
Received June 18, 2019, accepted July 2, 2019, date of publication July 8, 2019, date of current version July 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2927253

Deep Residual Convolutional Neural Network
for Protein-Protein Interaction Extraction
HAO ZHANG1, RENCHU GUAN 1,2, (Member, IEEE),
FENGFENG ZHOU1, (Senior Member, IEEE), YANCHUN LIANG1,2,
ZHI-HUI ZHAN 3,4, (Senior Member, IEEE), LAN HUANG1,2,
AND XIAOYUE FENG1
1Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education, College of Computer Science and Technology, Jilin
University, Changchun 130012, China
2Zhuhai Sub Laboratory, Key Laboratory of Symbolic Computation and Knowledge Engineering of the Ministry of Education, Zhuhai College, Jilin University,
Zhuhai 519041, China
3School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China
4Guangdong Provincial Key Laboratory of Computational Intelligence and Cyberspace Information, South China University of Technology,
Guangzhou 510006, China

Corresponding author: Xiaoyue Feng (fengxy@jlu.edu.cn)

This work was supported in part by the National Natural Science Foundation of China under Grant 61602207 and Grant 61572228, in part
by the Key Technological Research Projects in Jilin Province under Grant 20190302107GX, in part by the Special Research and
Development of Industrial Technology of Jilin Province under Grant 2019C053-7, in part by the Guangdong Premier Key-Discipline
Enhancement Scheme under Grant 2016GDYSZDXK036, and in part by the Guangdong Key-Project for Applied Fundamental Research
under Grant 2018KZDXM076.

ABSTRACT Knowledge extracted from the protein–protein interaction (PPI) network can help researchers
reveal the molecular mechanisms of biological processes. With the rapid growth in the volume of the
biomedical literature, manually detecting and annotating PPIs from raw literature has become increasingly
difficult. Hence, automatically extracting PPIs by machine learning methods from raw literature has gained
significance in the biomedical research. In this paper, we propose a novel PPI extraction method based on the
residual convolutional neural network (CNN). This is the first time that the residual CNN is applied to the PPI
extraction task. In addition, the previous state-of-the-art PPI extraction models heavily rely on parsing results
from natural language processing tools, such as dependence parsers. Our model does not rely on any parsing
tools. We evaluated our model based on five benchmark PPI extraction corpora, AIMed, BioInfer, HPRD50,
IEPA, and LLL. The experimental results showed that our model achieved the best results compared with the
previous kernel-based and CNN-based PPI extraction models. Compared with the previous recurrent neural
network-based PPI extraction models, our model achieved better or comparable performance.

INDEX TERMS Deep learning, natural language processing, protein–protein interaction extraction, residual
convolutional neural network.

I. INTRODUCTION
Protein-protein interaction (PPI) is a physical contact estab-
lished between two or more protein molecules resulting
from biochemical events, which provides a useful proxy
for cellular communication lattices and can be discovered
in almost all cellular processes, such as metabolism, sig-
naling, regulation, and proliferation [1], [2]. Compiling
protein-protein interaction networks are meaningful to sys-
tem biology research [3]. One of the most important ways to
construct a PPI network is to curate PPIs from literature. For
example, Kwon et al. [4] manually curated a Death Domain
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superfamily PPI database from 295 biomedical papers. The
rapid growth of the biomedical literature makes the man-
ual search of protein homologs and PPI annotation almost
impossible [5]. Until May 2019, PubMed1 comprised more
than 29 million citations for biomedical literature. Design-
ing and implementing effective methods that automatically
extract PPIs from huge amounts of biomedical literature
have become a popular topic in biomedical text mining
research [6].

The task of PPI extraction is to identify whether two
proteins in a given fragment of text are considered to be
interacted. Although the relationship between proteins may

1https://www.ncbi.nlm.nih.gov/pubmed/
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occur across several sentences, most studies have concen-
trated on discovering PPIs within a sentence [6], [7]. In our
paper, we only consider extracting PPIs within a sentence.
The simplest PPI extraction methods are the co-occurrence
methods, which assume that two proteins interact whenever
they simultaneously occur in a sentence [8]. Despite its sim-
plicity and high recall, the precision of the co-occurrence
methods is extremely low. For example, in the AIMed corpus,
no more than 17% of all sentence-level protein pairs describe
protein-protein interactions [6]. Pattern matching methods
are another type of PPI extraction methods that can achieve
a high degree of precision. Using hand-crafted patterns,
Baumgartner et al. [9] achieved a precision of 38%, but only
a recall of 6% on the PPI extraction task of BioCreative II.
Yu et al. [10] built dependency graph patterns for PPI extrac-
tion that achieved higher precision but lower recall than other
machine learning based methods.

