered specification language named Industrial Modeling
Collaboration Language (IMCL) for modeling ICSs; the language allows describing system functions and
physical resources in one unified model. Second, we provide an approach for decomposing the complex
systemmodel intomultiple fine-grained and interactive subsystemmodels. Specifically, under given resource
constraints, we propose an automatic decomposition and collaboration algorithm based on the IMCL
model to meet the original functional requirements. In this way, engineers can develop distributed control
systems without considering the underlying complex interaction mechanisms. We present a case study to
demonstrate it.

INDEX TERMS Automatic decomposition, distributed control system, industrial control system, model
collaboration, model decomposition, programmable logic controller.

I. INTRODUCTION
Industrial control systems (ICSs) are the systems used for
industrial process control; the systems can range from a few
modular panel-mounted controllers to larger interconnected
and interactive distributed control systems (DCSs). The larger
ICSs usually consist of supervisory Control and Data Acqui-
sition (SCADA) systems, DCSs, and programmable logic
controllers (PLCs), etc. Such systems are extensively used
in industries such as chemical processing, pulp and paper
manufacture, power generation, oil and gas processing and
telecommunications. As shown in Fig.1, in a industrial con-
trol application, there are massive sensors monitoring various
control process variables (PVs) and transmitters transferring
data to a local controller such as a PLC or an embedded

The associate editor coordinating the review of this manuscript and
approving it for publication was Tao Zhang.

micro-controller via some type of industrial field bus. By
comparing these data with desired set points (SPs), the local
controller derives command functions which are used to con-
trol a process through the final control elements (FCEs), such
as control valves. Several local controllers usually collaborate
with each other as aDCS to achieve advanced process control.
Hence, an actual ICS is similar to a special distributed com-
puter system that consists of a number of Computing Units
(CUs) [1]. However, every CU has its own capability limits
to handle tasks, schedule physical resources and collaborate
with other CUs. For example, a controller may be not able
to complete a certain calculation task within a specified time
alone or some devices connected to a CU cannot be directly
accessed by another CU, but are accessed through commu-
nication between these two CUs. Moreover, the more CUs
and resources exist, the more complex the communication
process is. Therefore, it is challenge to design a distributed

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 93161

https://orcid.org/0000-0003-2341-0259
https://orcid.org/0000-0002-8993-7603
https://orcid.org/0000-0003-2102-4303

J. Xiong et al.: Decomposition-Based Development Method for ICSs

FIGURE 1. An example of an industrial control system.

system with a certain number of controllers with different
capabilities and different resources. In the traditional devel-
opment process, developers usually use a top-down method
to design a large system in a unified manner, but separately
implement the subsystems. In order to ensure the functional
consistency, developers have to design an elaborate com-
munication mechanism to schedule different controllers, and
they have to perform elaborate tests or adopt formal verifica-
tion techniques to ensure the functional correctness. As ICSs
have become more feature-rich and more intelligent, a grow-
ing number of physical resources exist in a system and there
are certainly more and more complicated communication
processes, implying that the industrial control processes must
be more complex than before. All of this complicates design
and development of such systems and the costs increase.

To overcome these problems of increasing complexity,
we propose a decomposition-based development method,
which reduces the complexity of a system by decomposing
the large and complex system into several subsystems that
are simpler and easier to control. In this way, a complex
functional model can be automatically replaced by a series
of models of subsystems after decomposition. An actual ICS
can be treated as a complex model. Every CU in a system
is responsible for a portion of the system functions and can
be considered as the corresponding model of a subsystem.
If one task is too complex to be handled by one CU, it will

be decomposed into multiple tasks handled by multiple CUs
collaborating with each other. Moreover, since most CUs
have limits in terms of physical resource scheduling, the com-
munication used for indirect access among CUs will be auto-
matically generated. Many researchers [2]–[4] have made
great achievements regarding collaboration of ICSs. A lot of
researchers have focused on the intelligent industrial ecosys-
tem [5], [6], which handle the collection of massive data from
the various devices by dynamical collaboration. However,
they did not take into consideration the complex physical
resources for the whole collaboration process. For example,
there are three physical resources (res1, res2, res3) in one
system and all of those resources should work together; there
are two CUs (CU1, CU2), where CU1 is limited to schedule
res1 and res2, and CU2 is limited to schedule res1 and res3.
Neither of the two CUs can independently carry on the system
functions. Therefore, it is necessary to find the best solution
to ensure that the two CUs collaborate with each other to
implement the system requirements.

In our research, we introduce an event-triggered language
called Industrial Modeling Collaboration Language (IMCL)
which is a platform-independent specification language for
ICSs. With this language, we can describe the system func-
tions and the physical resources in one unified model.
Moreover, we propose the decomposition algorithms that
can decompose the complex system model into a number

93162 VOLUME 7, 2019

J. Xiong et al.: Decomposition-Based Development Method for ICSs

of subsystems that correspond to every CU with constraints
of resources. This algorithm includes the program analy-
sis of control flow and data flow and the physical resource
allocation under specific resource constraints. To maintain a
functional consistency between the subsystems and the orig-
inal system model, we present a collaboration algorithm to
automatically generate interactions among these subsystems.
In addition, we present an optimization method to obtain
the optimal solution for system collaboration. This approach
allows us to design the whole system in a unified form and
decompose the system model automatically, which facilitates
the design and development for large-scale industrial DCSs.
Finally, a case study is presented to illustrate the utility of the
proposed approach.

A. OUTLINE
The remainder of this paper is organized as follows. In
Section 2, we discuss the related work. In Section 3,
we introduce the industrial Modeling Collaboration Lan-
guage (IMCL) for modeling ICSs. In Section 4, we proposes
the approach for decomposition and collaboration as well as
the corresponding algorithms. Section 5 provides a case study
for a product inspection and sorting system. Section 6 is the
conclusion.
We note that a shorter conference version (4 pages) of

this paper appeared in ICECCS 2017. Our initial conference
paper did not give the specific details of the IMCL and the
algorithms for model decomposition and collaboration. This
manuscript provides them.

II. RELATED WORK
The problem of the system decomposition and collaboration
has been much discussed in the academic community during
the past decades. The industry has been experimenting with
different methods and new technologies to achieve better
solutions for specific industrial environments [7]. In [8], it is
mentioned that with the rapid advancement of information
and communication technologies, particularly the Internet
and Web-based technologies during the past years, various
systems integration and collaboration technologies have been
developed and deployed to different application domains
including architecture, engineering, construction, and facil-
ities management.

