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ABSTRACT Although quantum maximal-distance-separable (MDS) codes that satisfy the quantum single-
ton bound have become an important research topic in the quantum coding theory, it is not an easy task to
search for quantum MDS codes with the minimum distance that is larger than (q/2) + 1. The pre-shared
entanglement between the sender and the receiver can improve the minimum distance of quantum MDS
codes such that the minimum distance of some constructed codes achieves (q/2)+ 1 or exceeds (q/2)+ 1.
Meanwhile, how to determine the required number of maximally entangled states to make the minimum
distance of quantum MDS codes larger than (q/2) + 1 is an interesting problem in the quantum coding
theory. In this paper, we utilize the decomposition of the defining set and q2-cyclotomic cosets of constacyclic
codes with the form q = αm+ t or q = αm+ α − t and n = (q2 + 1/α) to construct some new families of
entanglement-assisted quantumMDS codes that satisfy the entanglement-assisted quantum singleton bound,
where q is an odd prime power and m is a positive integer, while both α and t are positive integers such that
α = t2 + 1. The parameters of these codes constructed in this paper are more general compared with the
ones in the literature. Moreover, the minimum distance of some codes in this paper is larger than (q/2)+ 1
or q+ 1.

INDEX TERMS Entanglement-assisted quantum codes, constacyclic codes, maximal-distance-separable
(MDS) codes.

I. INTRODUCTION
In the quantum information and quantum computing,
an important subject is to constuct some good quantum
error-correcting codes (quantum codes for short) [3], [5], [7],
[8], [15], [18], [30], [31], [35]–[37], [42]. Let q be a prime
power, a q-ary quantum code of length n can be denoted
as [[n, k, d]]q, where k represents the size of qk that is a
qk -dimensional subspace of the qn-dimensional Hilbert space
and d is the minimum distance. The quantum code can detect
up to d − 1 quantum errors and correct up to b d−12 c quan-
tum errors. Quantum MDS codes that satisfy the quantum
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Singleton bound, that is, 2d = n−k+2, are constructed from
the Hermitian construction by most scholars. Based on this
Hermitian construction, quantumMDS codes have been con-
structed from constacyclic codes including negacyclic codes
and cyclic codes. Some quantum MDS codes with minimum
distance exceeding q

2 + 1 have been constructed from con-
stacyclic codes. In [16], Kai et al. constructed two families
of quantum MDS codes by using negacyclic codes. In [17],
Kai et al. researched some families of constacyclic codes.
In [38], Wang et al. studied two families of constacyclic
codes extended from some results of [17]. In [4], Chen et al.
studied some families of constacyclic codes that were differ-
ent from the ones in [17] and used them to construct quan-
tum MDS codes. For more results of quantum MDS codes,
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the readers can consult [24], [33], [40], [41]. However, the
construction of quantum MDS codes with relatively large
minimum distance is not an easy task. Most of known q-ary
quantum MDS codes have minimum distance less than or
equal to q

2 + 1 except for some special codes’ length.
In recent years, the discovery of the theory of

entanglement-assisted quantum codes plays an important
role in the area of quantum error-correction. Entanglement-
assisted stabilizer formalism was proposed by Brun et al.
in [2]. They showed that if the sender and the receiver
shared a certain amount of pre-existing entanglement, some
entanglement-assisted quantum codes can be constructed
without dual-containing classical quaternary codes [2]. Many
scholars have constructed some entanglement-assisted quan-
tum codes with good parameters in [1], [13], [21], [39].
In [25], the concept about a decomposition of the defining
set of cyclic code was proposed by Li et al., and this method
was used to construct some entanglement-assisted quantum
codes having good parameters. In [32], Qian et al. constructed
some families of entanglement-assisted quantum codes by
using arbitrary binary linear codes and showed the exis-
tence of asymptotically good entanglement-assisted quantum
codes. In [2], Brun et al. proposed the entanglement-assisted
Singleton bound for entanglement-assisted quantum codes,
which could be called entanglement-assisted quantum
maximum-distance-separable (MDS) codes. A construction
of entanglement-assisted quantum MDS codes with the
help of a small amount of pre-shared maximally entan-
glement was provided by Fan et al. in [10]. Guenda et al.
introduced the hull of the classical codes and constructed
some families of entanglement-assisted quantumMDS codes
in [12]. Based on the results of [22], [25], we proposed
a decomposition of the defining set of negacyclic codes
and utilized this method to construct some families of
entanglement-assisted quantum MDS codes with different
lengths in [6]. In [26], [27], Lü et al. used the decomposi-
tion of the defining set of negacyclic codes and constacyclic
codes to construct some families of entanglement-assisted
quantum MDS codes respectively, and someone of those
constructed quantum MDS codes have larger minimum dis-
tance with d ≥ q + 1. In [23], Liu et al. constructed some
new entanglement-assisted quantum MDS codes from con-
stacyclic codes of length n = q2−1

r for r = 3, 5, 6, 7 and
q ≡ −1 mod r . In fact, pre-shared entanglement can improve
the error-correcting ability of quantum codes. By using the
method of pre-shared entanglement, those quantum MDS
codes with minimum distance not exceeding q

2+1 can exceed
q
2 + 1 or even q + 1. Therefore, it is necessary for us to
consider the construction of entanglement-assisted quantum
MDS codes with larger distance.

Moreover, in quantum coding theory, how to determine the
number of pre-shared maximally entangled states to make the
minimum distance of quantum MDS codes larger than q

2 + 1
or even q + 1 is an interesting problem. In [28], although
Luo et al. studied some classes of entanglement-assisted

MDS codes from generalized Reed-Solomon codes under
the Euclidean case and the parameters of those codes were
new and flexible relative to the ones from [6], [12], [27], [34],
the authors just consider the Euclidean construction not
Hermitian construction. Very recently, in [11], although
Fang et al. presented several classes of entanglement-assisted
quantumMDS codes by employing theHermitian hull of gen-
eralized Reed-Solomon codes, they did not consider the case
of entanglement-assisted quantum MDS codes with length
q2+1
α

. In this paper, the method that is the decomposition

of the defining set of constacyclic codes with length q2+1
α

is used to determine the number of pre-shared maximally
entangled states, and then to construct some new families
of entanglement-assisted quantum MDS codes with length
q2+1
α

, which is different from the one used in [11], [28]. Addi-
tionally, by the method, the length of entanglement-assisted
quantum codes is more general, so we can obtain more
entanglement-assisted quantum MDS codes with minimum
distance that is more than q

2 + 1 relative to the ones
of [19], [26], [27]. Furthermore, we can also use the same
method of the decomposition of the defining set of con-
stacyclic codes to obtain other entanglement-assisted quan-
tum MDS codes with the number of pre-shared maximally
entangled states that exceeds 9 in the Hermitian construction.
Some families of entanglement-assisted quantumMDS codes
constructed in this paper are listed as follows.

(1) [[ q
2
+1
α
,
q2+1
α
−2d+3, d; 1]]q, where q is an odd prime

power with the form q = αm + t , m is a positive integer, α
and t ≥ 2 are positive integers such that α = t2 + 1 and
2 ≤ d ≤ 2tq+2

α
is even.

(2) [[ q
2
+1
α
,
q2+1
α
−2d+7, d; 5]]q, where q is an odd prime

power of the form q = αm + t , m is a positive integer, α
and t ≥ 2 are positive integers such that α = t2 + 1 and
2tq+2+2α

α
≤ d ≤ 2(t+1)q−2(t−1)

α
is even.

(3) [[ q
2
+1
α
,
q2+1
α
− 2d + 11, d; 9]]q, where q is an odd

prime power of the form q = αm+ t , m is a positive integer,
α and t ≥ 3 are positive integers such that α = t2 + 1 and
2(t+1)q−2(t−1)+2α

α
≤ d ≤ 2(2t−1)q+2t+4

α
is even. If t = 2, then

there exist entanglement-assisted quantum MDS codes with
parameters [[ q

2
+1
α
,
q2+1
α
− 2d + 11, d; 9]]q, where

6q+8
5 ≤

d ≤ 8q−6
5 is even.

(4) [[ q
2
+1
α
,
q2+1
α
−2d+3, d; 1]]q, where q is an odd prime

power with the form q = αm+ α− t , m is a positive integer,
α and t ≥ 2 are positive integers such that α = t2 + 1 and
2 ≤ d ≤ 2tq−2

α
is even.