Compared with the co-occurrence methods and pattern
matching methods, machine learning based PPI extraction
methods can simultaneously achieve higher precision and
higher recall [6]. Traditional machine learning methods for
PPI extraction include feature engineering based methods
and kernel-based methods. Feature engineering based meth-
ods include two steps, building the features and training the
classifier. For example, based on manually designed lexical,
syntactic and dependency features, Saetre et al. [11] trained
a support vector machine model for PPI extraction. However,
manually building the features is a laborious process and
these featuresmay fail when the entity and relation annotation
rules change [8].

Kernel-based methods utilize kernel function to map fea-
tures into a latent high-dimensional separable space. The ker-
nel functions are similarity functions in essence that help the
classifier fully utilize structural similarity between instances.
Most kernel functions for PPI extraction are based on
syntactic parse trees [12]–[15], [20] or dependency parse
trees [16]–[19] that consider sentence structure and seman-
tic information. For example, Airola et al. [18] pro-
posed the all-paths graph (APG) kernel that considers all
dependency paths between two entity mentions because
dependency paths are considered important indicators
for the PPI extraction task. Murugesan et al. [20] pro-
posed the Distributed Smoothed Tree kernel (DSTK),
which exploits both syntactic and semantic space infor-
mation. In addition to rely on parse tree information,
shallow linguistic information is also useful for the
PPI extraction. Giuliano et al. [21] proposed a kernel for
PPI extraction leveraging shallow linguistic information such
as chunking and parts-of-speech (POS). One specific kernel
cannot fully model the semantic of sentences. To retrieve
the most extensive information of a given sentence,
Miwa et al. [22] combined several PPI extraction kernels by
multiple kernel learning to build a new kernel function that
outperformed previous kernel functions. However, kernel-
based PPI extraction methods heavily rely on natural lan-
guage processing (NLP) tools, and the error induced by these

tools can cause the model’s performance to decrease. Addi-
tionally, when the training dataset is very huge, maintaining
a kernel matrix is a difficult task.

Deep learning has achieved remarkable success in the field
of natural language process [23] and computer vision [24].
Compared with traditional machine learning methods, deep
learning methods can automatically learn features from data.
Many researchers recently attempted to apply deep learning
methods to improve the performance of PPI extraction. Some
state-of-the-art PPI extraction models are based on the recur-
rent neural network (RNN) [25]–[27]. Hsieh et al. [25] pro-
posed using the LSTM, a variant of RNN, to extract PPIs from
sentences. Yadav et al. [26] thought the shortest dependency
path (SDP) between two entity mentions was more useful for
PPI extraction than the whole sentence. They proposed the
Att-sdpLSTMmodel that combined SDP and attention based
multi-layer LSTM to extract PPIs from literature. Instead
of using SDP, Ahmed et al. [27] used LSTM to model the
input sentence’s dependency tree structure. Although these
RNN-based models achieved better performance, training
RNN is notoriously difficult because of gradient vanishing
and gradient exploding [28]. Due to sequence dependence,
paralleling RNN is more difficult than convolutional neural
network (CNN), and the prediction speed of RNN is gener-
ally slower than CNN with a similar size. Other researchers
developed CNN-based PPI extraction models. For example,
Quan et al. [29] proposed amultichannel convolutional neural
network by fusing word embeddings of multiple versions for
the PPI extraction task. Hua and Quan [30] proposed the
sdpCNN model for PPI extraction by combining the SDP
and CNN. In addition to sentence dependency information,
Peng and Lu [31] proposed the McDepCNN model consid-
ering abundant lexical information such as parts-of-speech
and chunking information. These CNN-based PPI extraction
models are all single layer models that only model phrase-
level information instead of sentence-level information in
essence. To improve the CNNmodel’s performance, previous
work introduced additional linguistic features such as the
dependency structure. However, parsing sentences into the
dependency structure introduces extra computing and time
complexity.

To improve CNN model’s feature expression ability and
avoid too much speed sacrifice, stacking several convo-
lutional modules into one deep architecture is a feasible
solution. However, when multiple convolution modules are
directly stacked, the performance of the model will not
be improved too much because the gradient vanishing will
occur [32]. Johnson and Zhang et al. [33] discovered that
the residual connection between convolutional modules was
very helpful to train a deep convolutional neural network
for text categorization. Inspired by their model, we pro-
pose a deep residual convolutional neural network model for
PPI extraction. We do not directly stack single convolutional
modules but stack residual convolutional blocks that con-
tain several convolutional modules. There is one shortcut
connection between the input and output of the residual
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convolutional block. Our model downsamples sentence rep-
resentation by half before putting the input into the resid-
ual convolutional block. The downsampling operation makes
our model refines the sentence’s representation gradually.
Additionally, it makes the model’s computation bounded to a
constant as the model deepens. The combination of residual
connection and downsampling operation makes our model
achieve great performance improvement compared with pre-
vious shallow CNN-based models. Most of previous deep
learning based models rely on other NLP tools. For example,
Yadav et al.’s Att-sdpLSTMmodel relies on the Enju parser2

that parses the input sentence into a predicate-argument
dependency graph. The Enju parser only parses 3 sentences
per second when we apply it to large corpora. When deploy-
ing the models, the time overhead is not tolerated. Our
model does not rely on other NLP tools; thus, the practi-
cality of our model is guaranteed. We evaluate our model
on five benchmark PPI corpora, AIMed [34], BioInfer [35],
HPRD50 [36], IEPA [37] and LLL [38]. Our model
achieve better or comparable performance than previous
models [25]–[27], [29]–[31].

