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ABSTRACT In the industrial environments of the future, robots, sensors, and other industrial devices will
have to communicate autonomously and in a robust and efficient manner with each other, relying on a large
extent on wireless communication links, which will expand and supplement the existing wired/Ethernet
connections. The wireless communication links suffer from various channel impairments, such as attenu-
ations due to path losses, random fluctuations due to shadowing and fading effects over the channel and
the non line-of-sight (NLoS) due to obstacles on the communication path. Several channel models exist to
model the industrial environments in indoor, urban, or rural areas, but a comprehensive comparison of their
characteristics is still missing from the current literature. Moreover, several IoT technologies are already on
the market, many competing with each other for future possible services and applications in Industrial IoT
(IIoT) environments. This paper aims at giving a survey of existing wireless channel models applicable to
the IIoT context and to compare them for the first time in terms of worst-case, median-case, and best-case
predictive behaviors. Performance metrics, such as cell radius, spectral efficiency, and outage probability,
are investigated with a focus on three long-range IoT technologies, one medium-range, and one short-range
IoT technology as selected case studies. A summary of popular IoT technologies and their applicability to
industrial scenarios is addressed as well.

INDEX TERMS 3GPP channel lossmodels, cell radius, industrial IoT, outage probability, spectral efficiency.

I. INTRODUCTION AND MOTIVATION
Sensors and devices inter-connected through various Inter-
net of Things (IoT) protocols can improve the production
steering and ensure a more efficient end-to-end traceability
and surveillance along the production chain, provided that
the IoT wireless communication links are properly designed
to support the target spectral efficiency with minimal
interruption levels and limited bandwidth. The IoT wireless
communication links span over a wide area of carrier fre-
quencies, from existing centimeter-wave (cmWave) links to
future millimetre-wave (mmWave) connections and support
a wide area of bandwidths, from Ultra Narrow Band (UNB)
communications (such as Sigfox, Telensa, and Weightless-N
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standards) to spread spectrum (e.g., LoRa, ZigBee, Wire-
lessHART, Ingenu, WAVIoT) and even wideband communi-
cations (e.g., WiFi-based IoTs) [1].

The IoT devices can also be classified according to
their power consumption. A classification of IoT technolo-
gies which can be used in industrial applications is shown
in Fig. 1. The IoT solutions can be grouped into low-power
(LP) or battery-operated solutions, and high-power (HP)
solutions. Each of these two categories can be further grouped
according to the communication ranges, into short (e.g., few
meters to few tens of meters), medium (e.g., few tens of
meters to few kilometers), and long ranges (e.g., ranges up to
few tens of km). The vast majority of IoT standards nowadays
fall under the LP category (several IoT standards names
are enumerated in Fig. 1; details on each standard can be
found for example in [1]). The high-power/high-throughput

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 91627

https://orcid.org/0000-0002-4319-4103


W. Wang et al.: Comparative Analysis of Channel Models for Industrial IoT Wireless Communication

FIGURE 1. Classifications of the connectivity solutions for industrial
applications.

solutions are covered by current and emerging Wireless
Local Area Networks (WLAN) standards, popularly known
as WiFis, and by the cellular communications, such as the
existing 4G/Long Term Evolution (LTE) standards and the
emerging 5G standard [2], [3].

Industrial IoT market will form a significant part of the
future Information, Communication and Technology (ICT)
markets [4]. Communications links in IIoT will have to trade
the high spectral efficiency for low battery consumption and
long-range support [5]. Thus, there will be no winning IIoT
technology for all possible applications. Wireless IIoT solu-
tions aremeant to enable a predictivemanagement of wireless
equipment used at various industrial sites, to increase the
workers’ safety and production capacity [6], to increase the
savings of stakeholders involved in the industrial chain [7],
to enable wireless self-localization of electronic devices and
components in 3D industrial space [8], etc.

Examples of potential industrial applications for existing
IoT technology are summarized in Table 1 for 18 of the
most encountered IoT solutions. The communication range
is specified for each of these technologies, together with
existing uses in IIoT. A ’not available’ (n/a) input does not
mean that such technology cannot be used in that particular
scenario, but rather that, to the best of the authors’ knowledge,
no industrial solutions have been tested so far under that par-
ticular scenario. The considered scenarios are divided into:
rural, urban, and indoor, according to the typical classification
of channel models [9], but it is worth mentioning that the
boundaries between these three scenarios are not very strict.