In particular, there are some approaches in the field of
distributed systems and web programming that are closely
related. Neubauer and Thiemann [9] proposed a multi-tier
calculus and splitting transformation for constructing multi-
tier applications in the sequential setting. This work is very
similar to our work. However, each operation used in the
sequential program needs to be initially annotated whether
the operation is location independent. In ourwork, this kind of
information can be obtained through automatic dependence
analysis. In [10], a framework for conversion of sequential
code into distributed program code is described. Moreover,
a specific hierarchical clustering algorithm is applied to
obtain the optimal distribution of the program code. The key

is that this framework is used to harness the processing power
of idle computers in networks by automatically distribut-
ing the user application across available resources. In other
words, these computing devices are equivalent. This approach
is close to automatic program parallelization. In our work,
we need to consider specific resource constraints which make
our computing units different. It makes our work suitable
for the design of control system composed of heterogeneous
devices. Reference [11] presented a high level programming
language named ML5 for spatially distributed computing,
which uses a type system based on modal logic to statically
exclude program that used mobile resources unsafely and
allows an entire distributed application to be developed and
reasoned about as a unified program. However, this approach
requires the corresponding compiler and runtime to support.
In particular, the language is hard for industrial control system
engineers to use. Conversely, IMCL is rather close to the
program model for PLC. Serrano and Berry [12] introduced
a programming language named HOP, which incorporates all
the required Web-related features into a single language with
a single homogeneous development and execution platform.
And Links from the University of Edinburgh [13] is similar.
Their goal is to make the web application development more
coherent. However, in our work, on the one hand, we use
a unified language to specify the application for industrial
controllers; on the other hand, we focus on the automatic task
assignment under some constraints.

As for specification languages, the Event-B [14] and the
timed automata [15], [16] can be used to model the ICSs, and
both are suitable for property verification of safety-critical
systems. Especially, the Event-B has robust and commer-
cially available tool support for specification, design, proof,
and code generation. However, IMCL is designed as a novel
language for the automatic decomposition of complex sys-
tems. After describing one complex system with the IMCL,
developers or researchers can use the decomposition algo-
rithm to automatically break a complex system into multiple
smaller and simpler sub-systems. Importantly, these sub-
systems will hold the same function as the original system by
collaborating based on a specific communicationmechanism.

Program slicing is closely related to the decomposition
approach in our work. Weiser [17] proposed the program
slicing method, which slices a program based on the data-
flow and control-flow analysis. Ferrante et al. [18], present
the intermediate program representation called the program
dependence graph (PDG). Larsen and Harrold [19] presented
the construction of system dependence graphs for object-
oriented software and described the computation of slices on
their system dependence graphs. However, our language is
task-oriented and event-triggered. Gauthier et al. [20] and
Cheng [21] proved the decomposition theorems for linear
programs and the approach of slicing concurrent programs,
respectively. References [17]–[21] are influential regarding
the basic principle of our decomposition algorithms.

In [4] and [22]–[24], many researchers have focused on
multi-agent systems and have made great achievements.

VOLUME 7, 2019 93163

J. Xiong et al.: Decomposition-Based Development Method for ICSs

Zou et al. [25] investigated the problem of event-triggered
distributed predictive control for multi-agent systems.
Olfati-Saber et al. [26] provided a theoretical framework for
the analysis of consensus algorithms for the decomposition
of multi-agent network systems with an emphasis on the role
of directed information flow and robustness to changes in the
network. He et al. [27] analyzed the decomposition method
for the industrial power demand. De Gea Fernández et al. [6]
introduced an intelligent and intuitive dual-arm robotic sys-
tem for industrial human-robot collaboration. Hsieh [28]
proposed a collaboration mechanism of resource dona-
tion, including unilateral resource donation and reciprocal
resource donation. In our study, the collaboration algorithm
is based on the premise of resource constraints.

Henzinger et al. presented a time-triggered language called
Giotto [3], which provides an abstract programmer’s model
for the implementation of an embedded control system
with hard real-time constraints. Giotto can be annotated
with platform constraints such as task-to-host mappings and
task and communication schedules. Different from Giotto,
our research focuses on describing the system with event
triggers. The NASA has released a toolkit called Auto-
Bayes [29] that can decompose and converts a system model
from a data analysis perspective. Valerdi et al. [30] pro-
posed updates to requirements decomposition guidelines
that will help generate the number of system requirements.
Herberg and Lindemann [31] demonstrated the need for
enhanced support for subsystem development and evaluation
in large engineering systems. In [2], it is described how to
transform one system into multi-subsystems using a criteria
catalog and systematic requirement refinement; this article
inspired our current research. In this research, we focus on the
constraints of resources, which is the basis for decomposing
one IMCL system. Chen et al. [5] introduced a framework
and elaborated on research challenges about the industrial
internet of things-based collaborative sensing intelligence.
The authors believe that an intelligent industrial ecosystem
enables the collection of massive data from the various
devices that are dynamically collaborating with humans. In
our work, we focus on the collaboration between CUs in an
ICS with some resource constraints, which is different from
the previous existing research.

III. INDUSTRIAL MODELLING COLLABORATION
LANGUAGE (IMCL)
In an ICS, one task of a control unit usually consists of three
steps: input, computing, and output, and each task is executed
cyclically. In the input step, the control unit reads the values
of the sensors. In the computing step, the control unit per-
forms some computations such as numerical calculations and
conditional judgment, etc. In the output steps, the control unit
modifies the values of the variables that are mapped to some
output points or control actuators to conduct certain mechan-
ical actions by providing output signals to driver devices.
Therefore, a task of a control unit can be regarded as an event
trigger that waits for an event and performs certain actions

when the event occurs. In particular, periodic tasks can be
considered as being triggered by time events. Therefore,
we proposed the industrial modeling collaboration language
(IMCL) in an event-trigger format. According to IEC61131-3
(the open international standard IEC61131 for PLC), a PLC
have a configuration; a configuration consists of several
resources (like CPUs); each resource consists of multiple
tasks (like processes); each task is bound with a program;
each task can be executed once, on a timer or on an event.
Logically, all tasks run concurrently. However, if the execu-
tion time is longer than the cycle or an event occurs during the
execution of a piece of code that is managing a previous event,
a new task instance is created but waits in a waiting queue
to schedule. It is a task management problem. In this paper,
we assume all event triggers run concurrently. Here, we will
introduce the abstract syntax of the IMCL. The concrete
syntax is provided in the Appendix A.

A. THE SYNTAX OF IMCL
The abstract syntax of the IMCL is defined as follows:

Aexp :: = val | x | (A) | A0 + A1 | A0 − A1 | A0 ∗ A1
| A0/A1

Bexp :: = > | ⊥ | A0 = A1 | A0 6= A1 | A0 > A1 | A0 < A1
Cexp :: = channel!m | channel?m | sync.n

Eexp :: = x := A | C | a� Dev | a� Dev | E0;E1
| E0 G B F E1 | B ∗ E

Texp :: = trigger B � E | trigger channel?m � E

Aexp represents arithmetic expressions where val is a value,
x is a variable, and A0, A1 are instances of Aexp. Bexp rep-
resents Boolean expressions, where > and ⊥ indicate the
true and false respectively. Next, we introduce certain special
expressions in the IMCL. Cexp represents the set of com-
munication expressions. The channel!m refers to sending a
value m via a channel. The channel?m refers to receiving a
value m from a channel. The sync.n refers to obtaining the
synchronous data n. Eexp is the execution expression. The
conditional choice E0 G B F E1 indicates that if B is true
then E0, else E1. The B ∗E indicates that E will iterates until
B is false. Specifically, a � Dev denotes that the system
transmits the value a to a physical deviceDev, whileDev� a
is obtaining a from Dev. Texp represents the event-triggered
expressions. The trigger B � E denotes an event E occurring
when the event condition B is true. The trigger channel?m �
Eexp indicates that the event E will begin to execute when
receiving a m from the channel.