The remainder of this paper is organized as follows.
Section II lists some related work. Section III describes
our proposed PPI extraction model. Section IV describes
the experimental details and presents experimental results.
Section V discusses our model and gives error analysis.
Section VI concludes our work and gives future research
directions.

II. RELATED WORK
A. DEEP LEARNING BASED BIOMEDICAL RELATION
EXTRACTION MODEL
Most of the current deep learning based PPI extraction mod-
els are based on the RNN [25]–[27] and CNN [29]–[31],
[56]. Zhao et al. [39] combined the deep feed-forward neu-
ral network and manually selected features to extract PPIs
from sentences but the model did not present deep learn-
ing model’s advantage compared with other RNN and CNN
based models. The shortest dependency path (SDP) can be
regarded as a simplified sentence, and some deep learn-
ing based biomedical relation extraction models rely on the
SDP [26], [30], [40], [41]. However, the shortest depen-
dency path can cause information loss for some sentences,
especially when candidate entity pairs are located in the
subordinate clause. The recursive neural network can fully
use the parsed tree information and can also be used to
extract biomedical relation [27], [42]. Compared with RNN
and CNN, recursive neural network dose not obtain great
improvement on performance, and its computation complex-
ity is very high. Combining the RNN and CNN is another
way to improve the performance of biomedical relation
extraction [41], [43]. Dewi et al. [44] proposed to use
deep CNN to extract drug-drug interactions but their model

2http://www.nactem.ac.uk/enju/

directly stacked several convolutional modules instead of
using residual connection.

B. DEEP CNN FOR TEXT
Compared with single-layer CNN, RNN processes a sentence
by the token sequence order and is more suitable to build
text representation. RNN can achieve satisfactory perfor-
mance in complexNLP tasks such asmachine translation [23]
and image caption [24]. However, parallel implementation
of RNN is troublesome due to the sequence dependence
of RNN. Compared with RNN, CNN owns a high computing
efficiency and simple parallel implementation. Increasingly,
more researchers use CNN to model these tasks. For exam-
ple, Gehring et al. [46] designed a CNN-based sequence
to sequence architecture for machine translation. The deep
CNN was also applied to text classification [33], [47].
The common characteristics of these models are deeper
architecture and residual connection compared with earlier
CNN-based NLP models [48], [49]. Dilated convolution is
another strategy to deepen the CNN. Strubell et al. [50]
applied dilated convolution to the sequence tagging task.
The deep CNN is widely applied to real-world systems. For
example, the biomedical publication recommender system
Pubmender uses multi-layer CNN to help researchers choose
the publication venue [51].

III. METHOD
A deeper architecture makes CNN have a larger receptive
field. Residual connection guarantees gradient propagation
stability. Combined deep CNN and residual strategy, we pro-
posed a deep residual convolutional network for PPI extrac-
tion. As shown in Figure 1a, our model includes three parts,
the embedding layer, the convolutional layer and the classifier
layer. Our model leverages multi-layer CNN to extract mean-
ingful features from the sentence with two marked protein
entities. In the word embedding layer, our model transforms
each word in the input sentence into word embedding. These
word embeddings are fed into the convolutional layer. In the
convolutional layer, we stack several residual convolutional
blocks instead of convolutional modules. The residual con-
volutional block encapsulates several convolutional modules
with a residual connection as shown in Figure 1b. Before
each residual convolutional block, we apply a max-pooling
layer with 2 strides that concentrates context information
gradually and reduces the amount of calculation. After the
convolutional layer, our model feeds the extracted sentence
representation into the classifier layer and gives the prediction
results. We describe our model in detail in the following
subsections.