No prevalent IoT technology for industrial applications
exist, as the choice of a good technology should rely on
a multi-criterion decision making process [10], [11], which
takes into account the ease of installation and maintenance of
a certain technology, its scalability and robustness, its privacy,
its power consumption, and its range.

Three widely encountered long-range IoT technologies
in industrial applications are LoRa (e.g., flower indus-
try [12], chemical emission monitoring [13], etc.), Sigfox,

and NB-IoT. One novel medium-range industrial IoT tech-
nology is MIOTY, claiming that it is the first technology
following the European Telecommunications Standards Insti-
tute (ETSI) low throughput networks standard [14]. One
widely encountered short-range technology in industrial IoT
is ZigBee. These five technologies, namely NB-IoT, LoRa,
Sigfox, MIOTY, and ZigBee, are selected as case studies in
our paper, but we remark that similar studies for additional
IoT technologies are straightforward to implement based on
the methodology presented here.

In order to accurately model the wireless communication
links between any two IoT devices, one acting as a transmitter
and the other one as a receiver, a link budget analysis is always
necessary and it needs to rely on a specific channel model.
Link budget refers to balancing the received powers in uplink
and downlink directions, by taking into accounts the trans-
mission powers, the antenna gains, and the losses encountered
over the wireless propagation channel. The channel modeling
typically includes the distance-dependent and deterministic
path losses, and the spatio-temporal random effects due to
shadowing, multipath, and Doppler effect.

To the best of the authors’ knowledge, no comprehensive
analysis of existing channel models and their applicability
to industrial IoT environments exist and this is the gap we
plan to address in our paper. The authors’ main contribu-
tions are: (1) the analysis of the benefits of the path-loss
channel modeling for IIoT applications, (2) the compre-
hensive description of path-loss channel models for various
IIoT technologies (as the formulas presented in here cannot
be found in an unified form elsewhere, to the best of the
authors’ knowledge), (3) the derivation of best-case, median-
case, and worst-case bounds for rural, urban, and indoor
scenarios for IIoT applications based on existing path-loss
models, and (4) the analysis of five IIoT case studies, relying
on five different IoT technologies, in terms of cell radius,
spectral efficiency, and outage probabilities.

The rest of the paper is organized as follows. In Section II,
we briefly discuss the importance of channel modeling in
designing an IIoT system. An comprehensive description and
discussion of channel loss models are given in Section III.
Section IV lists the link budget and other information of
selected IoT technologies, NB-IoT, LoRa, Sigfox, Zigbee and
MIOTY. In Section V, VI and VII, three metrics, namely the
coverage area, spectral efficiency and outage probability, are
studied based the selected IoT technologies in Section IV.
Section VIII concludes this work and provides some insights
of open research in IIoT.

II. THE BENEFITS OF ADEQUATE PATH-LOSS CHANNEL
MODELING FOR THE IIOT APPLICATIONS
As already mentioned in the first section, the wireless chan-
nel modeling part plays an essential role in choosing the
right IIoT technology and building efficient IIoT solutions.
An adequate channel modeling allows a designer to estimate
and forecast the losses and random fluctuations over the
signal power when sent information over a wireless link.
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TABLE 1. Visions of industrial applications per IoT technology type according to the channel scenario.

The designer could also use the channel models to
approximate the cell radius or coverage areas for a par-
ticular technology, the outage probabilities under a certain
network topology or Access Node (AN) density, the required
dimensions of the infrastructure (e.g. number and placement
of ANs), etc. Being able to model accurately the wireless
channel effects is an important step towards a reliable and
efficient design of a wireless IIoT solution. With the help of
the channel models, a designer is able to:
• Estimate the operational Signal-to-Noise Ratio (SNR)
for a particular industrial application in a particular
environment;

• Estimate the density of access nodes required to cover a
certain industrial area;

• Estimate the uplink (UL) and downlink (DL) coverage
areas and balance the link budgets (i.e., the received
powers in UL and DL directions);

• Understand if a certain IoT technology is suitable only
in a specific scenario (e.g., rural versus urban) or can be
easily scaled to various scenarios;

• Estimate the spectral efficiency of a certain network
in terms of supported number of sensors or nodes and
achievable throughput under limited bandwidth;

• Allow an efficient network planning in IIoT and reduce
the installation and maintenance costs;

• Enable a predictive management of equipment, e.g.,
predicting failures in various electronic components and
ensure their timely replacement;
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FIGURE 2. Example of an outdoor IIoT application: Pumps with IoT sensors.