(5) [[ q
2
+1
α
,
q2+1
α
−2d+7, d; 5]]q, where q is an odd prime

power of the form q = αm + α − t , m is a positive integer,
α and t ≥ 2 are positive integers such that α = t2 + 1 and
2tq−2+2α

α
≤ d ≤ 2(t+1)q+2(t−1)

α
is even.

(6) [[ q
2
+1
α
,
q2+1
α
− 2d + 11, d; 9]]q, where q is an odd

prime power of the form q = αm + α − t , m is a positive
integer, α and t > 3 are positive integers such that α =
t2 + 1 and 2(t+1)q+2(t−1)+2α

α
≤ d ≤ 2(2t−1)q−2t−4

α
is even.

91680 VOLUME 7, 2019



J. Chen et al.: Some New Classes of Entanglement-Assisted Quantum MDS Codes

If t = 2, then there exist entanglement-assisted quantum
MDS codes with parameters [[ q

2
+1
α
,
q2+1
α
−2d+11, d; 9]]q,

where 6q+12
5 ≤ d ≤ 8q−4

5 is even. If t = 3, then there exist
entanglement-assisted quantum MDS codes with parameters
[[ q

2
+1
α
,
q2+1
α
− 2d + 11, d; 9]]q, where

8q+24
10 ≤ d ≤

10q+10
10

is even.
The main organization of this paper is as follows. In Sec. 2,

we present some definitions and basic results of constacyclic
codes and entanglement-assisted quantum codes. In Sec. 3,
we construct some families of entanglement-assisted quan-
tum MDS codes by using constacyclic codes with length
q2+1
α

, where some quantumMDS codes have larger minimum
distance exceeding q

2 + 1 or q + 1. In Sec. 4, we give the
conclusion and discussion.

II. PREMILINARIES
In this section, we recall some basic results about constacyclic
codes in [4], [14], [16], [17], [20], [24], [29], [33], [38],
[40], [41] and some results of entanglement-assisted quantum
codes in [2], [6], [23], [25], [26].

Let Fq2 be the finite field with q2 elements, where q is a
power of p and p is an odd prime number. Assume that n is
a positive integer relatively prime to q, i.e., gcd(n, q) = 1.
If C is a k-dimensional subspace of Fn

q2
, then C is said to be

an [n, k]-linear code. The number of nonzero components of
c ∈ C is said to be the weight wt(c) of the codeword c. The
minimum nonzero weight d of all codewords in C is said to
be the minimum weight of C. Let aq = (aq0, a

q
1, · · · , a

q
n−1)

denote the conjugation of the vector a = (a0, a1, · · · , an−1).
For u = (u0, u1, · · · , un−1) and v = (v0, v1, · · · , vn−1) ∈
Fn
q2
, the Hermitian inner product is defined as

〈u, v〉h = u0v
q
0 + u1v

q
1 + · · · + un−1v

q
n−1.

The Hermitian dual code of C can be defined as

C⊥h = {u ∈ Fnq2 | 〈u, v〉h = 0 for all v ∈ C}.

If C ⊆ C⊥h , then C is called a Hermitian self-orthogonal
code. If C⊥h ⊆ C, then C is a Hermitian dual-containing code.

Given a nonzero element λ ∈ F∗
q2
, a linear code C

of length n over Fq2 is said to be λ-constacyclic if
(λcn−1, c0, c1, · · · , cn−2) ∈ C for every (c0, c1, · · · ,
cn−1) ∈ C. When λ = −1, C is a negacyclic code. When
λ = 1, C is a cyclic code. We know that a q2-ary
λ-constacyclic code C of length n is an ideal of Fq2 [x]/〈x

n
−

λ〉 and C can be generated by a monic polynomial g(x)
which divides xn − λ. From [4], [17], we can see that the
Hermitian dual C⊥h of a λ-constacyclic code over Fq2 is a
λ−q-constacyclic code. Assume that λ ∈ F∗

q2
is a primitive

r-th root of unity, and then there exists a primitive rn-th root
of unity over some extension field of Fq2 , denoted by η, such
that ηn = λ. Let ξ = ηr , then ξ is a primitive n-th root of
unity, which implies that the elements ηξ i = η1+ri are the
roots of xn− λ for 1 ≤ i ≤ n− 1. LetOrn = {1+ jr|0 ≤ j ≤
n− 1}. For each i ∈ Orn, the q2-cyclotomic coset modulo rn

containing i is Ci = {i, iq2, iq4, · · · , iq2k−2}mod rn, where k
is the smallest positive integer such that iq2k ≡ imod rn. The
defining set of a constacyclic code C = 〈g(x)〉 of length n is
the set

Z = {i ∈ Orn | η
i is a root of g(x)}.

Let C be an [n, k] constacyclic code over Fq2 with defining
set Z . Then the Hermitian dual C⊥h has a defining set Z⊥h =
{z ∈ Orn| − qz mod rn 6∈ Z }.

Proposition 1 (The BCH Bound for Constacyclic
Codes [17], [20]): Let C be a q2-ary constacyclic code of
length n. If the generator polynomial g(x) of C has the
elements {η1+ri | 0 ≤ i ≤ d − 2} as the roots where η is
a primitive rn-th root of unity, then the minimum distance of
C is at least d .

Proposition 2 (Singleton bound [14], [29]): If an [n, k, d]
linear code C over Fq exists, then

k ≤ n− d + 1.

If k = n− d + 1, then C is called an MDS code.

Lemma 1 ([4], [17]): Let C be a q2-ary constacyclic code
of length n with defining set Z . Then C contains its Hermitian
dual code if and only if Z ∩ −qZ = ∅, where −qZ =
{−qz mod rn | z ∈ Z }.

In the following of this section, we recall some basic
notions and results of entanglement-assisted quantum codes
in [2], [6], [23], [25], [26].

An entanglement-assisted quantum code can be denoted as
[[n, k, d; c]]q, with the help of c pairs of maximally entangled
states, which encodes k information qubits into n channel
qubits, where the minimum distance is d . Let H be an (n −
k) × n parity check matrix of C over Fq2 . Then C⊥h has an
n × (n − k) generator matrix H†, where H† is the conjugate
transpose matrix of H over Fq2 .

Theorem 1 ([2], [6], [23], [25], [26]): If C is a classical
code andH is its parity checkmatrix overFq2 , then there exist
entanglement-assisted codes with parameters

[[n, 2k − n+ c, d; c]]q,

where c = rank(HH†) is the number of maximally entangled
states required.

Proposition 3 ([2], [6], [23], [25], [26]): If C is an
entanglement-assisted quantum code with parameters
[[n, k, d; c]]q, then C satisfies the entanglement-assisted Sin-
gleton bound n+ c− k ≤ 2(d − 1). If C satisfies the equality

n+ c− k = 2(d − 1),

then it is called an entanglement-assisted quantum MDS
code.

VOLUME 7, 2019 91681
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III. CONSTRUCTIONS OF ENTANGLEMENT-ASSISTED
QUANTUM MDS CODES
In [23], [26], the authors gave the definition for the decompo-
sition of the defining set of constacyclic codes that containing
cyclic codes and negacyclic codes.

Definition 1 ([23], [26]): Let C be a constacyclic code of
length n with defining set Z . Assume that Z1 = Z ∩ (−qZ )
and Z2 = Z \ Z1, where −qZ = {rn − qx|x ∈ Z }. Then
Z = Z1 ∪ Z2 is called a decomposition of the defining set
of C.

Lemma 2 ([23], [26]): Let Z be a defining set of a consta-
cyclic code C with length n, where gcd(n, q) = 1. Suppose
that Z = Z1 ∪ Z2 is a decomposition of Z . Then the required
number of entangled states is c = |Z1|.

Similar to Lemma 3.1 in [24], we can get Lemma 3 as
follows.

Lemma 3: Let n = q2+1
α

, where q is an odd prime power
with the form q = αm+ t or q = αm+ α− t , m is a positive
integer, both α and t ≥ 2 are integers such that α = t2 + 1.
Then the q2-cyclotomic cosets modulo (q+ 1)n are Cn = {n}
and Cn−(q+1)j = {n− (q+ 1)j, n+ (q+ 1)j} for 1 ≤ j ≤ n−1

2 .

Theorem 2: Let n = q2+1
α

, where q is an odd prime power
with the form q = αm+ t , m is a positive integer, both α and
t ≥ 2 are integers such that α = t2 + 1. If C is a constacyclic
code whose defining set is given by Z = ∪δi=1Cn−(q+1)i,
where 1 ≤ δ ≤ tq−α+1

α
, then C⊥h ⊆ C.