A. EMBEDDING LAYER
The word embedding layer transforms each word in the input
sentence into a real value vector called word embedding.
Word embeddings are low-dimensional dense vectors that
capture words’ syntactic and semantic information. For each
sentence S(w1,w2, . . . ,wn), where n is the length of the
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FIGURE 1. Architecture of our model. The left subfigure is the overall architecture of our model. The right subfigure is the residual
convolutional block. ‘Word Emb, 200’ represents the word embedding layer with 200 dimensions. ‘1 conv, 64’ represents the
convolutional module with a filter size of 64 and a window size of 1. The ‘Pooling, /2’ represents one-dimensional max-pooling with
a window size of 3 and a stride size of 2. ‘Res_Conv’ is the residual convolutional block. ‘Block_Num’ is the number of residual
convolutional blocks. ‘Pooling’ represents one-dimensional global max-pooling. ‘Classifier’ represents the classifier layer.
‘Conv_Num’ is the number of convolutional modules in the residual convolutional block. ‘BN’ is the batch normalization operation.

sentence and wi is the ith word of the sentence S, the word
embedding matrix E of the sentence S is constructed by
looking up the word embedding table Wemb. E is an n ∗ d
matrix, and each column of matrix E represents the cor-
responding word’s embedding in the input sentence. The
word embedding matrix E is fed into next layer. All the
words occurring in corpora are encoded into the word embed-
ding table Wemb. Each column of the matrix Wemb repre-
sents a word’s embedding in the vocabulary table. Wemb will
be tuned when we train our models. In addition to words
occurring in corpora, the vocabulary table also includes
three special words, PROTEIN0, PROTEIN1, PROTEIN2.
Before feeding sentence marked with entities into the word
embedding layer, two marked proteins are substituted with
PROTEIN1 and PROTEIN2 respectively. Other protein
entities are substituted with PROTEIN0. PROTEIN1 and
PROTEIN2 indicate candidate interaction’s protein pairs
in the input sentence. If we do not substitute two marked
protein entities, our model cannot determine which pair of
proteins in the sentence is interacting. Substituting the protein
mentions with special words also makes our model learn
the general pattern of corpora instead of paying excessive
attention to proteins’ literal meaning. Due to the diversity
of biomedical entity mentions, using special protein words
to replace them will reduce the size of the vocabulary
table.

Pretrained word embeddings include rich semantic and
syntactic information of words [57]. Collobert et al. [48]
reported that initializing the word embedding layer by pre-
trained word embeddings is more beneficial to train model
than randomly initializing the embedding layer. We initialize
word embedding layer using pretrainedword embeddings and
tune parameters of the word embedding layer when we train
our model.

The convolutional module with a window size of 1 is
behind the word embedding layer. The aim of introduc-
ing the convolutional layer is to make the dimension of
word embedding match following residual convolutional
block.

B. RESIDUAL CONVOLUTIONAL BLOCK
In this section, we first introduce the convolutional module
and then introduce how we stack several convolutional mod-
ules into a residual convolutional block.

The input of the convolutional module is X = x1 ⊕
x2 ⊕ · · · ⊕ xn, where ⊕ is the concatenation operator. Com-
pared with computer vision, the one-dimensional convolu-
tional module is more widely used in the field of natural
language processing. The one-dimensional convolution oper-
ator is applied to each window to produce a new feature.
Concretely, assuming xi:i+h−1 is the concatenation from the
ith feature to the (i+ h− 1)th feature, where h is the window
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size, we obtain new features as follows

ci = f (w · xi:i+h−1 + b) (1)

where ci is the new feature of the ith window, w is the weight
of the convolution module, b is the bias, and f is the activation
function. In this study, we adopt ReLU as our model’s activa-
tion function. The feature map c = c1 ⊕ c2 ⊕ · · · ⊕ cn−h+1
is produced after the one-dimensional convolutional module.
The length of the output feature map, n− h+ 1, is not equal
to that of the input feature, n. To match the length of them,
bh/2c zero vectors should be added into both sides of the
input feature X .
When directly deepening the deep learning model, it may

meet difficulty such as gradient vanishing or exploding prob-
lem. Residual learning, which connects low-level features
and high-level features, can tackle the gradient propagation
problem of deep learning models [52]. The residual convolu-
tional block is inspired from the residual learning. As shown
in Figure 1b, a sequence of convolutional modules are stacked
and these convolutional modules are used to learn residual
function. Assuming x is the input of the residual convolu-
tional block and F is the stacked convolutional modules,

F(x)+ x (2)

is the output of the module. When stacking several residual
convolutional blocks, gradient propagation from the high-
level block to the low-level block will be easier because
of the residual connection. Batch normalization can make
the training process more stable and less sensitive to the
learning rate [53]. We add batch normalization after each
convolutional module. The number of convolutional mod-
ules ‘Conv_Num’ in each residual convolutional block is a
hyper-parameter.

C. DOWNSAMPLING BY MAX-POOLING
Our model performs max-pooling operation with a window
size of 3 and a stride of 2 before each residual convolu-
tional block except the first one. The pooling layer produces
new hidden representations by obtaining the componentwise
maximum of 3 contiguous input vectors. The new hidden
representations can cover more context than the original input
features. Thus, subsequent residual convolutional block mod-
els the text in more abstract features. Performing a pooling
operation every other triplet reduces the amount of calcula-
tion by half. Even if more layers are stacked, the amount
of calculation of the model is bounded to a constant.
We perform a global max-pooling operation after the last
residual convolutional block. Thus, we can obtain a fixed
dimensional feature vector.