• Permit cost savings through remote control and updat-
ing of various components and devices in the indus-
trial chain (e.g., yard and asset management, fleet
tracking, etc.);

• Facilitate the wireless geo-localization of captor indus-
trial sensors and other measurement sensors.

Different IIoT applications may operate in different sce-
narios, such as rural versus urban, or outdoor versus indoor.
Thus, it makes sense that the channel models to be used
will also be adapted to the scenario targeted by a particular
application.

An example of outdoor IIoT application, for both urban
and rural cases, is illustrated in Fig. 2: the distribution
pumps (e.g., for water, gas, or petrol) can be equipped with
IoT sensors, e.g., based on a long-range IoT technology such
as LoRa or Sigfox, and the sensors can transmit in a timely
manner anomalies in the distribution chain to a control center,
as well as they can enable an optimization of the distribution
and they can control the pressure and flow in the pipes.

Another IIoT example, this time for an indoor scenario,
is illustrated in Fig. 3 for a building management system
based on ZigBee (or other short-range IoT) sensors. The IoT
sensors would permit to remotely monitor the installation at
every level, from the incoming circuit breaker to the final
electrical load. The IoT sensors would also ensure real-time
alarms and email notifications for voltage loss and overload
trips, pre-alarm notifications in the event of an overload, etc.

The channel modeling for IIoT applications has yet to
be addressed in detail in the existing literature. From the
state-of-the-art in this field it is worth mentioning that a
channel model for industrial applications based on LoRa
technology has previously been studied in [12]. It was shown
in [12] that up to 6000 nodes can be served with a single
access node (or gateway) in an indoor industrial area with
a surface of 34000 m2, assuming a simplified single-slope
path-loss channel model with measurement-fit coefficients,
as described in [15]. No comparison between various channel
models was given in [12]. Another path-loss model based on
LoRa was studied in [16] for indoor IIoT applications. The
channel model in there relied on a two-slope simplified path-
loss model and was not validated by measurements. Other
channel models proposed in the literature for IIoT appli-
cations are variants of the simplified single-path model,
e.g., a single-slope path loss model for ZigBee indoor IIoT
applications [17], a single-slope path loss model for generic
Received Signal Strength (RSS) estimation, with parameters
adjustable according to the temperatures [18].

In addition to the literature dedicated to IoT applications,
3GPP has been developing more general channel models,
covering various 5G applications scenarios, from terrestrial to
aerial communications and from LP to HP applications and
they have been grouping them under three main categories:
rural, urban, and indoor [9]. The 3GPP models will be dis-
cussed in Section III. The applicability of the 3GPP indoor
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FIGURE 3. Example of an indoor IIoT application: Building management system with energy and power metering.

hotspot channel model to IIoT scenarios has been also studied
previously by the authors in [19]. However, only the indoor
propagation models were analyzed in [19] and the conclusion
was that outage probabilities constraints in industrial IoT
can be reached with cmWave propagation, but more research
is needed to improve the achievable spectral efficiency and
outage probabilities in mmWave ranges under the considered
indoor scenarios.

As seen above, there is only a limited coverage of the
path-loss channel modeling applicable to IIoT scenarios in
the existing literature and a comparison between the exist-
ing models under both outdoor and indoor scenarios is still
lacking. In addition, most of the reported models rely on
a single-slope path loss model with environment-dependent
parameters (i.e., apparent transmit power and path-loss coef-
ficient) and they require scenario-specific measurement cam-
paigns to estimate the model parameters. In what follows we
describe several path-loss models developed in the existing
literature for rural, urban, and indoor scenarios and we will
look at the worst-case, median-case, and best-case predicted
values under different metrics in order to be able to pinpoint
the most relevant models in the context of IIoT.

III. ANALYSED CHANNEL MODELS
A variety of wireless terrestrial channel models has been
developed in the literature and a designer has typically a
wide pool to choose from. However, in the context of IIoT,
a comparison between the main features of these different
channel models is hard to find in the existing literature.