Proof:We only need to consider that Z ∩−qZ = ∅ from
Lemma 1. If Z ∩ −qZ 6= ∅, then there exist two integers
i and j, where 1 ≤ i, j ≤ tq−α+1

α
, such that

n− (q+ 1)i ≡ −q(n− (q+ 1)j)q2k mod (q+ 1)n

for k ∈ {0, 1}. We can seek some contradictions as follows.
(1) If k = 0, then

n− (q+ 1)i ≡ −q(n− (q+ 1)j) mod (q+ 1)n

is equivalent to 0 ≡ qj+ i mod n.
For 1 ≤ i, j ≤ tq−α+1

α
, we can consider the following

cases.
(i) When 1 ≤ j ≤ q−t

α
, we have

q+ 1 ≤ qj+ i

≤ q
q− t
α
+
tq− α + 1

α

=
q2 − α + 1

α
< n.

It is in contradiction with the congruence 0 ≡ qj+ i mod n.
(ii) When q−t+α

α
≤ j ≤ 2q−2t

α
, let j′ = j − q−t

α
, where

1 ≤ j′ ≤ q−t
α
. Then we have

0 ≡ q(j′ +
q− t
α

)+ i mod n,

which is equivalent to

0 ≡ qj′ +
q2 − tq
α
+ i ≡ qj′ −

tq+ 1
α
+ i mod n.

Moreover,

0 <
(α − t)q+ α − 1

α

≤ qj′ −
tq+ 1
α
+ i

≤ q
q− t
α
−
tq+ 1
α
+
tq− α + 1

α

=
q2 − α − tq

α
< n.

It is in contradiction with the congruence 0 ≡ qj′ − tq+1
α
+

i mod n.
(iii) When (ε−1)q−(ε−1)t+α

α
≤ j ≤ εq−εt

α
, where 3 ≤ ε ≤ t

(if there exists t ≥ 3), let j′ = j − (ε−1)q−(ε−1)t
α

, where 1 ≤
j′ ≤ q−t

α
. Then we have

0 ≡ q(j′ +
(ε − 1)q− (ε − 1)t

α
)+ i mod n,

which is equivalent to

0 ≡ qj′ +
(ε − 1)q2 − (ε − 1)qt

α
+ i

≡ qj′ −
(ε − 1)tq+ (ε − 1)

α
+ i mod n.

Moreover,

0 <
(t + 1)q+ α − t + 1

α

≤
(α − (ε − 1)t)q+ α − (ε − 1)

α

≤ qj′ −
(ε − 1)tq+ (ε − 1)

α
+ i

≤ q
q− t
α
−

(ε − 1)tq+ (ε − 1)
α

+
tq− α + 1

α

=
q2 − α + 1− (ε − 1)tq− (ε − 1)

α

≤
q2 − α − 2tq− 1

α
< n.

It is in contradiction with the congruence

0 ≡ qj′ −
(ε − 1)tq+ (ε − 1)

α
+ i mod n.

(2) If k = 1, then

n− (q+ 1)i ≡ −q(n− (q+ 1)j)q2 mod (q+ 1)n

is equivalent to qj ≡ i mod n.
For 1 ≤ i, j ≤ tq−α+1

α
, we can consider the following

cases.
(i) When 1 ≤ j ≤ q−t

α
, we have

q ≤ qj ≤ q
q− t
α
≤
q2 − tq
α

< n.

It is in contradiction with 1 ≤ i ≤ tq−α+1
α

.
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(ii) When q−t+α
α
≤ j ≤ 2q−2t

α
, let j′ = j − q−t

α
, where

1 ≤ j′ ≤ q−t
α
. Then we have

i ≡ q(j′ +
q− t
α

) mod n,

which is equivalent to

i ≡ qj′ +
q2 − tq
α
≡ qj′ −

tq+ 1
α

mod n.

Moreover,

0 <
(α − t)q− 1

α

≤ qj′ −
tq+ 1
α

≤ q
q− t
α
−
tq+ 1
α

=
q2 − 2tq− 1

α
< n.

It is in contradiction with 1 ≤ i ≤ tq−α+1
α

.

(iii) When (ε−1)q−(ε−1)t+α
α

≤ j ≤ εq−εt
α

, where 3 ≤ ε ≤
t (if there exists t ≥ 3), let j′ = j − (ε−1)q−(ε−1)t

α
and

1 ≤ j′ ≤ q−t
α
.

Then we have

i ≡ q(j′ +
(ε − 1)q− (ε − 1)t

α
) mod n,

which is equivalent to

i ≡ qj′ +
(ε − 1)q2 − (ε − 1)qt

α

≡ qj′ −
(ε − 1)tq+ (ε − 1)

α
mod n.

Moreover,

0 <
q(t + 1)− t + 1

α

≤ qj′ −
(ε − 1)tq+ (ε − 1)

α

≤ q
q− t
α
−

(ε − 1)tq+ (ε − 1)
α

≤
q2 − 3tq− 2

α
< n.

It is in contradiction with 1 ≤ i ≤ tq−α+1
α

.

From the above discussion, the result follows. �

Theorem 3: Let n = q2+1
α

, where q is an odd prime power
with the form q = αm + t , m is a positive integer, both α
and t ≥ 2 are positive integers such that α = t2 + 1. If C
is a q2-ary constacyclic code of length n with defining set
Z = ∪δi=0Cn−(q+1)i for 0 ≤ δ ≤

tq−α+1
α

, then there exist
entanglement-assisted quantum MDS codes with parameters
[[ q

2
+1
α
,
q2+1
α
−2d+3, d; 1]]q, where 2 ≤ d ≤

2tq+2
α

is even.

Proof: From Lemma 3, we assume that the defining set
of constacyclic code C is Z = ∪δi=0Cn−(q+1)i for 0 ≤ δ ≤
tq−α+1

α
, and then C is a constacyclic code with parameters

[ q
2
+1
α
,
q2+1
α
− 2δ − 1, 2δ + 2]q2 from Propositions 1 and 2.

The defining set of C can be divided into twomutually disjoint
subsets, i.e., Z = Z0 ∪ Z1, where Z0 = Cn and Z1 =
∪
δ
i=1Cn−(q+1)i for 1 ≤ δ ≤

tq−α+1
α

. Assume that the defining
sets Z0 and Z1 can generate constacyclic codes C0 and C1
respectively. Let the parity check matrices of C, C0 and C1
over Fq2 be H , H0 and H1, respectively. Therefore,

H =
(
H0
H1

)
,

and

HH†
=

(
H0H

†
0 H0H

†
1

H1H
†
0 H1H

†
1

)
.

From Theorem 2, we can see that H1H
†
1 = 0. Moreover,

we have H0H
†
1 = 0, and H1H

†
0 = 0 from

Cn ∩ −q(∪δi=1Cn−(q+1)i) = −q(Cn ∩ (∪
δ
i=1Cn−(q+1)i)) = ∅,

and then

HH†
=

(
H0H

†
0 0

0 0

)
.

Since Z0 ∩ −qZ0 = {n}, it follows that rank(H0H
†
0 ) = 1.

From Lemma 2, we have c = 1. Therefore, there exist
entanglement-assisted quantum MDS codes with parameters
[[ q

2
+1
α
,
q2+1
α
− 2d + 3, d; 1]]q from Theorem 1 and Proposi-

tion 3, where 2 ≤ d ≤ 2tq+2
α

is even. �

Example 1: If t = 7 and m = 3, then q = 157 and n =
493. Hence, there exist entanglement-assisted quantumMDS
codes that from Theorem 3 are listed in Table 1.

TABLE 1. Sample parameters of entanglement-assisted quantum MDS
codes constructed from Theorem 3.

Theorem 4: Let n = q2+1
α

, where q is an odd prime power
with the form q = αm + t , m is a positive integer, both
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α and t ≥ 2 are positive integers such that α = t2 + 1.
If C is a q2-ary constacyclic code of length n with defining
set Z = ∪δi=0Cn−(q+1)i for

tq+1
α
≤ δ ≤

(t+1)q−t(t+1)
α

, then
there exist entanglement-assisted quantum MDS codes with
parameters [[ q

2
+1
α
,
q2+1
α
−2d+7, d; 5]]q, where

2tq+2α+2
α

≤

d ≤ 2(t+1)q−2(t−1)
α

is even.