D. CLASSIFIER AND LOSS FUNCTION
The output of global max-pooling is fed into the feed-forward
classifier. Assuming the input of the feed-forward layer is h,
the hidden representation of the feed-forward classifier is
calculated as

m = f (Wf · h+ bf ), (3)

whereWf ∈ Rdh×di is the weight matrix, bf ∈ Rdh is the bias,
di is the dimension of the input, and dh is the dimension of
the hidden. Then, the hidden representation is fed into linear
transformation to get each category’s score as shown in (4).

s = Ws · m+ bs (4)

In (4), Ws ∈ Rdc×dh is the weight matrix, bs ∈ Rdc is the
bias, and dc is the number of categories. We use the softmax
function

p(label = class|S) =
exp(sclass)∑dc
i=1 exp(si)

(5)

to normalize the score s into probability.
The loss function of our model is the cross entropy func-

tion. It is defined as

L = −
N∑
i=1

log(p(label = classi|Si)), (6)

where Si is the ith sentence of the corpora, classi is the label of
the ith sentence, and N is the number of sentences in corpora.
We minimize the loss function by the Adam optimizer [54].
Dropout [55] is added after the word embedding layer and
the penultimate layer of our model i. e. the feed-forward
classifier’s hidden layer. Additionally, the weight decay term
is added to the loss function to prevent our model from
overfitting.

IV. EXPERIMENTS
A. DATASETS
We evaluate our model using five benchmark PPI corpora,
AIMed [34], BioInfer [35], HPRD50 [36], IEPA [37] and
LLL [38]. Some differences exist in entity annotation and
interaction annotation among these corpora. For example,
BioInfer corpora include n-ary interactions that are not con-
sidered in other corpora. HPRD50 and LLL corpora define
the types of interactions, but other corpora ignore them.
Pyysalo et al. [8] transformed the five PPI corpora’s anno-
tations to a shared level of information and stored them in
a unified format. The converted corpora are available on the
Internet3 and have been adopted in previous PPI extraction
research [6], [25], [27].

All the converted corpora only annotate protein-protein
interactionswithin a sentence. Interactions across several sen-
tences are ignored. Moreover, these converted corpora ignore
the interaction types and only annotate whether two entities
within a sentence interact. Hence, the PPI extraction task is
cast into a binary classification task. We assume annotated
interacted protein pairs as positive instances and assume other
unannotated protein pairs in the same sentence as negative
instances. In a sentence with n protein entities (n ≥ 2),(n
2

)
instances will be generated. For example, in the sentence

‘‘We also found another armadillo-protein, p0071, inter-
acted with PS1.’’, there are three protein entities which are
armadillo-protein, p0071 and PS1. As shown in Table 1,

3http://mars.cs.utu.fi/PPICorpora

89358 VOLUME 7, 2019



H. Zhang et al.: Deep Residual CNN for PPI Extraction

TABLE 1. Example about candidate PPI instances.

the sentence generates
(3
2

)
= 3 candidate PPI instances. The

third instance is annotated as a positive instance in AIMed
corpus, and the other two instances are negative instances.
To ensure coverage of our model’s vocabulary table, the two
proteins of a candidate interaction are substituted by
PROTEIN1 and PROTEIN2, and other proteins in the sen-
tence are substituted by PROTEIN0.

Although Pyysalo et al. [8] provided unified corpora for
researchers, annotation differences of entities among corpora
still exist. In AIMed corpus, there are some nested protein
entities. For example, ‘‘p75’’ and ‘‘p75 neurotrophin recep-
tor’’ are both annotated as protein entity mentions in the
sentence ‘‘. . . the p75 neurotrophin receptor and the p140trk
(trkA) tyrosine kinase receptor. . . ’’. When generating can-
didate PPI instances, we ignore instances between nested
entities because no interactions exists in most of cases. If one
of the nested entities occurs in a candidate instance, others
will not be substituted by PROTEIN0. If nested entities do
not participate in the interaction, we replace the longest one of
nested entities with PROTEIN0 and other mentions will be
ignored. In BioInfer corpus, there are some composite named
entitymentions and discontinuous entitymentions. For exam-
ple, in the sentence ‘‘Arp2/3 complex from Acanthamoeba
binds profilin and cross-links actin filaments.’’, ‘‘Arp2/3’’
is annotated as two entity mentions, ‘‘Arp2’’ and ‘‘Arp3’’.
We propose several rules to preprocess these composite
and discontinuous entity mentions. These rules are listed as
follows.

1) If composite entities have a common prefix, we con-
catenate the prefix and each component’s suffix. For
example, ‘‘Arp2/3’’ will be replaced by ‘‘Arp2 / Arp3’’.

2) If composite entities have a common suffix, we con-
catenate the suffix and each component’s prefix. For
example, ‘‘muscle and brain actin’’will be replaced by
‘‘muscle actin and brain actin’’.