The next sub-sections present seven identified wireless chan-
nel models from the literature and discuss their applicability
in an IIoT context: the free space loss model, the single-slope
model, the 3GPP models (four variants, according to target
scenario, detailed in Table 4 and 6), and the industrial indoor
channel models (two variants, detailed in Table 4). Addi-
tionally, the industrial environment is complex, and usually
featured by large obstacles, multiple reflections and frequent
movements. To tackle with these issues, the shadowing is
used to model the effect caused by the large obstructions in
the propagation path and the small-scale fading is used to
model the effect caused by the multipath and the movement
of subjects in the environment. The discussion of shadowing
and small-scale fading follows the descriptions of the channel
loss models in each sub-section. In Sections V, VI and VII,
we will analyze and compare numerically the channel models
with fixed parameters (i.e., by dropping out the single-slope
channel model, which is a generic model, with an infinity of
possible parameters), in terms of various metrics relevant to
industrial environments.

A. FREE SPACE LOSS MODEL
The Free Space Loss (FSL) model is often used as a the-
oretical lower bound and a performance benchmark in all
wireless channel modeling studies. Its advantages stay in
its low complexity, its low number of parameters, and its
easy mathematical tractability. Its main drawback is the fact
that it is usually too idealistic to measure practical indus-
trial environments and can offer only a very loose bound
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in performance, as it will be also obvious from our studies
in Sections V, VI and VII. FSL has been used as a bound
also in other IoT-related studies, for example for wireless
propagation over sandy terrains [20] or in oil rigs [21].

In a FSL, the received power PR (in dB) at a distance d3D
(in m) from the transmitter is given by,

PR = PT − PLFSL(d3D) (1)

where PT is the transmit power and PLFSL is the free space
path loss in dB scale defined in Table 4.

The shadowing and small-scale fading is not applicable in
FSL model.

B. SINGLE-SLOPE SIMPLIFIED PATH LOSS MODEL
The generic single-slope path loss model is encountered in
a vast majority of papers [17], [18], [22] related to wireless
communications. This model is given in terms of received
signal strength PR according to two parameters: an apparent
transmit power and a path-loss (or slope) coefficient:

PR = PTa − 10n log10(d3D) (2)

where n is the path loss coefficient, PTa is the apparent
transmit power, typically measured as the power at 1 m away
from the transmitter. The carrier frequency effect is implicitly
included in thePTa , but it does not appear anymore as amodel
parameter.

In this simplified (and generic) model, the path loss coeffi-
cient n and PTa are typically derived based on measurements
and are valid only for a particular scenario. The shadow-
ing and small-scale fading are usually modeled as additive
random variables following the log-normal distribution and
Rician distribution respectively. The simplicity of the model
makes it widely adopted by many research papers [17], [18],
but the fact that n and PTa do not have unique values makes
it unsuitable to be included in a comparison as such. Indeed,
FSL can be seen as particular case of this simplified single-
scope model.

C. 3GPP OUTDOOR AND INDOOR CHANNEL MODELS
3GPP standardization has been recently dedicated a signif-
icant amount of work for modeling the terrestrial wireless
channels for a variety of applications, in particular related to
the New Radio (NR) and 5G developments. The 3GPP chan-
nel models are built on a multitude of parameters determined
empirically from various measurement campaigns and they
have been grouped into three main categories: rural, urban,
and indoor. In [9], terrestrial channel models that could be
widely applied from 0.5 GHz to 100 GHz carrier frequency
were proposed. In [3] the extension of models up to 300 m
(300 m altitude is usually considered as the low altitude) is
presented.

All 3GPP channel loss models describe the shadowing
effects as additive random variables following zero-mean
log-normal distribution N (0, σ 2) (details see Appendix A
Table 4). The small-scale fading is modeled as additive

random variables following Rician distribution Rice(K )
(details see Appendix A Table 5).

1) 3GPP RMA
The Rural Macrocell (RMa) model of 3GPP [9] character-
izes the channel loss of rural areas with a base station height
hBS (in meter), a robot height hUT (in meter), an average
street width W (in meter), and an average building height h
(in meter). In 3GPP RMa model, the height of base station
is assumed to range from 10 m to 50 m, the height of robot
is from 1 m to 10 m, the street width is from 5 m to 50 m,
the building height is from 5 m to 50 m. The model uses
a breakpoint distance dBP (in meter) concept to divide the
path loss calculation into two parts: i) one with the horizontal
distance d2D (in meter) smaller than breakpoint distance and
ii) the other with the horizontal distance greater than break-
point distance.

In Appendix A Table 4, eq. (12) and (13) are path loss
in RMa line-of-sight (LoS) and non-line-of-sight (NLoS)
scenarios, respectively. Table 6, eq. (22) gives the LoS prob-
ability for 3GPP RMa scenario.