Proof: From Lemma 3, we assume that the defining set
of constacyclic code C is given by Z = ∪δi=0Cn−(q+1)i for
tq+1
α
≤ δ ≤

(t+1)q−t(t+1)
α

, and then C is a constacyclic

code with parameters [ q
2
+1
α
,
q2+1
α
− 2δ − 1, 2δ + 2]q2 from

Propositions 1 and 2. The defining set of C can be divided into
three mutually disjoint subsets, i.e., Z = Z0 ∪ Z1 ∪ Z2, where

Z0 = Cn, Z1 = ∪
tq−α+1

α

i=1 Cn−(q+1)i and Z2 = ∪δ
i= tq+1

α

Cn−(q+1)i.

Assume that the defining sets Z0, Z1, Z2 can generate consta-
cyclic codes C0, C1 and C2 respectively. Let the parity check
matrices of C, C0, C1 and C2 over Fq2 be H , H0, H1 and H2,
respectively. Therefore,

H =

H0
H1
H2

,
and

HH†
=

H0H
†
0 H0H

†
1 H0H

†
2

H1H
†
0 H1H

†
1 H1H

†
2

H2H
†
0 H2H

†
1 H2H

†
2

.
From the proof of Theorem 3, we have rank(H0H

†
0 ) = 1,

H0H
†
1 = 0,H1H

†
0 = 0 andH1H

†
1 = 0, furthermore,H0H

†
2 =

0 and H2H
†
0 = 0 from

Cn ∩ −q(∪δi= tq+1
α

Cn−(q+1)i)

= −q(Cn ∩ (∪δi= tq+1
α

Cn−(q+1)i) = ∅,

and then

HH†
=

H0H
†
0 0 0

0 0 H1H
†
2

0 H2H
†
1 H2H

†
2

.
In order to determine the number of entangled states of
entanglement-assisted quantum codes, we discuss two cases
as follows.

(1) H2H
†
2 = 0. In fact, we only need to consider that

Z2 ∩ −qZ2 = ∅ from Lemma 1. If Z2 ∩ −qZ2 6= ∅, where
Z2 = ∪δi=1Cn−(q+1)(i+ tq−α+1

α
) with 1 ≤ δ ≤

q−t
α
, then there

exist two integers i and j, where 1 ≤ i, j ≤ q−t
α
, such that

n− (q+ 1)(i+
tq− α + 1

α
)

≡ −q(n− (q+ 1)(j+
tq− α + 1

α
))q2k mod (q+ 1)n

for k ∈ {0, 1}.

If k = 0, then we have

qj+ i ≡
t(t − 1)q+ t(t + 1)

α
mod n,

and then

0 <
(q+ 1)+ t(q− 1)

α

≤ q+ 1−
t(t − 1)q+ t(t + 1)

α

≤ qj+ i−
t(t − 1)q+ t(t + 1)

α

≤
q2 − tq
α
+
q− t
α
−
t(t − 1)q+ t(t + 1)

α

=
q2 − (t2 − 1)q− t2 − 2t

α
< n,

which is in contradiction with

qj+ i ≡
t(t − 1)q+ t(t + 1)

α
mod n.

If k = 1, then we have

qj ≡ i+
t(t + 1)q− t(t − 1)

α
mod n.

When j = 1, then

q <
αq+ (t − 1)q+ 1+ t

α

= 1+
t(t + 1)q− t(t − 1)

α

≤ i+
t(t + 1)q− t(t − 1)

α

≤
q− t
α
+
t(t + 1)q− t(t − 1)

α

=
t(t + 1)q+ q− t2

α

=
αq+ tq− t2

α
< n,

which is in contradiction with

q ≡ i+
t(t + 1)q− t(t − 1)

α
mod n.

For 1 ≤ i ≤ q−t
α
, and 2 ≤ j ≤ q−t

α
(if q = α + t , then we

have j = 1, which has been discussed), we have

0 <
(t2 − t + 1)q+ t2

α

≤ 2q−
q− t
α
−
t(t + 1)q− t(t − 1)

α

≤ qj− i−
t(t + 1)q− t(t − 1)

α

≤ q
q− t
α
− 1−

t(t + 1)q− t(t − 1)
α

=
q2 − (t2 + 2t)q− t − 1

α
< n,

which is in contradiction with

qj ≡ i+
t(t + 1)q− t(t − 1)

α
mod n.
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(2) rank(H1H
†
2 ) = rank(H2H

†
1 ) = 2. We can assume that

Z1 = ∪
tq−α+1

α

i=1 Cn−(q+1)i can be divided into three defining sets
which are

Z11 = ∪
q−α−t
α

i=1 Cn−(q+1)i,

Z12 = Cn−(q+1) q−t
α

and

Z13 = ∪
tq−α+1

α

i= q+α−t
α

Cn−(q+1)i.

Here, we only consider the case of q > α + t, if q =
α + t, then we can use the same method to discuss that

Z1 = ∪
tq−α+1

α

i=1 Cn−(q+1)i = Cn−(q+1) q−t
α
∪(∪

tq−α+1
α

i= q+α−t
α

Cn−(q+1)i).

Therefore, the defining sets Z11, Z12, Z13 and Z2 can gen-
erate constacyclic codes C11, C12, C13 and C2 respectively.
Let the parity check matrices of C1, C11, C12, C13 and

C2 over Fq2 be H1, H11, H12, H13 and H2, respectively.
Therefore,

H1H
†
2 =

H11H
†
2

H12H
†
2

H13H
†
2

.
Since

−qCn−(q+1) q−t
α
∩ (∪δ

i= tq+1
α

Cn−(q+1)i)

= Cn−(q+1) tq+1
α

∩ (∪δ
i= tq+1

α

Cn−(q+1)i)

= Cn−(q+1) tq+1
α

,

in order to obtain rank(H1H
†
2 ) = rank(H2H

†
1 ) = 2, we have

to show that H11H
†
2 = 0 and H13H

†
2 = 0 as follows.

(i) H11H
†
2 = 0. In fact, it only need to show that

−q(∪
q−α−t
α

i=1 Cn−(q+1)i) ∩ (∪δi=0Cn−(q+1)(i+ tq+1
α

)) = ∅

from Lemma 1, where 0 ≤ δ ≤
q−α−t
α

. Assume that there
exist two integers i, j, 1 ≤ i ≤ q−α−t

α
and 0 ≤ j ≤ q−α−t

α
,

such that

−q(Cn−(q+1)i) ∩ (Cn−(q+1)(j+ tq+1
α

)) 6= ∅.

Then we have

−q(n− (q+1)i)q2k ≡ n− (q+1)(j+
tq+ 1
α

) mod (q+ 1)n.

If k = 0, then

−q(n− (q+ 1)i) ≡ n− (q+ 1)(j+
tq+ 1
α

) mod (q+ 1)n,

which is equivalent to

j+
tq+ 1
α
+ qi ≡ 0 mod n,

where 1 ≤ i ≤ q−α−t
α

and 0 ≤ j ≤ q−α−t
α

. Since

0 <
(α + t)q+ 1

α

= q+
tq+ 1
α

≤ j+
tq+ 1
α
+ qi

≤ (q+ 1)
q− α − t

α
+
tq+ 1
α

=
q2 − (α − 1)q− t(t + 1)

α
< n,

it is in contradiction with j+ tq+1
α
+ qi ≡ 0 mod n.

If k = 1, then

−q3(n− (q+ 1)i) ≡ n− (q+ 1)(j+
tq+ 1
α

) mod (q+ 1)n,

which is equivalent to

j+
tq+ 1
α
≡ qi mod n,

where 1 ≤ i ≤ q−α−t
α

and 0 ≤ j ≤ q−α−t
α

. Since

0 <
tq+ 1
α

≤ j+
tq+ 1
α

≤
(t + 1)q− t(t + 1)

α
< q,

it is in contradiction with q ≤ qi ≤ q2−(α+t)q
α

.
(ii) H13H

†
2 = 0. In fact, it only need to show that

(∪
(t−1)q−t(t−1)

α

i=1 Cn−(q+1)(i+ q−t
α

))

∩ − q(∪δi=0Cn−(q+1)(i+ tq+1
α

)) = ∅.

from Lemma 1, where 0 ≤ δ ≤ q−α−t
α

. Assume that

(∪
(t−1)q−t(t−1)

α

i=1 Cn−(q+1)(i+ q−t
α

))

∩ − q(∪δi=0Cn−(q+1)(i+ tq+1
α

)) 6= ∅,

then there exist two integers i, j, where 0 ≤ j ≤ q−α−t
α

and
1 ≤ i ≤ (t−1)q−t(t−1)

α
such that

n− (q+ 1)(i+
q− t
α

)

≡ −q(n− (q+ 1)(j+
tq+ 1
α

))q2k mod (q+ 1)n

for k ∈ {0, 1}.
If k = 0, then

n− (q+ 1)(i+
q− t
α

)

≡ −q(n− (q+ 1)(j+
tq+ 1
α

)) mod (q+ 1)n,

which is equivalent to

q(j+
tq+ 1
α

)+ (i+
q− t
α

) ≡ 0 mod n,
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i.e.,

qj+ i+
2q− 2t
α

≡ 0 mod n,

where 0 ≤ j ≤ q−α−t
α

and 1 ≤ i ≤ (t−1)q−t(t−1)
α

. Since

0 <
2q+ α − 2t

α

= 1+
2q− 2t
α

≤ qj+
2q− 2t
α
+ i

≤ q
q− α − t

α
+

2q− 2t
α
+

(t − 1)q− t(t − 1)
α

=
q2 − t2q− t(t + 1)

α
< n,

it is in contradiction with

qj+ i+
2q− 2t
α

≡ 0 mod n.