3) If an entity mention is discontinuous and does not inter-
sect with other entity mentions, we make it continuous
by including other text within the annotated range.
For example, in the phrase ‘‘Integrin (beta) chains’’,
the parentheses are removed, and the ‘‘Integrin beta
chains’’ is annotated as an entity mention. In our exper-
iments, we consider ‘‘Integrin (beta) chains’’ as the
entity mention.

4) If composite entities have a common prefix or suffix
and intersect with other entity mentions, we directly
drop these intersected entity mentions and process
composite entities as before.

We preprocess the corpora by previous steps. The statistics
of the preprocessed corpora are presented in Table 2.

TABLE 2. Corpora statistics.

B. EVALUATION METRICS
The F1-score is the most common performance evaluation
metric for the PPI extraction task [6]. The F1-score is cal-
culated by (9).

Precision =
TP

TP+ FP
(7)

Recall =
TP

TP+ FN
(8)

F1− score =
2 ∗ Precision ∗ Recall
Precision+ Recall

(9)

In (7) and (8), TP is the number of true positive instances,
FP is the number of false positive instances and FN is
the number of false negative instances. As shown in (9),
the F1-score considers both precision calculated by (7) and
recall calculated by (8). When precision is low and recall is
high or precision is high and recall is low, the F1-score is low.
A high F1-score means that most of the positive instances
have been discovered and most of the extracted interactions
are correct.

Because the original corpora are not divided into the
training dataset and test dataset, we perform 10-fold cross-
validation on the corpora following previous studies [6], [18]
and then use average F1-score of 10-fold cross-validation
experiments to evaluate our model’s performance.

The macro F1-score, the average F1-score of positive
instances’ and negative instances’ F1-scores, is adopted to
evaluate performance by other previous studies [26], [27],
[56]. It is meaningless to consider the negative instances’
F1-score when evaluating a model’s performance. Moreover,
unbalanced corpora such as AIMed corpus can cause the
model’s macro F1-score is higher than normal F1-score due
to the dominance of negative instances. To directly compare
our model with these models adopting macro F1-score as the
evaluationmetric, we also evaluate ourmodel using themacro
F1-score.

C. PARAMETER SETTINGS
Chiu et al. [59] gave some suggestions about how to train
word embeddings for biomedical literature using word2vec
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TABLE 3. Hyper-parameter settings.

and provided word embeddings4 trained on the PMC corpus.
We initialize our model’s word embedding layer using the
pretrained word embeddings. For out-of-vocabulary words
such as special words PROTEIN0/1/2, we randomly initial-
ize their word embeddings by sampling from the uniform
distribution in [−0.001, 0.001]. The weights of convolutional
layers and linear layers are initialized by the Xavier Uniform
initializer [60], and their biases are initialized to zero. When
the sentence length is less than 100, we pad it with a special
pad token.

The hyper-parameter settings are shown in Table 3. For
hyper-parameters not mentioned in the table, the number of
residual blocks and the number of convolutional modules,
we tune them by 10-fold cross-validation. We select the num-
ber of residual blocks from the range [1, 6] and the number
of convolutional modules from the range [1, 4]. For AIMed
and BioInfer corpora, the number of residual blocks is 6 and
the number of convolutional modules is 3. For HPRD50 cor-
pus, the number of residual blocks is 4 and the number of
convolutional modules is 2. For IEPA corpus, the number of
residual blocks is 5 and the number of convolutional modules
is 2. For LLL corpus, the number of residual blocks is 6 and
the number of convolutional blocks is 2.

D. RESULTS
We compared our model with several kernel-based
PPI extraction methods and deep learning based methods.
The compared kernel-based models are briefly introduced as
follows.

1) Edit kernel. The edit kernel obtains the similarity
between two annotated sentences by computing the edit
distance between them [17].

2) APG kernel. The APG kernel counts weighted shared
dependency paths of all possible lengths. The depen-
dency path weight is higher when the dependency path
between entities is shorter [18].

3) kBSPS kernel. The kBSPS kernel is based on
the shortest path between two annotated entities,

4https://github.com/cambridgeltl/BioNLP-2016

dependency graph nodes and k distance dependency
information [16].

4) Hybrid kernel. Miwa et al. [22] constructed the
Hybrid kernel by combining several parsers and
kernels.

5) DSTK kernel. The DSTK kernel exploits structural
syntactic and phrase semantic information, which can
be regarded as a compositional distributional semantic
model [20].

The compared deep learning based methods are briefly intro-
duced as follows.

1) DNN. Zhao et al. [39] pretrained feed-forward neural
network on extracted features by autoencoders and then
fine-tuned the pretrained feed-forward neural network
on PPI corpora.

2) MCCNN. The MCCNN model is a convolutional neu-
ral network with a multichannel word embedding input
layer [29].