2) 3GPP UMA
The Urban Macrocell (UMa) model of 3GPP [9] charac-
terizes the channel losses of urban areas in the situation
when the base station antenna is above rooftops. 3GPP UMa
model is constructed also taking into account the base sta-
tion height and robot height. The height of base station
ranges from 10 m to 50 m, the height of robot ranges from
1.5 m to 22.5 m. Similarly with the 3GPP RMa model,
3GPP UMa model also uses the breakpoint distance concept
d ′BP (in meter) to divide the path loss calculation into two
parts. However, unlike the 3GPP RMa model, it approxi-
mates the breakpoint distance by taking into account the
effective environment height hE (in meter) rather than only
considering base station height and robot height as in 3GPP
RMa model.

In Appendix A Table 4, eq. (14) and (15) show the path
loss in UMa LoS and NLoS scenarios, respectively. Table 6,
eq. (23) gives the LoS probability in UMa scenario. The
effective environment height yields to eq. (3a), the effective
antenna height of robot h′UT (in meter) and the effective
antenna height of base station h′BS (in meter) are given in
eq. (3b) and (3c),

hE =



hUT ≤ 13 m or d2D ≤ 18 m,

1;

13 m < hUT ≤ 22.5 m and d2D > 18 m,

5
4

(
hUT − 13

10

)1.5(d2D
100

)3

e

(
−

d2D
150

)
.

(3a)

h′UT = hUT − hE (3b)

h′BS = hBS − hE (3c)
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3) 3GPP UMI
The Urban Microcell (UMi) model of 3GPP [9] character-
izes channel loss of urban areas in the situation when the
base station antenna is below rooftops. 3GPPUMimodel also
takes into account the base station height and robot height.
The height of base station is set to 10 m in the 3GPP UMi
and the height of robot is from 1.5 m to 22.5 m. Like 3GPP
RMa and UMa models, 3GPP UMi model uses a breakpoint
distance d ′BP concept as well and applies the exact breakpoint
distance calculation as the UMa model. However, in UMi
model the effective environment height is defined as 1 m.

In Appendix A Table 4, eq. (16) and (17) are path loss
in UMi LoS and NLoS scenarios, respectively, in Table 6,
eq. (24) gives LoS probability in UMi scenario.

4) 3GPP INH
The Indoor Hotspot (InH) model of 3GPP [9] characterizes
channel loss in indoor areas where low mobility of objects,
strong reflection of signals and many obstacle of path are
existed. InH model is categorized into two cases: i) the
mixed office (InHm) and ii) the open office (InHo). The
difference in the two categories stays in the LoS probability
calculation, which allows higher probability of LoS situation
in open office than in mixed office. In Appendix A Table 4,
eq. (18) and (19) are path loss in InH LoS andNLoS scenarios
respectively, in Table 6, eq. (25) gives LoS probability in
mixed office case, eq. (26) gives LoS probability in open
office case.

D. INDUSTRIAL INDOOR CHANNEL LOSS MODEL
In [23], an industrial indoor channel loss model is proposed
according to an extensive measurement campaign. The chan-
nel loss model focuses on the Industrial Scientific Medical
(ISM) band, namely 900 MHz, 2400 MHz and 5200 MHz.
In the paper, our interest is the channel characteristics in
900 MHz and 2400 MHz, whose path loss models are given
in Appendix A Table 4, eq. (20) and eq. (21).
The model gives considerations of two scenarios: the low

multi-path effect scene and the high multi-path effect scene.
Moreover, the movements of obstacles in the environment
and the movements of receivers/transmitters are also taken
into account.

The shadowing effect is characterized as additive ran-
dom variables following zero-mean log-normal distribution
N (0, σ 2) (details see Appendix A Table 4). The small-scale
fading is modeled as additive random variables following
Rician distribution Rice(K ) (details see Appendix A Table 5).

E. OVERALL PATH-LOSS MODEL USED IN OUR STUDIES
In some channel models (e.g., 3GPP models in section III-C),
channel loss is investigated in LoS andNLoS situations, while
others (e.g., the industrial indoor model in section III-D),
channel loss is given without distinguishing LoS and NLoS
situations. In order to use the channel loss models reviewed
in this section to evaluate different IoT technologies in

TABLE 2. Link budgets for various IoT solutions (Downlink).