If k = 1, then

n− (q+ 1)(i+
q− t
α

)

≡ −q(n+ (q+ 1)(j+
tq+ 1
α

)) mod (q+ 1)n,

which is equivalent to

q(j+
tq+ 1
α

) ≡ i+
q− t
α

mod n,

i.e.,

qj ≡ i mod n,

where 0 ≤ j ≤ q−α−t
α

and 1 ≤ i ≤ (t−1)q−t(t−1)
α

.
If j = 0, then i = 0, which is in contradiction with 1 ≤
i ≤ (t−1)q−t(t−1)

α
. For q ≤ qj ≤ q2−αq−tq

α
< n, it is in

contradiction with 1 ≤ i ≤ (t−1)q−t(t−1)
α

.
Therefore, we have rank(H1H

†
2 ) = 2 and rank(HH†) = 5.

Moreover, we have c = 5 from Lemma 2. From Theo-
rem 1 and Proposition 3, there exist entanglement-assisted
quantum MDS codes with parameters [[ q

2
+1
α
,
q2+1
α
− 2d +

7, d; 5]]q, where 2tq+2α+2
α

≤ d ≤
2(t+1)q−2(t−1)

α
is

even. �

Example 2: If t = 7 and m = 3, then q = 157 and
n = 493. Additionally, Let t = 7 and m = 5, then q = 257
and n = 1321. Therefore, there exist entanglement-assisted
quantumMDS code that fromTheorem 4 are listed in Table 2.

Theorem 5: Let n = q2+1
α

, where q is an odd prime power
with the form q = αm+ t , m is a positive integer, both α and
t ≥ 2 are positive integers such that α = t2 + 1. Then we
have the following results.

(1) If C is a q2-ary constacyclic code of length n with
defining set Z = ∪δi=0Cn−(q+1)i for

3q−1
5 ≤ δ ≤

4q−8
5 (i.e.,

t = 2), then there exist entanglement-assisted quantumMDS

TABLE 2. Sample parameters of entanglement-assisted quantum MDS
codes constructed from Theorem 4.

codes with parameters [[ q
2
+1
5 ,

q2+1
5 −2d+11, d; 9]]q, where

6q+8
5 ≤ d ≤

8q−6
5 is even.

(2) If C is a q2-ary constacyclic code of length n
with defining set Z = ∪δi=0Cn−(q+1)i for

(t+1)q−t+1
α

≤

δ ≤
(2t−1)q−α+t+2

α
(here, t ≥ 3), then there exist

entanglement-assisted quantum MDS codes with parameters
[[ q

2
+1
α
,
q2+1
α
− 2d + 11, d; 9]]q, where

(2t+2)q+2α−2t+2
α

≤

d ≤ (4t−2)q+2t+4
α

is even.

Proof: Here, we only show the part (2) of this theo-
rem, since the part (1) could be obtained by using the same
method. From Lemma 3, the defining set of constacyclic
code C is given by Z = ∪δi=0Cn−(q+1)i for

(t+1)q−t+1
α

≤

δ ≤
(2t−1)q−α+t+2

α
. We can see that C is a constacyclic

code with parameters [ q
2
+1
α
,
q2+1
α
− 2δ − 1, 2δ + 2]q2

from Propositions 1 and 2. The defining set of C can be
divided into four mutually disjoint subsets, i.e., Z = Z0 ∪

Z1 ∪ Z2 ∪ Z3, where Z0 = Cn, Z1 = ∪
tq−α+1

α

i=1 Cn−(q+1)i,

Z2 = ∪
(t+1)q−α−t+1

α

i= tq+1
α

Cn−(q+1)i and Z3 = ∪δ
i= (t+1)q−t+1

α

Cn−(q+1)i.

Assume that the defining sets Z0, Z1, Z2 and Z3 can generate
constacyclic codes C0, C1, C2 and C3 respectively. Let the
parity check matrices of C, C0, C1, C2 and C3 over Fq2 be H ,
H0, H1, H2 and H3, respectively. Therefore,

H =


H0
H1
H2
H3

,
and

HH†
=


H0H

†
0 H0H

†
1 H0H

†
2 H0H

†
3

H1H
†
0 H1H

†
1 H1H

†
2 H1H

†
3

H2H
†
0 H2H

†
1 H2H

†
2 H2H

†
3

H3H
†
0 H3H

†
1 H3H

†
2 H3H

†
3

.
It is easy to see that rank(H0H

†
0 ) = 1, rank(H2H

†
1 ) =

rank(H1H
†
2 ) = 2, H0H

†
1 = 0, H0H

†
2 = 0, H0H

†
3 = 0 and

H0H
†
4 = 0, then

HH†
=


H0H

†
0 0 0 0

0 H1H
†
1 H1H

†
2 H1H

†
3

0 H2H
†
1 H2H

†
2 H2H

†
3

0 H3H
†
1 H3H

†
2 H3H

†
3

.
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From the proof of Theorem 4, we have

HH†
=


H0H

†
0 0 0 0

0 0 H1H
†
2 H1H

†
3

0 H2H
†
1 0 H2H

†
3

0 H3H
†
1 H3H

†
2 H3H

†
3

.
In order to obtain

HH†
=


H0H

†
0 0 0 0

0 0 H1H
†
2 H1H

†
3

0 H2H
†
1 0 0

0 H3H
†
1 0 0

,
we discuss three cases as follows.

(1) rank(H1H
†
3 ) = rank(H3H

†
1 ) = 2. In fact, if δ =

(t+1)q−t+1
α

, we have

−qCn−(q+1)( (t+1)q−t+1
α

) ∩ (∪
tq−t2
α

i=1 Cn−(q+1)i)

= Cn−(q+1)( (t−1)q+t+1
α

),

then rank(H1H
†
3 ) = rank(H3H

†
1 ) = 2. For (t+1)q+α−t+1

α
≤

δ ≤
(2t−1)q−α+t+2

α
, we have

−q(∪δ
i= (t+1)q−t+1

α

Cn−(q+1)i) ∩ (∪
tq−t2
α

i=1 Cn−(q+1)i)

= −q(∪δ
i= (t+1)q+α−t+1

α

Cn−(q+1)i ∪ Cn−(q+1)( (t+1)q−t+1
α

))

∩(∪
tq−t2
α

i=1 Cn−(q+1)i)

= (−q(∪δ
i= (t+1)q+α−t+1

α

Cn−(q+1)i) ∩ (∪
tq−t2
α

i=1 Cn−(q+1)i))

∪(Cn−(q+1)( (t−1)q+t+1
α

) ∩ (∪
tq−t2
α

i=1 Cn−(q+1)i))

= (−q(∪δ
i= (t+1)q+α−t+1

α

Cn−(q+1)i) ∩ (∪
tq−t2
α

i=1 Cn−(q+1)i))

∪Cn−(q+1)( (t−1)q+t+1
α

).

In order to get that rank(H1H
†
3 )= rank(H3H

†
1 ) = 2, we need

to show that

−q(∪δ
i= (t+1)q+α−t+1

α

Cn−(q+1)i) ∩ (∪
tq−t2
α

i=1 Cn−(q+1)i) = ∅,

with (t+1)q+α−t+1
α

≤ δ ≤
(2t−1)q−α+t+2

α
, which is equivalent

to

−q(∪δi=1Cn−(q+1)(i+ (t+1)q−(t−1)
α

)) ∩ (∪
tq−t2
α

i=1 Cn−(q+1)i) = ∅

for 1 ≤ δ ≤ (t−2)q−t(t−2)
α

.