B. IMCL MODEL FOR INDUSTRIAL CONTROL SYSTEM
The modeling process focuses on system functions and fea-
tures and includes the following two steps:

1) MODELLING THE PHYSICAL RESOURCES
Physical resources includes sensors, actuators, and other
read-write devices. The representations of the physical

93164 VOLUME 7, 2019

J. Xiong et al.: Decomposition-Based Development Method for ICSs

resources depend on the industrial environment. Consid-
ering their effects on the whole system, we describe all
the resources as variables to unifying the definition of the
resources.

2) MODELLING THE SYSTEM
By observing the behavior, a system integrates numerical
calculations, read-write operations, and other actions. We
model them as execution expressions. Multiple execution
expressions in one specific order can comprise one trigger
for an event marked as T .

An IMCL model consists of multiple concurrent event
triggers, that are triggered only when the event condition is
satisfied. Let FG be the concurrent operation of two events
s.t. T1 FG T2. Then, the IMCL model Prog can be defined as
follows:

Prog =
n
FG
i=1

Ti, n ∈ N+

Example 1. There is an example of ICS: the data col-
lector collects information and saves it to the database.
When the temperature sensor detects the temperature exceeds
200 degrees, the system turns on the fan to cool the system.
The IMCL model of this system is shown as follows:

We abstract the physical resources in the system as vari-
ables. The T1 and T2 are two event triggers representing
different process control functions. Therefore, the system
model can be described as Prog = T1 FG T2.

IV. APPROACH FOR DECOMPOSITION AND
COLLABORATION
For a given IMCL program Progori, we obtain an abstract
syntax tree (AST) which contains details of its statements
by parsing it using an open source grammar parser tool,
ANTLR [32]. Subsequently, we obtain the corresponding
control flow graph (CFG) and data flow graph (DFG) from
the AST. A CFG = 〈N ,E〉 is a directed graph, where N is a
set of nodes, and E ⊆ N×N is the set of edges whereasDFG
is a data-flow digraph structure. If (n1, n2) ∈ E , then n2 is the
immediate successor of n1.
During the construction of the CFG, we obtain the infor-

mation of each node. For each node n, we have the following

three sets: REF(n), DEF(n) and INFL(n). REF(n) is the set of
variables whose values are used at n, and DEF(n) is the set
of variables whose values are changed at n. INFL(n) is the
set of nodes transitively control dependent on n, and it is not
empty only if n has more than one immediate successor (for
example, n is a branch statement or a loop node).

There is a post data-dependence (DDpost) set of nodes for
every node in the DFG, which is described as follows:

DDpost (n) = { m | m ∈ N ∧ REF(m) ∩ DEF(n) 6= ∅ }

TheDDpost (n) denotes those nodes which are data-dependent
on node n.

SDG: The system dependence graph (SDG) is a graphic
representation of the system model with data dependence
and control dependence; it is constructed based on the
CFG and DFG:

SDG := CFG⊕
N⋃
i=1

DDpost (i)

which denotes that the SDG is a combination of the CFG and
all post data-dependence.

There are five basic terms for the approach:
• Original Model: The original model is an IMCL model
Progori given at the start, which is the description of
an ICS.

• Statement: The statement is the minimum computa-
tional task level of the program. Therefore, the Progori
can be treated as a set of statements.

• Resource Constraints: They describe the constraints
of the physical resources that are limited available for
specific CUs.

• Decomposition Models: These are multiple models
where all of the statements in Original Model are
decomposed into for the specified CU . In other words,
the Progori with the resource constraints is transformed
to a set of Progcu for every CU.

• Collaboration Model: This is a set of the Progcu inter-
acting with each other through communication and syn-
chronization.

Figure 2 shows an overview of the approach for decom-
position and collaboration that we have implemented in our
tool. For an industrial control system, we model the physical
resources and the system functions in one Original Model
(Progori). Based on the SDG of the Progori, we implement the
decomposition and collaboration algorithms to decompose
the Original Model into the Collaboration Model with the
resource constraints.

A. DECOMPOSITION ALGORITHMS
We can determine the dependence of the control flow and
data flow to keep the constancy of the Original Model and
Decomposition Model only by analyzing SDG. Therefore,
the SDG analysis is a very important part of the decompo-
sition algorithms.

VOLUME 7, 2019 93165

J. Xiong et al.: Decomposition-Based Development Method for ICSs

FIGURE 2. Overview of the approach for decomposition and collaboration.

1) ANALYSIS OF SDG
As mentioned before, SDG is the original model got from
AST. We show the principal conversion procedure from AST
to SDG.

In Algorithm 1, there are one input AST and one output
SDG in this algorithm. Let V be the set of variables in a
program. For each v ∈ V , 1v is the set of statements lately
assigned before each statement is reached, and the 1′v is the
new set after the assignment. Specifically, for two statements
m and n, which have the same control-dependence statement,
if m is a condition of the loop statement, then for a variable
var ∈ V , the 1′v after reaching m is through all the relevant
control statements with m rather than directly as the 1v of n.
Therefore, it needs to recursively solve the INFL(m) with m
before n. Example 2 is used to explain this special situation.
Example 2. Figure 3 shows the IMCL program Progori

and the SDG obtained by Algorithm 1. The statement
S5(IF(x<2)) and S10(y:=y∗2) in the figure are influenced
by statement S4(WHILE(y<100)) because the variable y in
S10 depends on S6 and S8. Therefore, when calculating the
relationship between the variable y and the S10, it is not
necessary to directly depend on the dependence of S5 and
S10, but rather it is required to recursively solve the data
change dependence of S5 and its substructure. In the S5,
1y = {3, 10}, 1′y = {3, 10}, but in S10, 1y = {6, 8} and
1′y = {10}.

FIGURE 3. An example of a simple SDG of Progori .

2) DECOMPOSITION WITH RESOURCE CONSTRAINTS
In this part, we decompose the Original Model into Decom-
positionModel with resource constraints.DDpre, the pre data-
dependence for each statement, can be obtained from the
corresponding DDpost . The definition is as follows:

DDpre(n) = { m | m ∈ N ∧ n ∈ DDpost (m) }

where m is a statement that is data-dependent on the state-
ment in DDpre(m).
The Algorithm 2 presents the principal procedures of the

decomposition algorithm. It includes two inputs:
i. SDG: The system dependence graph ofOriginal Model

where every node in the tree is a statement with
REF(node), DEF(node), and INFL(node).

ii. resConst: A mapping of the resource constraints to
CUs.