3) sdpCNN. The sdpCNN model combines a convolu-
tional neural network with the shortest dependency
path between two marked protein entities [30].

4) McDepCNN. The McDepCNN is a convolutional neu-
ral network with abundant lexical and syntactic input
features [31].

5) LSTM. Hsieh et al. [25] combined LSTM and the
multilayer fully connected neural network to extract
PPIs from the literature.

6) DCNN. The DCNNmodel combined the convolutional
neural network with feature embeddings such asWord-
Net embeddings to extract PPIs [56].

7) Att-sdpLSTM. The Att-sdpLSTM model is an atten-
tion based multilayer LSTM model whose input is
the shortest dependency path parsed by the Enju
parser [26].

8) tLSTM. The tLSTm model comprising of structured
attention based architecture and tree-LSTM [27]. The
tree-LSTM is build on dependency parse tree.

The experimental results are presented in Table 4. Our model
achieved better performance than all kernel-based PPI extrac-
tion methods in the AIMed and BioInfer corpora according to
the precision, recall and F1-score. Compared with the DSTK
kernel, the state-of-the-art kernel method, ourmodel achieved
6.9% and 10.3% F1-score improvement in the AIMed and
BioInfer corpora, respectively. Our model also shows per-
formance advantages over other CNN-based PPI extraction
models, MCCNN, sdpCNN and McDepCNN, in the AIMed
and BioInfer corpora. The three models all rely on external
resources. The sdpCNN and McPepCNN rely on linguis-
tic tools to enhance input features of CNN. The MCCNN
relies on several pretrained word embedding resources. Com-
pared with these models, our model improves CNN’s feature
extraction ability by deepening the architecture instead of
introducing more linguistic knowledge. Although the DNN
model is a deep learning based model, it is a feature engi-
neering based model in essence. Hence, the DNN model
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TABLE 4. Evaluation results by precision, recall and F1-score.

TABLE 5. Evaluation results by macro precision, macro recall and macro F1-score.

achieved similar or worse performance compared than kernel-
based models. Compared with the LSTM model, our model
achieved better performance in AIMed corpus.

Almost all deep learning based PPI extraction models do
not present experimental results for the HPRD50, IEPA and
LLL corpora because these three corpora are too small. For
example, there are only 164 positive instances in the LLL
corpus, as shown in Table 2. To comprehensively analyze
our model’s performance, we present experimental results
in the three corpora. Our model still outperforms most of
kernel-based PPI extraction despite the small size of corpora.
The DSTK kernel achieved better performance in the three
corpora. A plethora of external lexical and syntactic knowl-
edge is introduced into the DSTK kernel. When the data are
very scarce, the knowledge might make DSTK achieve better
performance.

The DCNN model, Att-sdpLSTM model and tLSTM
model are evaluated by themacro F1-score.We also evaluated
our model using the macro F1-score to directly compare our
model with the three models. The macro F1-score experi-
mental results are presented in Table 5. Our model achieved
better performance in the AIMed and BioInfer corpora than
the DCNN model and the tLSTM model. Although the Att-
sdpLSTM model achieves better performance in the AIMed
corpus, our model outperforms it in almost all other cor-
pora. Moreover, the parse speed of the Enju parser, which
relied by the Att-sdpLSTM model, is very slow. The time-
consuming parser makes the Att-sdpLSTM model lack of

TABLE 6. Ablation experimental results.

practicality compared with our model. The tLSTM model
achieved slightly better performance in the IEPA and LLL
corpora, likely due to the introduction of the dependency tree
structure.

V. DISCUSSIONS
A. ABLATION STUDY
To investigate the effectiveness of each component of our
model, we perform an ablation study on the AIMed and
BioInfer corpora, the results of which are shown in Table 6.
In the study, we analyze the effectiveness of residual connec-
tion, 2-stride max-pooling and pretrained word embeddings
respectively. We delete a part of our model and reserve other
settings. Next, we perform 10-fold cross-validation on the
AIMed and BioInfer corpora. After we remove the residual
connection in the residual convolutional blocks, our model is
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FIGURE 2. Effect of varying Block_Num and Conv_Num on the F1-score.

similar to the ordinary multilayer convolutional neural net-
work. Compared with the other two modifications, removing
residual connection causes the largest performance decline,
e.g. 4.1% in AIMed and 2.6% in BioInfer. This shows that
the residual connection is an important component of our
model. The 2-stride max-pooling operation before each resid-
ual convolutional block enlarges the coverage of context, and
brings performance gain. Initializing word embedding layer
using pretrained word embeddings is an important step when
training deep learning basedNLPmodels. Our ablation exper-
iments also verify the strategy. Additionally, the effectiveness
of initializing word embeddings is more obvious for the
AIMed corpus than the BioInfer corpus. As shown in Table 2,
there are more instances in the BioInfer corpus than the
AIMed corpus.We suppose that the effect of initializing word
embeddings diminishes with data increasing.