Section V, VI and VII, here we define an overall path loss
model as follows,

PLoverall = PrLOS(LLOS)+ (1− PrLOS)(LNLOS)+ ζ (4)

where PLoverall denotes the overall path loss, PrLOS denotes
the LoS probability, ζ denotes the small-scale loss, L is
defined as the total large-scale loss,

LLOS/NLOS = PLLOS/NLOS + ξLOS/NLOS (5)

where PLLOS/NLOS denotes the path loss median value in the
LoS or NLoS situation, ξLOS/NLOS denotes the shadowing
loss in the LoS or NLoS situation.

IV. LINK BUDGETS USED IN OUR ANALYSES
The link budget of a system reflects many aspects in the
transmitter-receiver chain, for example, the maximum cou-
pling loss, the trade-off between bandwidth and transmitted
power. As motivated in the introductory sections, we select
five technologies, namely NB-IoT, LoRa, Sigfox, Zigbee and
MIOTY, to present and compare their link budget. Based
on [14], [24]–[27], the link budget is shown in Table 2.

Among NB-IoT, LoRa, Sigfox, Zigbee and MIOTY tech-
nologies, NB-IoT promises the best tolerance of coupling
loss (i.e., 164 dB) in the transmitter-receiver chain, Zigbee
has the highest bandwidth (i.e., 2 MHz), and MIOTY with
TS-UNB modulation provides the best receiver sensitivity
(i.e., −140 dBm).

V. COVERAGE AREAS
In this section, we applied both the reviewed channel loss
models from Section III and the link budgets from Section IV
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FIGURE 4. Cell radius of different technologies under different channel loss models at 1% outage probability. (FSL denotes Free Space Loss;
RMa,3GPP denotes 3GPP Rural Macrocell; UMa, 3GPP denotes 3GPP Urban Macrocell; UMi, 3GPP denotes 3GPP Urban Microcell; InHm,
3GPP denotes 3GPP Indoor hotspot mixed office; InHo, 3GPP denotes 3GPP Indoor Hotspot open office; Industrial Indoor denotes Industrial
Indoor channel loss model.).

to estimate the radius of a cell coverage area according to a
target outage probability at cell edges. With a specific target
metric, for example the target bit rate or the target outage
probability, we could find the boundary of a cell service
coverage area.

The outage probability is defined as the probability that
overall path loss in (4) is greater or equal to maximum cou-
pling loss. This is the minimum requirement that maintains
connection of awireless link. Themathematical expression is,

Pout = Pr(PLoverall ≥ MCL) (6)

We set the outage probability Pout equal to 1% and find the
appropriate horizontal distance (i.e., the cell radius). In this
estimation, we assumed that the height of robot is 2 m,
the height of access node (AN) is 10 m, the average height of
buildings is 5 m and the average width of street is 20 m. The
cell radius predicted by different channel models at 1% out-
age probability are shown in Fig. 4. The best-case is clearly
predicted by FSL, but it is overly optimistic. The worst-case
and median-case are also numerically shown in Table 3, and
compared with other values reported in the literature.

In Table 3 we also presented the reported or measured
cell range for comparison purposes. For example, in Sigfox
technology, reported range from [31] is from 3000–10000 m,
however in [32] the authors measured 600 m cell range in
urban area. Our median-case predictors, obtained with 3GPP
channel modeling, seem to predict quite close the average
reported values for these technologies from other researchers.
From Fig. 4 and Table 3, based on the models we reviewed,
NB-IoT clearly beats the other four technologies with a
median cell range 2061 m. Sigfox also has a good coverage
with a median cell range 1754 m. Zigbee has the worst
coverage, as expected, since it is targeting for short-range
IoT applications.

Last but not the least, we would like to highlight that
from the point of view of the cell radius study, the 3GPP

TABLE 3. Cell range of different technologies.

models seem the most reasonable models to approximate
the channel path losses. From Fig. 4, the FSL usually gives
an upper bound of cell radius; the industrial indoor model
fails to predict the cell radius when the MCL is large, due
to the unbelievable large predicted cell radius. The NB-IoT,
LoRa, Sigfox andMIOTY are assumed to be candidates in the
industrial indoor applications, however according to the cell
radius estimated by the industrial indoor model, the above
four technologies have better coverage in indoor rather than
in outdoor (e.g., the results from 3GPP UMa), which is
unlikely to be true. The industrial indoor model, nevertheless,
provides some insight in the Zigbee technology, according to
its prediction of cell radius, the industrial indoor environment
is in between indoor open office and mixed office.