The output of this algorithm is decompModel, which is a
Decomposition Model with all statements labeled by the
specified CUs.

The core of this Algorithm 2 comprises three steps:
i. Firstly, if one statement is associated with one resource,

we label the statement with the CU corresponding to
the constraint of this resource.

ii. Secondly, for every statement n labeled with CU,
we will label the same CU for every statement in
DDpre(n) that has not been labeled; this ensures that the
influence on the decomposition for every resource is as
fair as possible.

iii. After the two preceding steps, there are still some
unlabeled statements, then we label them with the CU
in the forward control-dependence statement.
This indicates that if there are statements n and m in
INFL(n), then the m will be labeled with CU in n.

The summary of algorithm 2 is that it requiresO(|N ||R| +
2|N ||Dep|) time, andO(|N |+ |R|+ |DDpre|+ |INFL|) space.

B. COLLABORATION ALGORITHM
In this section, we describe the collaboration algorithm. The
vital part of this algorithm is that the optimized solution for
collaboration can be obtained after an evaluation. The key to
ensuring the reliability of Original Model and Collaboration

93166 VOLUME 7, 2019

J. Xiong et al.: Decomposition-Based Development Method for ICSs

Algorithm 1 Converting AST to Generated SDG
Input: (1) Abstract syntax tree of Original Model, AST;

Output: (2) System dependence graph, SDG;

1 CFG←↩ANTLR AST;
2 for all var ∈ V do
3 Set〈Int 〉 1v := ∅;
4 Int index := 0;
5 analyzeDD(1v, index, var);
6 end
7 SDG := CFG ⊕

⋃N
i=1 DDpost (i);

8 function analyzeDD(Set〈Int 〉 1v, Int index, Var
var)

9 for all m ∈ INFL(index) do
10 if Exp(m) ∈ {’IF’, ’WHILE’} then
11 Set〈Int 〉 1′v := ∅;
12 for all j ∈ INFL(m) do
13 for all i ∈ 1v do
14 if REF(i) ∩ {var} 6= ∅ then
15 DDpost (i) := DDpost (i) ∪ {j};
16 end
17 end
18 1′v := 1′v ∪ analyzeDD(1v, j, var);
19 end
20 1v := 1′v;
21 else
22 Set〈Int 〉 1′v := ∅;
23 for all i ∈ 1v do
24 if REF(m) ∩ {var} 6= ∅ then
25 DDpost (i) := DDpost (i) ∪ {m};
26 end
27 if DEF(m) ∩ {var} 6= ∅ then
28 1′v := 1′v ∪ {m};
29 else
30 1′v := 1′v ∪ {i};
31 end
32 end
33 1v := 1′v;
34 end
35 end
36 return 1v;

Model is the communication during collaboration, which is
based on the SDG analysis.

1) COMMUNICATION OF COLLABORATION
We abstract the communication protocols between multiple
models. The IMCL unifies the communication and data syn-
chronous among multiple models. There are three specific
communication methods as follows:
• CHANNEL.CD!x and CHANNEL.CD?x: the symbol
CHANNEL.CD is used for the control message and
applied to the communication with control-dependence
in multiple CUs or multiple internal event triggers in

Algorithm 2 Decompose Model With the Resource
Constraints
Input: (1) The SDG of system;

(2) The Resource Constraint, resConst;

Output: (1) The decompModel that all statements are
labeled with specified CU ;

1 Set〈Resource〉 R = {res | res ∈ resMap.keySet() };
2 for all n ∈ N do
3 decompModel.set(n, ∅);
4 for all res ∈ R do
5 if res ∈ REF(n) || res ∈ DEF(n) then
6 decompModel.set(n, resmap.get(res));
7 end
8 end
9 end

10 for all n ∈ N do
11 expandLabels(n, DDpre(n));
12 end
13 for all n ∈ N do
14 expandLabels(n, INFL(n));
15 end
16 function expandLabels(Int current, Set〈Int 〉 Dep)
17 for all m ∈ Dep do
18 if decompModel.get(m) = ∅ then
19 decompModel.set(m, resmap.get(m));
20 end
21 end

a single CU. CHANNEL.CD!x refers to transmitting a
control message x via the channel; CHANNEL.CD?x
denotes receiving the control message x via the channel.

• CHANNEL.DD!x:data and CHANNEL.DD?x:data:
CHANNEL.DD is used for data message and is applied
to the communication with data-dependence in multi-
ple CUs or multiple internal triggers in a single CU.
CHANNEL.DD!x:data refers to transmitting a data mes-
sage x with data via the channel;CHANNEL.DD?x:data
denotes receiving message x to data via the channel.

• SYNC.DATA:data: the SYNC.DATA is used to syn-
chronize the data in different event triggers. Both
CHANEL.DD and SYNC.DATA can be used to transfer
data; however, unlike CHANEL.DD, SYNC.DATA does
not have any dependence on the data in the Original
Model.

2) COLLABORATION OF DECOMPOSED MODELS
We will review some definitions. An Original Model is
an IMCL program consisting of multiple event triggers.
The program Progcu of each CU is obtained based on the
decompModel after the process of decomposition.

The Algorithm 3 presents the main procedure of the
collaboration algorithm. It has three inputs:

VOLUME 7, 2019 93167

J. Xiong et al.: Decomposition-Based Development Method for ICSs

Algorithm 3 Collaboration of models.
Input: (1) Original model Progori and decompModel;

(2)Progcu for every CU.

Output: (1) Prog′cu with CHANNEL.CD,CHANNEL.DD
and SYND.DATA ;

1 for ∀ n, m ∈ N, n 6= m do
2 if m ∈ INFL(n) then
3 if Tmcu 6= T

n
cu then

4 CHANNEL.CD 〈 Progcu(n), Progcu(m) 〉 ;
5 end
6 end
7 if m ∈ DDpost (n) then
8 if decompModel.get(m) = decompModel.get(n)

then
9 if Tmcu 6= T

n
cu then

10 collaborateStatements (n, m);
11 end
12 else
13 collaborateStatements (n, m);
14 end
15 end
16 end
17 function collaborateStatements(Statement n,
Statement m)

18 if Tmori = T
n
ori then

19 if Exp(n) ∈ {’IF’, ’WHILE’} then
20 SYNC.DATA 〈 Progcu(n), Progcu(m) 〉 ;
21 else
22 CHANNEL.DD 〈 Progcu(n), Progcu(m) 〉 ;
23 end
24 else
25 SYNC.DATA 〈 Progcu(n), Progcu(m) 〉 ;
26 end

i. Progori: An Original model is a set of event-
triggers or a set of statements; T iori is one event-trigger
in Progori that contains the statement i.

ii. decompModel: this is obtained from the Algorithm 2;
iii. The exact number of Progcu: the Progcu(n) denotes the

statement n in a Progcu; T icu is the event trigger in one
Progcu where the statement i is.

The output is the actual number of Prog′cus with
CHANNEL.CD, CHANNEL.DD, and SYND.DATA.