B. HYPER-PARAMETERS ANALYSIS
The number of residual blocks and the number of convo-
lutional modules are two hyper-parameters of our model.
We determine their values in the hyper-parameters selection
phase. To examine how the two hyper-parameters affect the
performance of our model, we perform experiments on the
AIMed and BioInfer corpora. For the number of residual
blocks, we select it from the range [1, 6]. For the number of
convolutional modules, we select it from the range [1, 4].
As shown in Figure 2, the F1-score increases with the

number of blocks, illustrating the effect of deepening the
model’s architecture. There is a large F1-score improvement
when we increase the number of blocks from 1 to 2. However,
the improvement is not very obvious when the number of
blocks is greater than 3. We suppose that the captured context
information by our model is limited when the number of
blocks is 1 and the context is enlarged by stacking several
residual blocks. Moreover, max-pooling with a stride size
of 2 also plays an important role in expanding the context
range. However, the residual, which supplements missing
information from the first few layers, gradually decreases in
the last few layers. Hence, when the prediction speed is an

important factor of the PPI extraction system, 2 or 3 residual
blocks are the best choices. When better accuracy is needed,
5 or 6 residual blocks are the best choices. When the number
of convolutional modules is set to 1, our model achieved
the worst performance. When the number of convolutional
modules is set to 4, our model’s performance may degrade.
Thus, residual convolutional blocks with 2 or 3 convolutional
modules are the best choices for our model.

C. ERROR ANALYSIS
In this section, we analyze our model’s error predictions on
the AIMed, BioInfer, HPRD50, IEPA and LLL corpora and
summarize them as follows.

1) Indication words such as bind and link between two
entities interfere with our model to make a cor-
rect judgement. For example, no interaction relation
between themarked entities exists in the sentence ‘‘This
suggests that PROTEIN1 may link PROTIEIN2 acti-
vation to molecules that regulate GTP binding pro-
teins.’’, but our model predicts the relation is positive.
The word link located between PROTEIN1 and PRO-
TEIN2 is confusing because the objective of link is
easy to bemistaken for thewordPROTEIN2. However,
the objective of link is the word activation.

2) Some sentences are incorrectly annotated. For exam-
ple, the sentence ‘‘Expression of PROTEIN2 was gen-
erally weak and did not correlate with the expression
of either PROTEIN0 or PROTEIN1.’’ is annotated to
be a positive instance. However, the sentence indicates
that the expression of PROTEIN2 does not correlate
with the expression of PROTEIN1; thus, we think the
instance is negative.

3) The absence of entity mentions makes our model lose
the literal information due to the substitution of entity
mentions. For example, in the sentence ‘‘These results
suggest that PROTEIN1 can confer transcriptional
regulation and possibly cell cycle control and tumor
suppression through an interaction with PROTEIN0,
in particular with PROTEIN2.’’, the mention of
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PROTEIN0 is TFIID and the mention of PROTEIN2
is TAFII250. Our model makes the wrong prediction
because it does not know protein TAFII250 is a type of
protein TFIID.

4) The complex sentence structure makes our model pro-
duce the wrong prediction. For example, our model
does not detect the interaction between PROTEIN1
and PROTEIN2 in the sentence ‘‘Overexpression of
PROTEIN0 promotes degradation of PROTEIN1 in
a pVHL-dependent manner that requires the ATPase
domain of PROTEIN2’’.

5) The ambiguous expression of sentences may induce
our model to make the wrong prediction. For
example, our model predicts the candidate instance
‘‘Coexpression of PROTEIN1 with PROTEIN2 in the
baculovirus expression system resulted in the phos-
phorylation of PROTEIN0 on tyrosine residues.’’ to
be positive. Although there is a coexpression relation
between PROTEIN1 and PROTEIN2, it is not suffi-
cient to describe the presence of the interaction between
two entities5.

VI. CONCLUSION AND FUTURE WORK
In the paper, we propose a residual convolutional neural
network based PPI extraction model. Our model stacks more
convolutional modules by residual connection. Compared
with previous models, our model achieves better or com-
parable performance. Our model alleviates the use of tra-
ditional biomedical natural language processing tools such
as the dependency parser, which can cause the accumula-
tion of errors. The ablation experiments verify the necessity
of residual connection and 2-stride max-pooling. Addition-
ally, we provide advice concerning how to choose hyper-
parameters for our model. To further improve PPI extraction
model’s performance, many labeled sentences are required.
Distant supervision can provide large amounts of annotated
sentences by aligning the PPI knowledge base with the
biomedical literature. Distant supervision based deep learn-
ing model for PPI extraction is our future research direction.
Additionally, sequence-based PPI prediction models can dis-
cover new PPIs from proteins’ amino acid sequences. Enrich-
ing existing PPI networks by combining our model and other
sequence-based PPI prediction models [2] is another research
direction.
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