VI. SPECTRAL EFFICIENCY
In most of the IoT technologies which can be applied to
various industrial sites, the achievable spectral efficiencymay
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FIGURE 5. Spectral efficiency comparisons among NB-IoT, LoRa, Sigfox, Zigbee and MIOTY technologies. The result is based on
100 Monte Carlo runs (the Monte Carlo method is a statistical sampling technique [34], [35]).

FIGURE 6. Outage probability of different technologies under different channel loss models.

vary in a large extent due to different industrial environments.
This section analyses the five selected IoT technologies in
terms of spectral efficiency.

The spectral efficiency C (in bits per second per
Hz or bit/s/Hz) is limited by the duty cycle of certain
devices [36], in the downlink, the spectral efficiency is
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TABLE 4. Channel loss models with shadowing.

given by,

C = ηDd log2(1+ SNR) (7)

where SNR denotes signal-to-noise-ratio in linear scale, Dd
denotes duty cycle, η denotes channel efficiency, in this
section η was taken equal to 0.7. The duty cycle Dd is
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regulated in [37] in Europe, 1% duty cycle is maximum that
can be used in 868 MHz ISM band. Here, we remark that the
NB-IoT uses legacy band, no duty cycle restriction has been
put on to it. However, in order to compare spectral efficiency
metrics of all selected IoT technologies in Section IV, we
use 1% duty cycle for NB-IoT as well.

Fig. 5 compares achievable spectral efficiency under dif-
ferent channel path-loss models and under five different
IoT technologies. The high spectral efficiency is more rel-
evant at short ranges (i.e., indoor applications), than at
large ranges, thus our example here focuses on a 200 ×
200 m2 square indoor industrial site. Here we consider
5% outliers, which the ends of the whiskers are repre-
sented by the 2.5th percentile and the 97.5th percentile
respectively.

The height of robot remains 2 m, the height of AN remains
10 m as in section V. We note that in this scenario, 3GPP
UMi, InHm, InHo and industrial indoor channel loss models
are more relevant to the indoor applications than the others,
thus the results discussion will focus more on these four
models. In NB-IoT technology, InHomodel predicts the high-
est median value 0.178 bit/s/Hz; InHm model with almost
0.154 bit/s/Hz median value gives the lower bound of NB-
IoT spectral efficiency. In LoRa, Sigfox, Zigbee and MIOTY
technologies, a similar situation occurs to them as well, in the
sense that InHo model predicts the highest median value
of spectral efficiency while InHm model gives the lowest
median value. Among these five technologies, the Sigfox is
most spectral efficient technology in the indoor scenarios,
the Zigbee is the worst technology from the spectral effi-
ciency aspect. However, the Zigbee at 2.4 GHz frequency
band has 2 MHz bandwidth resource and it could provide the
highest throughput among these five technologies in indoor
scenarios.

VII. OUTAGE PROBABILITY
IIoT technologies could also serve many kinds of outdoor
applications, as discussed in Section I. In a large outdoor
area, the outage probability metric (i.e., one dimension
of reliability) usually has priority over spectral efficiency.
Therefore, in this section, we define a 2000 × 2000 m2

simulation area to compare different IIoT services. The
height of robot and base station are still 2 m and 10 m,
respectively. From Table 1, we remark that Zigbee is a
short range IoT technology, thus the main discuss of this
section focuses on NB-IoT, LoRa, Sigfox and MIOTY only.
Besides, we will pay more attentions to the outdoor chan-
nel loss models, for example, the 3GPP RMa, UMa and
UMi models.

In this section, we calculate the average outage probabil-
ity over the entire simulation space. Let the set S denote
all positions of a robot in simulation space, a position of
a robot is si ∈ S, in Cartesian coordinate system si is
defined as,

si = {xi, yi, zi : xi, yi ∈ (−103, 103), zi ∈ (0, 2)} (8)

TABLE 5. K-factor for small-scale fading.

where i = 1, 2, 3, · · · , the average outage probability Pout is
defined as,

Pout =

∑
si∈S

P(si)out

|S|
(9)

where P(si)out denotes eq. (6) at si.
Under the considerations of shadowing and small-scale

fading effects, the analytic solutions of P(si)out are hard to
find. The shadowing effects are usually modeled as random
variables (in dB) following Gaussian distribution, while the
small-scale fading effects are modeled as random variables
(in linear scale) following Rician distribution. In this paper,
we estimate P(si)out by treating its solution as the tail probability
estimation in sum of non-identically distributed random vari-
ables situation [35]. The algorithm 10.6 in [35] is applied,
the P(si)out is estimated by,

P(si)out = Pr(X (si) ≥ MCL− PL(si)) (10)

where PL(si) is the deterministic part of the path loss,
X (si) denotes the sum of shadowing and small-scale fad-
ing effects at si, MCL − PL(si) is the threshold in the
algorithm 10.6 in [35].