First, we should consider the control-dependence of the
statements in CUs. For any two different statements n and m
where m is control-dependent on n in Progori, if the two
different statements are in different event triggers of Progcus,
we should implement the CHANNEL.CD to collaborate the
two statements. The CHANNEL.CD〈n, m〉 indicates that the
CU containing n sends a CHANNEL.CD!x message after
executing the n, and the CU containing m will not execute
the m until receiving the message CHANNEL.CD?x.

Second, we will consider the data-dependence of the state-
ments in the CUs. For any two different statements n and m
where the m is data-dependent on n in Progori,
if both n and m are in the same CU but in differ-
ent event triggers, then we handle the collaboration like
collaborateStatements. The collaborateStatements describes
the process in which if the n is a structure containing
more than one immediate successor, then we should imple-
ment the CHANNEL.DD to collaborate the two statements.
Otherwise, we implement the SYNC.DATA to collaborate
these statements. If both n andm are in different CUs, we will
handle the collaboration in the samemanner as in the function
collaborateStatements. The CHANNEL.DD 〈n, m〉 indicates
that the CU containing n sends a CHANNEL.CD!x:data
message with data after executing the n, and the CU contain-
ing m will not execute the m until it receives the message
CHANNEL.CD?x:data with data. The SYNC.DATA〈n, m〉
indicates that the CU containing m synchronize the variable
rewrite by n at any time.
The summary of algorithm 3 is that it requires O(|N |2|T |)

time, and O(2|N | + |Tcu| + |Tori|) space.

C. OPTIMIZATION OF COLLABORATION MODEL
During the collaboration process, it is important to analyze
and evaluate some of the characteristics of the collaboration
models to get the optimal solution. For a collaboration model,
it is necessary and efficient to reduce the number of com-
munications between the CUs as much as possible. Because
some resources can be allocated to different CUs, there is a
need to evaluate the different results to determine the best
collaboration model.

1) RESOURCE ALLOCATION
Some resources in the system model can be scheduled by
a number of different CUs. Therefore, different allocations
of those resources will cause different resource constraints
and will contribute to different collaboration models. For
example, there are four resources (res1, res2, res3, res4) and
the relationship of the CUs mapping resources is:

Acu : { res1, res2, res4 }

Bcu : { res1, res3, res4 }

They can be combined into the following four different
resource constraints because the res1 and res4 can be allo-
cated to either Acu or Bcu:

Allocation 1 :

{res1 : Acu, res2 : Acu, res3 : Bcu, res4 : Acu}

Allocation 2 :

{res1 : Acu, res2 : Acu, res3 : Bcu, res4 : Bcu}

Allocation 3 :

{res1 : Bcu, res2 : Acu, res3 : Bcu, res4 : Acu}

Allocation 4 :

{res1 : Bcu, res2 : Acu, res3 : Bcu, res4 : Bcu}

93168 VOLUME 7, 2019

J. Xiong et al.: Decomposition-Based Development Method for ICSs

2) OPTIMIZATION OF THE COLLABORATION MODEL
In this study, we suggest an evaluation strategy to help
researchers and developers to find the relatively optimal col-
laborationmodel. The evaluation is presented in the following
equation:

Eval(Soli) =
CDi − CDmin
CDmax − CDmin

+
DDi − DDmin
DDmax − DDmin

+
SYNCi − SYNCmin
SYNCmax − SYNCmin

The proposed evaluation equation is based on the normal-
ization. We use the equation to compare the different effects
of the results. It includes three parts: control dependence, data
dependence and synchronization, and we define CD, DD and
SYNC as the number of CHANNEL.CD, CHANNEL.DD,
and SYNC.DATA, respectively, in one collaboration solution.

For the example of the part of CHANNEL.CD, the min-
imum data of the serial CDi is identified as CDmin and the
maximum one is identified as CDmax by the result of all solu-
tion statistics. Furthermore, it is a common way to normalize
the data by the construct of normalization to map every value
of CDi to a fixed range between 0 and 1 for scaling purposes.

The expressions of CHANNEL.DD and SYNC.DATA
expression are similar to the CHANNEL.CD except that the
object of the control dependence is replaced by the data
dependence or synchronization. The last step is to sum the
value of the three parts, and the smaller the value of Eval(Soli)
is, the better the solution is. Therefore, the optimization func-
tion can be written as follows:

min
i∈S

Eval(Soli)

where S is the set of all possible solutions. This func-
tion can help us find the solution with relatively minimum
dependencies. Here, the solution Sj is optimal if and only if
Eval(Solj) == mini∈S Eval(Soli).
In practice, however, different evaluation strategies should

be selected for different design goals. Moreover, there may
be some constraints would make some solutions infeasible.
For example, under the limitations of existing communication
technologies, some real-time constraints may not be satisfied
after decomposition. To overcome this kind of problems,
some auxiliary constraints have to be supplemented into the
decomposition and the collaboration algorithm.

V. CASE STUDY
An example of a real industrial product inspection and sorting
system is used to demonstrate the approach.

A. PRODUCT INSPECTION AND SORTING SYSTEM
The product inspection and sorting system is used for product
quality inspection and automatic sorting. A path delivery
facility delivers products to two conveyors in turns. Both the
two conveyors have a read device and a write device. The
read device obtains some information from a product to check
the quality of the product, and then the write device prints a

detection result mark on the product. Then the sorting section
scans the detecting mark on the product and decides to sort
the product into the qualified area or the disqualified area.

B. IMPLEMENT OF SYSTEM MODEL
As introduced above, we will describe the modeling of the
system using IMCL. The implementation of the systemmodel
includes three parts:

(1) Unifying the resources. SENSOR and DEVICE are
the two types of resources that the system uses to get physical
information and to control.

SENSOR :{ pathSensor, sensor1, sensor2, sortSensor };

DEVICE :{ PATHSET, SREAD1, SWRITE1, SREAD2,

SWRITE2, SCANNER, SORTSET };

(2) Modeling the system. Figure 4 shows the model of the
product inspection and sorting system. The model contains
five event triggers. The first one is triggered when pathSensor
is true, and PATHSET will take a product to the two convey-
ors. The second one is triggered when the sensor1 is true;
Then the SREAD1 reads the information from the product to
check whether it is qualified or not, and then the SWRITE1
marks the checking result on the product and so does the
third event trigger. The fourth one indicates that when the
pathSensor is true, the sorting device will determine the
destination of the product based on the mark on the product
scanned by the SCANNER. The fifth one indicates that the
system checks the system after the picked becomes true.

(3) Defining resource constraints. The resources con-
straints describe the abilities of every CU. For example,
the computing unit Bcu can only control two resources path-
Sensor and PATHSET in this system model.

constraint : Acu {SCANNER, sortSensor, SWRITE1,

SWRITE2 };

constraint : Bcu {pathSensor, PATHSET };

constraint : Ccu {sensor1, sensor2, SREAD2,

PATHSET };

constraint : Dcu {SREAD1, SWRITE1, SREAD2,

SORTSET };

C. DECOMPOSITION AND COLLABORATION
Based on the implementation of the model, a collabora-
tion model is obtained after decomposing the model with
the resource constraints. The whole process consists of the
resource allocation, decomposition of the model, and the
collaboration with evaluation.