If

−q(∪δi=1Cn−(q+1)(i+ (t+1)q−(t−1)
α

)) ∩ (∪
tq−t2
α

i=1 Cn−(q+1)i) 6= ∅,

then we assume that there exist two integers i, j, where 1 ≤
i ≤ (t−2)q−t(t−2)

α
and 1 ≤ j ≤ tq−t2

α
, such that

−q(n− (q+ 1)(i+
(t + 1)q− (t − 1)

α
))q2k

≡ n− (q+ 1)j mod (q+ 1)n

for k ∈ {0, 1}.
If k = 0, then it is equivalent to

qi+ j−
(t + 1)+ (t − 1)q

α
≡ 0 mod n.

(i) When 1 ≤ i ≤ q−t
α
, we have

0 <
(α − t + 1)q+ α − t − 1

α

= q+ 1−
(t + 1)+ (t − 1)q

α

≤ qi−
(t + 1)+ (t − 1)q

α
+ j

≤
q2 − (t − 1)q− t − α

α
< n,

which is in contradiction with qi+j− (t+1)+(t−1)q
α

≡ 0mod n.
(ii) When q+α−t

α
≤ i ≤ 2q−2t

α
, and let i′ = i − q−t

α
, we

have 1 ≤ i′ ≤ q−t
α
. Then

q(i′ +
q− t
α

)−
(t + 1)+ (t − 1)q

α
+ j ≡ 0 mod n,

which is equivalent to qi′ − t+2+(2t−1)q
α

+ j ≡ 0 mod n, then
we have

0 <
(α − 2t + 1)q+ α − t − 2

α

= q+ 1−
t + 2+ (2t − 1)q

α

≤ qi′ −
t + 2+ (2t − 1)q

α
+ j

≤
q2 − t − 2− (2t − 1)q− t2

α
< n,

which is in contradiction with qi′− t+2+(2t−1)q
α

+j ≡ 0mod n.
(iii) When (ε−1)q+α−(ε−1)t

α
≤ i ≤ εq−εt

α
, where 3 ≤ ε ≤

t−2 (Here, if there exists t ≥ 5), and let i′ = i− (ε−1)q−(ε−1)t
α

,

then 1 ≤ i′ ≤ q−t
α
. We have

q(i′+
(ε−1)q−(ε−1)t

α
)−

(t+1)+(t−1)q
α

+j ≡ 0 mod n,

which is equivalent to qi′− t+ε+(t−1+(ε−1)t)q
α

+ j ≡ 0 mod n,
and then we have

0 <
(2t + 2)q+ α − 2t + 2

α

≤
(α − t + 1− (ε − 1)t)q+ α − t − ε

α

= q+ 1−
t + ε + (t − 1+ (ε − 1)t)q

α

≤ qi′ −
t + ε + (t − 1+ (ε − 1)t)q

α
+ j
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≤
q2 − tq
α
−
t + ε + (t − 1+ (ε − 1)t)q

α
+
tq− t2

α

≤
q2 − (t − 1+ (ε − 1)t)q− t2 − t − ε

α

≤
q2 − (3t − 1)q− t2 − t − 3

α
< n,

which is in contradiction with qi′ − t+ε+(t−1+(ε−1)t)q
α

+ j ≡
0 mod n.

If k = 1, then we have

−q(n+ (q+ 1)(i+
(t + 1)q− (t − 1)

α
))

≡ n− (q+ 1)j mod (q+ 1)n,

which is equivalent to qi− (t+1)+(t−1)q
α

− j ≡ 0 mod n.
(i) When 1 ≤ i ≤ q−t

α
, we have

0 <
(α − 2t + 1)q+ (t2 − t − 1)

α

= q−
(t + 1)+ (t − 1)q

α
−
tq− t2

α

≤ qi−
(t + 1)+ (t − 1)q

α
− j

≤
q2 − (2t − 1)q− (α + t + 1)

α
< n,

which is in contradiction with qi− (t+1)+(t−1)q
α

−j ≡ 0mod n.
(ii) When q+α−t

α
≤ i ≤ 2q−2t

α
, and let i′ = i − q−t

α
, we

have 1 ≤ i′ ≤ q−t
α
. We have

q(i′ +
q− t
α

)−
(t + 1)+ (t − 1)q

α
− j ≡ 0 mod n,

which is equivalent to qi′ − t+2+(2t−1)q
α

− j ≡ 0 mod n, then
we have

0 <
(α − 3t + 1)q+ (t2 − t − 2)

α

= q−
tq− t2

α
−
t + 2+ (2t − 1)q

α

≤ qi′ −
t + 2+ (2t − 1)q

α
− j

≤
q2 − (3t − 1)q− t − 2− α

α
< n,

which is in contradiction with qi′− t+2+(2t−1)q
α

−j ≡ 0mod n.
(iii) When (ε−1)q+α−(ε−1)t

α
≤ i ≤ εq−εt

α
, where 3 ≤ ε ≤

t−2 (Here, if there exists t ≥ 5), and let i′ = i− (ε−1)q−(ε−1)t
α

,

we have 1 ≤ i′ ≤ q−t
α
. Additionally,

q(i′+
(ε−1)q−(ε−1)t

α
)−

(t+1)+(t−1)q
α

−j ≡ 0 mod n,

which is equivalent to qi′ − ε+t+(εt−1)q
α

− j ≡ 0 mod n.

For 1 ≤ i′ ≤ q−t
α

and 1 ≤ j ≤ tq−t2

α
, we have

0 <
(t + 2)q+ t2 − 2t + 2

α

≤
(α − εt − t + 1)q+ t2 − ε − t

α

= q−
tq− t2

α
−
ε + t + (εt − 1)q

α

≤ qi′ −
ε + t + (εt − 1)q

α
− j

≤
q2 − (εt + t − 1)q− ε − t − α

α

≤
q2 − (4 t − 1)q− 3− t − α

α
< n,

which is in contradiction with qi′− ε+t+(εt−1)q
α

−j ≡ 0mod n.
(2) H3H

†
2 = H3H

†
2 = 0. In fact, we need to show that

−q(∪δ
i= (t+1)q−t+1

α

Cn−(q+1)i) ∩ (∪
(t+1)q−t(t+1)

α

i= tq+1
α

Cn−(q+1)i = ∅,

which is equivalent to

−q(∪δi=0Cn−(q+1)(i+ (t+1)q−t+1
α

))∩(∪
q−t−α
α

i=0 Cn−(q+1)(i+ tq+1
α

))=∅.

If

−q(∪δi=0Cn−(q+1)(i+ (t+1)q−t+1
α

))∩(∪
q−t−α
α

i=0 Cn−(q+1)(i+ tq+1
α

))=∅,

then we assume that there exist two integers 0 ≤ i ≤
(t−2)q−t(t−2)

α
and 0 ≤ j ≤ q−α−t

α
such that

−q(n− (q+ 1)(i+
(t + 1)q− (t − 1)

α
))q2k

≡ n− (q+ 1)(j+
tq+ 1
α

) mod (q+ 1)n

for k ∈ {0, 1}.
If k = 0, it is equivalent to qi + j + q−t

α
≡ 0 mod n for

0 ≤ i ≤ (t−2)q−(t−2)t
α

and 0 ≤ j ≤ q−α−t
α

.
(i) When 0 ≤ i ≤ q−t

α
, we have

0 <
q− t
α

≤ qi+
q− t
α
+ j

≤
q2 − (t − 2)q− α − 2t

α
< n,

which is in contradiction with qi+ j+ q−t
α
≡ 0 mod n.