As seen in Fig. 6, NB-IoT outperforms LoRa, Sigfox and
MIOTY IoT technologies in terms of outages. The worst
case for NB-IoT is predicted by the 3GPP RMa model with
3.76× 10−2 outage probability. Generally speaking, NB-IoT,
LoRa, Sigfox and MIOTY has their most outages events in
the RMa scenarios from the results. Among 3GPP RMa,
UMa and UMi models, the predictions of UMa model are
always the best cases, for example, 1.42× 10−6 outage prob-
ability in NB-IoT, 2.67× 10−3 outage probability in LoRa,
9.40× 10−6 outage probability in Sigfox, 6.46× 10−4 out-
age probability in MIOTY.

VIII. CONCLUSIONS AND OPEN RESEARCH DIRECTIONS
In this work, we addressed the problem of wireless channel
modeling in the context of IIoT technologies. We described
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TABLE 6. Line-of-sight probability for 3GPP models.

in details seven channel models, namely the free space loss,
the 3GPP channel models with its five variants (indoor open
and mixed hotspots, outdoor urban micro- and micro-cell,
and outdoor rural), and the industrial indoor channel loss
model for ISM bands. We also described the generic single-
slope model, which is a generalization of FSL. We compared
the predicted performance based on the above-mentioned
seven channel models in terms of three important wireless
communications metrics, namely the cell radius, the spectral
efficiency, and the outage probability in both indoor and out-
door scenarios. We selected four potential IIoT technologies,
namely NB-IoT, Sigfox, LoRA, ZigBee and MIOTY, to eval-
uate their performance in terms of cell radius at 1% outage
probability, their spectral efficiencywithin 200×200m2 area,
and their outage probabilities within 2000× 2000 m2 area.
Among these five potential IIoT technologies, NB-IoT has

the longest cell radius and the best outage probability in out-
door scenarios, while Sigfox has the best spectral efficiency in
indoor scenarios and Zigbee has the largest operating band-
width. We have also shown that the median-case predictors
among these studied channel models are not far from the

values reported or measured in practice for the selected IIoT
technologies. We would like to emphasize that 3GPP channel
loss models are so far the best suitable models to estimate the
studied communication metrics, as they often offer an esti-
mate close to the median-predicted behavior by many other
channel models. Considering the average of a certain metric
over a space (i.e., the average spectral efficiency or outage
probability over the simulation space), the worst-case sce-
nario can be studied based on 3GPP RMa channel models,
while the best-case scenario is given by the free-space loss
channel model (i.e., overly optimistic bound).

In terms of future research work in IIoT environments,
in our opinion, three key axes are: i) the wireless connec-
tion reliability, ii) the wireless geo-localization, and iii) the
predictive maintenance. In our paper, the wireless connection
reliability is thoroughly studied based on the channel loss
models. The geo-localization and the predictive maintenance
aspects will be investigated in the future work.

Regarding the reliability factor, extremely reliable wire-
less communication will be more and more needed in
order to avoid heavy cabling in zones with difficult access.
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For example, if we have a high furnace chimney where a
quality air measurement device is to be installed, a wire-
less IoT sensor mounted on the top of the chimney may be
100 times less expensive than deploying an Ethernet cable
from the top to the bottom of the tower. But a one hour stop
of the IoT communication link may be 100 million times
more expensive than the installation cost: NOx, SOx, or CO
emission overrun during one hour may produce the closure of
the plant.

Regarding the geo-localization needs, it is well-known that
high expenses are engaged every time when a new person
has to be trained for process operating in a plant. These
expenses are increased by the turnover due to tedious working
conditions. The wireless geo-localization of the devices from
a specific installation may save lot of time and money and
the autonomy of the new hired person would be dramatically
improved.

Last, but not least, the predictive maintenance for large
surface scattered installations may be easily deployed using
precise reliable IIoT communication. The uploaded analytics
from the field may predict dangerous increase or overrun of
key indicators using low rate communicating systems at very
low cost, much simpler to install than cabling.

APPENDIX A
CHANNEL LOSS MODELS AND LINE-OF-SIGHT
PROBABILITY
See Table 4–6.
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