(1) Resource allocation: SREAD2, SWRITE1, and PATH-
SET are all resource constraints that they can be used by
more than one CU ; eight solutions satisfying these resource
constraints are generated, and are listed in Table 1.

(2) Optimization of Decomposition and Collaboration:
There are eight results shown in Table 2 corresponding to the
eight solutions in Table 1.

VOLUME 7, 2019 93169

J. Xiong et al.: Decomposition-Based Development Method for ICSs

FIGURE 4. Modeling the product inspection and sorting using IMCL.

TABLE 1. Solutions that CUs are allocated with resources.

As shown in Fig.4, there are 27 statements in the model
and every statement is the minimum computational task we
want to decompose. Table 1 shows the eight solutions to
decompose the model. In every solution, each CU has a set
of statements, which means that the CU can take the mini-
mum computational tasks in the original model. For example,
in Sol 1, the Ccu decomposed with the set {7, 11, 12} means
that theCcu are labeled to statement 7, 11 and 12 in the sorting
system model. The Collaborations in this table have three
sub-parts: the CD shows the number of control dependencies
in the collaborative system; the DD represents the number of
data dependence in the collaborative system; the SYNC is the
number of data synchronizations in the collaborative system.
The Evals is the evaluation of the collaboration for every
solution and it is the valuation standard of various solutions.

The results in Table 2 indicates that the Sol 3 is the optimal
solution to decompose and collaborate for the model. The
collaboration of four CUs is shown in Fig.5. A comparison
of the original model with the decomposition model indicates
that:
• The first event trigger of the original model is assigned
to Bcu.

• The second event trigger is decomposed and imple-
mented by collaboration between Ccu and Dcu.

• The third event trigger is distributed on Ccu and Acu.
• The forth event trigger is distributed on Acu and Dcu.
• The fifth event trigger is assigned to Bcu.
In summary, based on the result of the dependence analysis,

some triggers are not modified and just transferred from the
original computing unit(CU) to the new CUs. As for the

93170 VOLUME 7, 2019

J. Xiong et al.: Decomposition-Based Development Method for ICSs

TABLE 2. The results of our algorithms for different evaluations.

FIGURE 5. The collaboration of Acu, Bcu, Ccu and Dcu.

remaining event triggers, which have to execute on multiple
CUs and collaborate through communication, the only thing
that happens is that these event triggers are split up and then
reconnected with communication operations across CUs. The
data flow and the control flow of the original monolithic
program do not change, which means the execution semantic
of these event triggers do not change on a logic level.

The implementation of this case study can be cloned from
our github repository.1

VI. CONCLUSION
Due to the increasing complexity of ICSs or specific
resources limits, an ICS is usually divided into several sub-
systems that collaborate with each other. Although engineers
usually use top-down approaches to design these systems
and break the original system into multiple subsystems,
the collaborative processes among these subsystems are

1https://github.com/JiawenXiong/ModelDecomposer

still designed and implemented manually in the traditional
development process, which is difficult and error-prone. To
overcome this problem, we propose a model language called
IMCL to model the ICSs by taking into consideration the
unifying resources and system functions. Then we develop
the decomposition and collaboration algorithms based on
the SDG analysis, and use the algorithms to decompose the
complex system model with given resource constraints into
multiple collaborating submodels of the control units effi-
ciently and reliably.Moreover, using an optimization strategy,
we obtain the optimal collaboration model of the algorithms
by comparing the collaboration solutions. Therefore, our
proposed approach can effectively improve the flexibility and
practicality of the development for ICSs; it allows developers
to avoid making mistakes and saves more time and energy for
the subsequent implementation.

In the future, we plan to integrate additional constraints
into the decomposition algorithms such as the cost of specific
communications.

VOLUME 7, 2019 93171

J. Xiong et al.: Decomposition-Based Development Method for ICSs

APPENDIX A
THE SYNTAX OF IMCL
// lexer rules:

ID : (’a’..’z’ | ’A’..’Z’ | ’_’)
(’a’..’z’ | ’A’..’Z’ | ’0’..’9’)*;

VALUE : [-]?([0-9]+[.])?[0-9]+ ;

BOOLEAN : ’TRUE’ | ’FALSE’;

STRING : ’\’’ (~(’\’’))* ’\’’;

CALC : ’+’ | ’-’ | ’*’ | ’/’ | ’%’;

RELATION : ’>’ | ’<’ | ’<=’
| ’>=’ | ’==’ | ’!=’;

INVOKE : ’<<’ | ’>>’;

WS : [\t\r\n]* -> skip;

% // parser rules

languageIMCL :
(codeBody)*
;

// codeBody
codeBody :

processDefine
| resourceDefine
| constraintDefine
;

resourceDefine :
(’SENSOR’|’DEVICE’) ’:’ varAtom
(’,’ varAtom)* ’;’
;

processDefine :
(’program’|’function’) ’:’
ID ’(’ varDefine? ’)’
’[’ varDefine ? ’]’
’{’ codeBlock*’}’
;

// codeBlock
codeBlock :

assignDefine
| ifDefine
| whileDefine
| triggerDefine
| channelDefine
;

channelDefine :
channel ’;’;

/** subDefine */
// trigger
triggerDefine :

’TRIGGER’ ’(’conditionExpr’)’
’{’codeBlock+ ’}’
;

// whileExpr
whileDefine :

’WHILE’ ’(’conditionExpr’)’
’{’codeBlock+ ’}’
;

// ifExpr
ifDefine :

’IF’ ’(’conditionExpr ’)’
’{’codeBlock*’}’ (elsifDefine)*
elseDefine*
;

elsifDefine :
’ELSIF’ ’(’conditionExpr ’)’
’{’codeBlock*’}’
;

elseDefine :
’ELSE’’{’codeBlock*’}’
;

assignDefine :
varAtom ’:=’ conditionExpr ’;’
assignVariable
| (varAtom (’,’ varAtom)*
’:=’)? functionExpr ’;’
assignFunction
| (varAtom|valueAtom)
INVOKE (varAtom|valueAtom)’;’
assignInvoke
| ’RETURN’ ’:’ (varAtom | valueAtom)
(’,’ (varAtom | valueAtom))* ’;’
assignReturn
| ’STOP’ ’;’
assignStop
;

/** subExpr */
conditionExpr :

(varAtom | valueAtom)
(op=(CALC|RELATION)
(varAtom| valueAtom))*
| channel
;

93172 VOLUME 7, 2019

J. Xiong et al.: Decomposition-Based Development Method for ICSs

varDefine :
(’PARAM’ | ’VAR’) ’:’
varAtom (’,’ varAtom)*
;

functionExpr :
ID ’(’ ((valueAtom|varAtom)
(’,’ (valueAtom | varAtom))*)? ’)’
;

varAtom :
ID
;

valueAtom :
VALUE

| BOOLEAN
| STRING
;