(ii) When q+α−t
α
≤ i ≤ 2q−2t

α
, and let i′ = i − q−t

α
, we

have 1 ≤ i′ ≤ q−t
α
. We have

q(i′ +
q− t
α

)+ j+
q− t
α
≡ 0 mod n,

which is equivalent to qi′ − (t−1)q+t+1
α

+ j ≡ 0 mod n, and
then we have

0 <
(α − t + 1)q− t − 1

α

= q−
(t − 1)q+ t + 1

α

≤ qi′ −
(t − 1)q+ t + 1

α
+ j

≤
q2 − (2t − 2)q− 2t − 1− α

α
< n,

which is in contradiction with qi′− (t−1)q+t+1
α

+ j ≡ 0 mod n.
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(iii) When (ε−1)q+α−(ε−1)t
α

≤ i ≤ εq−εt
α

, where 3 ≤ ε ≤
t−2 (Here, if there exists t ≥ 5), and let i′ = i− (ε−1)q−(ε−1)t

α
,

we have 1 ≤ i′ ≤ q−t
α
. Additionally,

q(i′ +
(ε − 1)q− (ε − 1)t

α
)+ j+

q− t
α
≡ 0 mod n,

which is equivalent to qi′− ((ε−1)t−1)q+(ε−1)+t
α

+j ≡ 0mod n,
and then we have

0 <
(3t + 2)q− 2t + 3

α

≤
(α − (ε − 1)t + 1)q− (ε − 1)− t

α

= q−
((ε − 1)t − 1)q+ (ε − 1)+ t

α

≤ qi′ −
((ε − 1)t − 1)q+ (ε − 1)+ t

α
+ j

≤
q2 − (εt − 2)q− (ε − 1)− α − 2t

α

≤
q2 − (3 t − 2)q− 2− α − 2t

α
< n,

which is in contradiction with qi′− ((ε−1)t−1)q+(ε−1)+t
α

+ j ≡
0 mod n.

If k = 1, we have

−q(n+ (q+ 1)(i+
(t + 1)q− (t − 1)

α
))

≡ n− (q+ 1)(j+
tq+ 1
α

) mod (q+ 1)n

for 0 ≤ i ≤ (t−2)q−(t−2)t
α

and 0 ≤ j ≤ q−α−t
α

, which is
equivalent to qi ≡ j+ (2t−1)q+t+2

α
mod n.

(i) When 0 ≤ i ≤ q−t
α
, for i = 0, we have j = n −

(2t−1)q+t+2
α

=
q2−(2t−1)q−t−1

α
, which is in contradiction with

0 ≤ j ≤ q−α−t
α

. For 1 ≤ i ≤ q−t
α
, we have

0 <
(α − 2t)q+ (α − 2)

α

= q−
(2t − 1)q+ t + 2

α
−
q− α − t

α

≤ qi−
(2t − 1)q+ t + 2

α
− j

≤
q2 − (3t − 1)q− t − 2

α
< n,

which is in contradiction with qi ≡ j+ (2t−1)q+t+2
α

mod n.
(ii) When q+α−t

α
≤ i ≤ 2q−2t

α
, and let i′ = i − q−t

α
, we

have 1 ≤ i′ ≤ q−t
α
. Additionally,

q(i′ +
q− t
α

)−
(2t − 1)q+ t + 2

α
− j ≡ 0 mod n,

which is equivalent to qi′ − (3t−1)q+t+3
α

− j ≡ 0 mod n, and
then we have

0 <
(α − 3t)q+ α − 3

α

= q−
(3t − 1)q+ t + 3

α
−
q− α − t

α

≤ qi′ −
(3t − 1)q+ t + 3

α
− j

≤
q2 − (4t − 1)q− t − 3

α
< n,

which is in contradiction with qi′− (3t−1)q+t+3
α

−j ≡ 0mod n.
(iii) When (ε−1)q+α−(ε−1)t

α
≤ i ≤ εq−εt

α
, where 3 ≤ ε ≤

t−2 (Here, if there exists t ≥ 5), and let i′ = i− (ε−1)q−(ε−1)t
α

,

we have 1 ≤ i′ ≤ q−t
α
. Additionally,

q(i′ + (ε−1)q−(ε−1)t
α

)− (2t−1)q+t+2
α

− j

≡ 0 mod n,

which is equivalent to qi′− ε+1+t+((ε+1)t−1)q
α

− j ≡ 0 mod n,
and then we have

0 <
α − t + 3+ (t + 1)q

α

≤
α − ε + 1+ (α − (ε + 1)t)q

α

= q−
ε − 1+ t + ((ε + 1)t − 1)q

α
−
q− α − t

α

≤ qi′ −
ε − 1+ t + ((ε + 1)t − 1)q

α
− j

≤
q2 − tq
α
−
ε − 1+ t + ((ε + 1)t − 1)q

α

≤
q2 − ε − t + 1− ((ε + 2)t − 1)q

α

≤
q2 − 2− t − (5t − 1)q

α
< n,

which is in contradiction with qi′ − ε+1+t+((ε+1)t−1)q
α

− j ≡
0 mod n.
(3) We have H3H

†
3 = 0. In fact, we need to show that

−q(∪δ
i= (t+1)q−t+1

α

Cn−(q+1)i) ∩ (∪δi= (t+1)q−t+1
α

Cn−(q+1)i) = ∅,

which is equivalent to

−q(∪δi=0Cn−(q+1)(i+ (t+1)q−t+1
α

))

∩(∪δi=0Cn−(q+1)(i+ (t+1)q−t+1
α

)) = ∅.

If

−q(∪δi=0Cn−(q+1)(i+ (t+1)q−t+1
α

))

∩(∪δi=0Cn−(q+1)(i+ (t+1)q−t+1
α

)) 6= ∅,

we assume that there exist two integers i, j, where 0 ≤ i, j ≤
(t−2)q−(t−2)t

α
such that

−q(n− (q+ 1)(i+
(t + 1)q− (t − 1)

α
))q2k

≡ n− (q+ 1)(j+
(t + 1)q− (t − 1)

α
) mod (q+ 1)n

for k ∈ {0, 1}.
If k = 0, then it is equivalent to qi+ 2q−2t

α
+ j ≡ 0 mod n.

(i) When 0 ≤ i ≤ q−t
α
, we have

0 <
2q− 2t
α
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≤ qi+
2q− 2t
α
+ j

≤
q2 − t2

α
< n,

which is in contradiction with qi+ j+ 2q−2t
α
≡ 0 mod n.

(ii) When q+α−t
α
≤ i ≤ 2q−2t

α
, and let i′ = i − q−t

α
, then

1 ≤ i′ ≤ q−t
α
. We have

q(i′ +
q− t
α

)+ j+
2q− 2t
α

≡ 0 mod n,

which is equivalent to qi′ − (t−2)q+2t+1
α

+ j ≡ 0 mod n, and
then we have

0 <
(α − t + 2)q− 2t − 1

α

= q−
(t − 2)q+ 2t + 1

α

≤ qi′ −
(t − 2)q+ 2t + 1

α
+ j

≤
q2 − tq− t2 − 1

α
< n,

which is in contradiction with qi′− (t−2)q+2t+1
α

+j ≡ 0mod n.
(iii) When (ε−1)q+α−(ε−1)t

α
≤ i ≤ εq−εt

α
, where 3 ≤ ε ≤

t−2 (Here, if there exists t ≥ 5), and let i′ = i− (ε−1)q−(ε−1)t
α

,

we have 1 ≤ i′ ≤ q−t
α
. Additionally,

q(i′ +
(ε − 1)q− (ε − 1)t

α
)+ j+

2q− 2t
α

≡ 0 mod n,

which is equivalent to qi′ − ((ε−1)t−2)q+(ε−1)+2t
α

+ j ≡
0 mod n, and then we have

0 <
(3t + 3)q− 3t + 3

α

≤
(α − (ε − 1)t + 2)q− (ε − 1)− 2t

α

= q−
((ε − 1)t − 2)q+ (ε − 1)+ 2t

α

≤ qi′ −
((ε − 1)t − 2)q+ (ε − 1)+ 2t

α
+ j

≤
q2 − (ε − 1)tq− (ε − 1)− t2

α

≤
q2 − 2tq− 2− t2

α
< n,

which is in contradiction with qi′− ((ε−1)t−2)q+(ε−1)+2t
α

+ j ≡
0 mod n.

If k = 1, then we have

−q(n+ (q+ 1)(i+
(t + 1)q− (t − 1)

α
))

≡ n− (q+ 1)(j+
(t + 1)q− (t − 1)

α
) mod (q+ 1)n

for 0 ≤ i, j ≤ (t−2)q−(t−2)t
α

, which is equivalent to qi ≡ j +
2tq+2
α

mod n.