// Channel
channel :

’CHANNEL.DD.’ (’!’|’?’)
(ID|VALUE) ’:’ varAtom (’;’)?
| ’CHANNEL.CD.’ (’!’|’?’)
(ID|VALUE) (’;’)?
| ’DATA.SYNC.’ ID ’:’
varAtom (’;’)?
;

// resources constraint
constraintDefine :

’constraint’ ’:’ varAtom ’{’
varAtom (’,’ varAtom)* ’}’ ’;’
;

REFERENCES

[1] J. S. Gero andM. A. Rosenman, ‘‘A conceptual framework for knowledge-
based design research at Sydney University’s design computing unit,’’
Artif. Intell. Eng., vol. 5, no. 2, pp. 65–77, Apr. 1990. [Online]. Available:
http://www.sciencedirect.com/science/article/pii/095418109090003M

[2] B. Penzenstadler, ‘‘Desyre: Decomposition of systems and their require-
ments: Transition from system to subsystem using a criteria catalogue
and systematic requirements refinement,’’ Ph.D. dissertation, Fac. Comput.
Sci., Technical Univ. Munich, Munich, Germany, 2010. [Online]. Avail-
able: http://mediatum.ub.tum.de/node?id=999357

[3] T. A. Henzinger, B. Horowitz, and C. M. Kirsch, ‘‘Giotto: A time-triggered
language for embedded programming,’’ Proc. IEEE, vol. 91, no. 1,
pp. 84–99, Jan. 2003.

[4] M. Y. Damavandi, ‘‘Modeling a cooperation environment for flexibility
enhancement in smart multi-energy industrial systems,’’ Ph.D. disserta-
tion, Univ. Beira Interior, Covilhã, Portugal, 2016. [Online]. Available:
https://ubibliorum.ubi.pt/bitstream/10400.6/4366/1/Thesis-Maziar.pdf

[5] Y. Chen, G. M. Lee, L. Shu, and N. Crespi, ‘‘Industrial Internet of Things-
based collaborative sensing intelligence: Framework and research chal-
lenges,’’ Sensors, vol. 16, no. 2, p. 215, Feb. 2016. doi: 10.3390/s16020215.

[6] J. de Gea Fernández, D. Mronga, M. Günther, M. Wirkus, M. Schröer,
S. Stiene, E. Kirchner, V. Bargsten, T. Bänziger, J. Teiwes, T. Krüger,
and F. Kirchner, ‘‘iMRK: Demonstrator for intelligent and intuitive
human–robot collaboration in industrial manufacturing,’’ KI - Künstliche
Intelligenz, vol. 31, no. 2, pp. 203–207, Jan. 2017. doi: 10.1007/s13218-
016-0481-5.

[7] J. Korhonen, ‘‘Four ecosystem principles for an industrial ecosystem,’’
J. Cleaner Prod., vol. 9, no. 3, pp. 253–259, Jun. 2001.

[8] W. Shen, Q. Hao, H. Mak, J. Neelamkavil, H. Xie, J. Dickinson,
R. Thomas, A. Pardasani, and H. Xue, ‘‘Systems integration and collabora-
tion in architecture, engineering, construction, and facilities management:
A review,’’ Adv. Eng. Informat., vol. 24, no. 2, pp. 196–207, Apr. 2010.

[9] M. Neubauer and P. Thiemann, ‘‘From sequential programs to multi-tier
applications by program transformation,’’ in Proc. 32nd ACM SIGPLAN-
SIGACT Symp. Princ. Program. Lang., Long Beach, CA, USA, Jan. 2005,
pp. 221–232. doi: 10.1145/1040305.1040324.

[10] S. Parsa and V. Khalilpoor, ‘‘Automatic distribution of sequential
code using JavaSymphony middleware,’’ in Proc. Int. Conf. Current
Trends Theory Pract. Comput. Sci., 2006, pp. 440–450. doi: 10.1007/
11611257_42.

[11] T. Murphy VII, K. Crary, and R. Harper, ‘‘Type-safe distributed program-
ming with ML5,’’ in Proc. Int. Symp. Trustworthy Global Comput., 2007,
pp. 108–123. doi: 10.1007/978-3-540-78663-4_9.

[12] M. Serrano and G. Berry, ‘‘Multitier programming in Hop,’’ ACM Queue,
vol. 10, no. 7, pp. 53–59, Aug. 2012. doi: 10.1145/2330087.2330089.

[13] E. Cooper, S. Lindley, P. Wadler, and J. Yallop, ‘‘Links: Web programming
without tiers,’’ in Proc. Int. Symp. Formal Methods Compon. Objects,
2006, pp. 266–296. [Online]. Available: https://doi.org/10.1007/978-3-
540-74792-5_12

[14] J.-R. Abrial, Modeling in Event-B: System and Software Engineering.
Cambridge, U.K.: Cambridge Univ. Press, 2010.

[15] R. Alur and D. L. Dill, ‘‘A theory of timed automata,’’ Theory Comput.
Scince, vol. 126, no. 2, pp. 183–235, 1994.

[16] J. Bengtsson and W. Yi, ‘‘Timed automata: Semantics, algorithms and
tools,’’ in Lectures on Concurrency and Petri Nets, Advances in Petri Nets
(Lecture Notes in Computer Science), vol. 3098, J. Desel, W. Reisig, and
G. Rozenberg, Eds. Berlin, Germany: Springer, 2003, pp. 87–124. doi:
10.1007/978-3-540-27755-2_3.

[17] M. Weiser, ‘‘Program slicing,’’ in Proc. 5th Int. Conf. Softw. Eng. (ICSE).
San Diego, CA, USA: IEEE Press, 1981, pp. 439–449.

[18] J. Ferrante, K. J. Ottenstein, and J. D. Warren, ‘‘The program dependence
graph and its use in optimization,’’ ACM Trans. Program. Lang. Syst.,
vol. 9, no. 3, pp. 319–349, 1987. doi: 10.1145/24039.24041.

[19] L. Larsen and M. J. Harrold, ‘‘Slicing object-oriented software,’’
in Proc. 18th Int. Conf. Softw. Eng., Berlin, Germany, Mar. 1996,
pp. 495–505. [Online]. Available: http://portal.acm.org/citation.cfm?id=
227726.227837

[20] J. B. Gauthier, J. Desrosiers, and M. E. Lübbecke, ‘‘Decomposition the-
orems for linear programs,’’ Oper. Res. Lett., vol. 42, no. 8, pp. 553–557,
2014. doi: 10.1016/j.orl.2014.10.001.

[21] J. Cheng, ‘‘Slicing concurrent programs—A graph-theoretical approach,’’
in Proc. 1st Int. Workshop Automated Algorithmic Debugging,
1993, pp. 223–240. [Online]. Available: http://dl.acm.org/citation.
cfm?id=646902.710201

[22] N. R. Jennings, ‘‘Cooperation in industrial systems,’’ in Proc.
ESPRIT Conf., Brussels, Belgium, 1991. [Online]. Available:
https://eprints.soton.ac.uk/252216/1/ESPRIT-CONF91.pdf

[23] J. Ferber, Multi-Agent Systems: An Introduction to Distributed Artificial
Intelligence, vol. 1. Boston, MA, USA: Addison-Wesley, 1999.

[24] L. L. Hanzo, O. Alamri, M. El-Hajjar, and N. Wu, Near-Capacity Multi-
Functional MIMO Systems: Sphere-Packing, Iterative Detection Coopera-
tion, vol. 4. Hoboken, NJ, USA: Wiley, 2009.

[25] Y. Zou, X. Su, and Y. Niu, ‘‘Event-triggered distributed predictive control
for the cooperation of multi-agent systems,’’ IET Control Theory Appl.,
vol. 11, no. 1, pp. 10–16, Jun. 2016.

[26] R. Olfati-Saber, J. A. Fax, and R. M. Murray, ‘‘Consensus and coop-
eration in networked multi-agent systems,’’ Proc. IEEE, vol. 95, no. 1,
pp. 215–233, Jan. 2007.

[27] Y.-X. He, D.-Z. Li, J.-J.Wei, L.-F. Yang, and Q. Cai, ‘‘Decomposition anal-
ysis of industrial power demand of china based on panel data model,’’ in
Proc. 4th Int. Conf. Wireless Commun., Netw. Mobile Comput., Oct. 2008,
pp. 1–4.

[28] F. Hsieh, ‘‘Developing cooperation mechanism for multi-agent systems
with Petri nets,’’ Eng. Appl. Artif. Intell., vol. 22, nos. 4–5, pp. 616–627,
2009. doi: 10.1016/j.engappai.2009.02.006.

[29] J. Schumann, H. Jafari, T. Pressburger, E. Denney, W. Buntine, and
B. Fischer, ‘‘Autobayes program synthesis system users manual,’’ NASA
Ames Res. Center, Mountain View, CA, USA, Tech. Rep. NASA/TM-
2008-215366, 2008.

VOLUME 7, 2019 93173

http://dx.doi.org/10.3390/s16020215
http://dx.doi.org/10.1007/s13218-016-0481-5
http://dx.doi.org/10.1007/s13218-016-0481-5
http://dx.doi.org/10.1145/1040305.1040324
http://dx.doi.org/10.1007/11611257_42
http://dx.doi.org/10.1007/11611257_42
http://dx.doi.org/10.1007/978-3-540-78663-4_9
http://dx.doi.org/10.1145/2330087.2330089
http://dx.doi.org/10.1007/978-3-540-27755-2_3
http://dx.doi.org/10.1145/24039.24041
http://dx.doi.org/10.1016/j.orl.2014.10.001
http://dx.doi.org/10.1016/j.engappai.2009.02.006

J. Xiong et al.: Decomposition-Based Development Method for ICSs

[30] R. Valerdi and P. Laplante, ‘‘Better requirements decomposition guide-
lines can improve cost estimation of systems engineering and human
systems integration,’’ Syst. Eng. Adv. Res. Initiative, Massachusetts Inst.
Technol., Cambridge, MA, USA, Tech. Rep., 2010. [Online]. Available:
http://seari.mit.edu/documents/presentations/CSER10_Liu_MIT.pdf

[31] A. Herberg and U. Lindemann, ‘‘A different view on system decomposi-
tion - subsystem-centered property evaluation in multiple supersystems,’’
in Proc. CSDM, 2013, pp. 153–165. [Online]. Available: http://ceur-
ws.org/Vol-1085/14-paper.pdf

[32] T. Parr, The Definitive ANTLR 4 Reference, 2nd ed. Raleigh, NC, USA:
Pragmatic Bookshelf, 2013.

JIAWEN XIONG received the B.S. degree in
software engineering from Donghua University,
Shanghai, China, in 2015. He is currently pur-
suing the Ph.D. degree in computer science
with East China Normal University, Shanghai.
His research interests include model-driven devel-
opment, model checking, runtime verification,
program analysis, and related applications for
safety-critical software systems.

JU LI received the master’s degree in computer
science and software engineering from East
China Normal University in 2018. Before 2016,
he mainly studied PowerLink protocol in the area
of industrial control. His main research direction
is the design and analysis of formal models in the
field of industrial control.

JIANQI SHI received the B.S. degree in software
engineering and the Ph.D. degree in computer sci-
ence from East China Normal University, Shang-
hai, China, in 2007 and 2012, respectively, where
he is currently with the School of Computer Sci-
ence and Software Engineering, as an Associate
Researcher.

From 2012 to 2014, he was a Researcher
Fellow with the National University of Singapore.
In 2014, he was a Research Scientist with the

Temasek Laboratory under the Ministry of Defense of Singapore. His
research interests include formal method, formal modeling and verification
of real-time or control systems, and IEC 61508, IEC 61131 standards.

Dr. Shi’s awards and honors include the Shanghai Science and Technology
Committee Rising-Star Program (2018) and the ACM&CCF nomination of
excellent doctor in Shanghai (2014).

YANHONG HUANG received the B.S. degree in
software engineering and the Ph.D. degree in com-
puter science from East China Normal University,
Shanghai, China, in 2009 and 2014, respectively.

In 2012, she was a Research Student with
Teesside University, U.K. She has been with
the School of Computer Science and Software
Engineering, East China Normal University,
as an Assistant Researcher. Her research interests
include formal method, semantics theory, analysis

and verification of embedded systems, and industry software.
Dr. Huang’s awards and honors include the National Scholarship (2013),

the IBM China Excellent Students (2013), and the Shanghai Excellent
Graduates (2009, 2014).

93174 VOLUME 7, 2019

	INTRODUCTION
	OUTLINE

	RELATED WORK
	INDUSTRIAL MODELLING COLLABORATION LANGUAGE (IMCL)
	THE SYNTAX OF IMCL
	IMCL MODEL FOR INDUSTRIAL CONTROL SYSTEM
	MODELLING THE PHYSICAL RESOURCES
	MODELLING THE SYSTEM

	APPROACH FOR DECOMPOSITION AND COLLABORATION
	DECOMPOSITION ALGORITHMS
	ANALYSIS OF SDG
	DECOMPOSITION WITH RESOURCE CONSTRAINTS

	COLLABORATION ALGORITHM
	COMMUNICATION OF COLLABORATION
	COLLABORATION OF DECOMPOSED MODELS

	OPTIMIZATION OF COLLABORATION MODEL
	RESOURCE ALLOCATION
	OPTIMIZATION OF THE COLLABORATION MODEL

	CASE STUDY
	PRODUCT INSPECTION AND SORTING SYSTEM
	IMPLEMENT OF SYSTEM MODEL
	DECOMPOSITION AND COLLABORATION

	CONCLUSION
	THE SYNTAX OF IMCL
	REFERENCES

	Biographies
	JIAWEN XIONG
	JU LI
	JIANQI SHI
	YANHONG HUANG