(i) If 0 ≤ i ≤ q−t
α
, for i = 0, we have j = n −

2tq+2
α
=

q2−2tq−1
α

, which is in contradiction with 0 ≤ j ≤
(t−2)q−(t−2)t

α
. For 1 ≤ i ≤ q−t

α
, we have

0 <
2tq+ 2
α

≤
2tq+ 2
α
+ j

≤
2tq+ 2
α
+

(t − 2)q− (t − 2)t
α

≤
(3t − 2)q− t2 + 2t + 2

α
< q,

which is in contradiction with qi ≡ j+ 2tq+2
α

mod n.
(ii) If q+α−t

α
≤ i ≤ 2q−2t

α
, and let i′ = i − q−t

α
, then

1 ≤ i′ ≤ q−t
α
. We have

q(i′ +
q− t
α

)− j−
2tq+ 2
α

≡ 0 mod n,

which is equivalent to qi′ − 3tq+3
α
− j ≡ 0 mod n, and then

we have

0 <
(α − 4t + 2)q+ t2 − 2t − 3

α

= q−
3tq+ 3
α
−

(t − 2)q− (t − 2)t
α

≤ qi′ −
3tq+ 3
α
− j

≤
q2 − 4tq− 3

α
< n,

which is in contradiction with qi′ − 3tq+3
α
− j ≡ 0 mod n.

(iii) If (ε−1)q+α−(ε−1)t
α

≤ i ≤ εq−εt
α

, where 3 ≤ ε ≤ t − 2
(Here, if there exists t ≥ 5), and let i′ = i − (ε−1)q−(ε−1)t

α
,

then 1 ≤ i′ ≤ q−t
α
. We have

q(i′ +
(ε − 1)q− (ε − 1)t

α
)−

2tq+ 2
α
− j ≡ 0 mod n,

which is equivalent to qi′ − (ε+1)tq+ε+1
α

− j ≡ 0 mod n, and
then we have

0 <
3q+ t2 − 3t + 1

α

≤
(α − εt − 2t + 2)q+ t2 − 2t − ε − 1

α

= q−
(ε + 1)tq+ ε + 1

α
−

(t − 2)q− (t − 2)t
α

≤ qi′ −
(ε + 1)tq+ ε + 1

α
− j

≤ q
q− t
α
−

(ε + 1)tq+ ε + 1
α

≤
q2 − (ε + 2)tq− ε − 1

α

≤
q2 − 5tq− 4

α
< n,

which is in contradiction with qi′− (ε+1)tq+ε+1
α

−j ≡ 0mod n.
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Therefore, we have

HH†
=


H0H

†
0 0 0 0

0 0 H1H
†
2 H1H

†
3

0 H2H
†
1 0 0

0 H3H
†
1 0 0

,
and rank(HH†) = 9. From Theorem 1 and Proposi-
tion 3, there exist entanglement-assisted quantumMDS codes
with parameters [[ q

2
+1
α
,
q2+1
α
− 2d + 11, d; 9]]q, where

2(t+1)q+2α−2t+2
α

≤ d ≤ (4t−2)q+2t+4
α

is even. �

Example 3: If t = 7 and m = 3, then q = 157 and n =
493. Therefore, there exist entanglement-assisted quantum
MDS code from Theorem 5 that are listed in Table 3.

TABLE 3. Sample parameters of entanglement-assisted quantum MDS
codes constructed from Theorem 5.

When n = q2+1
α

, where q is an odd prime power with the
form q = αm + α − t , m is a positive integer, both α and
t ≥ 2 are positive integers such that α = t2 + 1, we have the
following result of Theorem 6 by using the same method of
Theorem 2. Moreover, based on Theorem 6, we can use the
method of Theorems 3, 4 and 5 to get Theorem 7.

Theorem 6: Let n = q2+1
α

, where q is an odd prime power
with the form q = αm + α − t , m is a positive integer, both
α and t ≥ 2 are positive integers such that α = t2 + 1. If C
is a constacyclic code whose defining set is given by Z =
∪
δ
i=1Cn−(q+1)i, where 1 ≤ δ ≤

tq−α−1
α

, then C⊥h ⊆ C.

Theorem 7: Let n = q2+1
α

, where q is an odd prime power
with the form q = αm + α − t , m is a positive integer, both
α and t ≥ 2 are positive integers such that α = t2 + 1. Then
we have the following results.

(1) If C is a q2-ary constacyclic code of length n with
defining set Z = ∪δi=0Cn−(q+1)i for 0 ≤ δ ≤

tq−α−1
α

, then
there exist entanglement-assisted quantum MDS codes with
parameters [[ q

2
+1
α
,
q2+1
α
− 2d + 3, d; 1]]q, where 2 ≤ d ≤

2tq−2
α

is even.
(2) If C is a q2-ary constacyclic code of length nwith defin-

ing set Z = ∪δi=0Cn−(q+1)i for
tq−1
α
≤ δ ≤

(t+1)q−α+(t−1)
α

,

TABLE 4. Sample parameters of entanglement-assisted quantum MDS
codes constructed from Theorem 7.

then there exist entanglement-assisted quantum MDS codes
with parameters [[ q

2
+1
α
,
q2+1
α
− 2d + 7, d; 5]]q, where

2tq−2+2α
α

≤ d ≤ 2(t+1)q+2(t−1)
α

is even.
(3) If C is a q2-ary constacyclic code of length n

with defining set Z = ∪δi=0Cn−(q+1)i for
(t+1)q+t−1

α
≤

δ ≤
(2t−1)q−α−t−2

α
(here, t > 3), then there exist

entanglement-assisted quantum MDS codes with parameters
[[ q

2
+1
α
,
q2+1
α
− 2d + 11, d; 9]]q, where

2(t+1)q+2(t−1)+2α
α

≤

d ≤ 2(2t−1)q−2t−4
α

. If C is a q2-ary constacyclic code of length
n with defining set Z = ∪δi=0Cn−(q+1)i for

3q+1
5 ≤ δ ≤

4q−7
5

(here, t = 2), then there exist entanglement-assisted quantum
MDS codes with parameters [[ q

2
+1
α
,
q2+1
α
−2d+11, d; 9]]q,

where 6q+12
5 ≤ d ≤ 8q−4

5 . If C is a q2-ary constacyclic
code of length n with defining set Z = ∪δi=0Cn−(q+1)i
for 4q+2

10 ≤ δ ≤
5q−5
10 (here, t = 3), then there exist

entanglement-assisted quantum MDS codes with parameters
[[ q

2
+1
α
,
q2+1
α
−2d +11, d; 9]]q, where

8q+24
10 ≤ d ≤

10q+10
10 .

Example 4: If t = 7 and m = 3, then q = 193
and n = 745. Then there exist some entanglement-assisted
quantum MDS code that from Theorem 7 are listed
in Table 4.

IV. CONCLUSION AND DISCUSSION
In this paper, we use constacyclic codes with length q2+1

α
to construct some classes of entanglement-assisted quantum
MDS codes. When α = 5, 10, we can see that the minimum
distance of some entanglement-assisted quantumMDS codes
constructed in this paper is larger than q

2 + 1 or even q + 1.
Furthermore, as the α increases, it becomes more and more
difficult to search for the codes with the minimum distance
that is larger than q

2 + 1.
In Table 5, we give some families of entanglement-assisted

quantum MDS codes available in [19], [26], [27] as well as
the new families of entanglement-assisted quantum MDS
codes constructed in this paper. We give the parameters
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TABLE 5. Entanglement-assisted quantum MDS codes.

91692 VOLUME 7, 2019



J. Chen et al.: Some New Classes of Entanglement-Assisted Quantum MDS Codes

TABLE 5. (Continued.) Entanglement-assisted quantum MDS codes.

[[n, k, d; c]]q of entanglement-assisted quantum MDS codes
in the first column, the range of parameters in the sec-
ond column, the minimum distance d of the corresponding

entanglement-assisted quantum MDS codes in the third col-
umn, and the corresponding references in the fourth column.

In [19], when s = q2+1
2 , there exist entanglement-assisted

quantumMDS codes with parameters [[ q
2
+1
10 ,

q2+1
10 −

4
5 (2q+

1) − 4λ + 7, 25 (2q + 1) + 2λ + 2; 9]]q, where q is an odd
prime power with the form q ≡ 7(mod 10) and 1 ≤ λ ≤ q+3

10 .
Here, the range of λ should be 1 ≤ λ ≤

q−7
10 . In fact,
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if λ = q+3
10 , −qCs−(q+1)( 2q+15 +λ)

= −qCs−(q+1)( q+12 ) =

Cs−(q+1) q−12
, then the required number of entangled

states is 13.
Compared with the entanglement-assisted quantum MDS

codes constructed from [19], [26] and [27], the ones con-
structed in this paper are more general. From Table 5, the
range of d of some codes constructed in [19], [26] are
included in the results of this paper. Additionally, in [27],
when q is an odd prime power in the form of 20χ + 3 with a
positive integer χ , and then there exist entanglement-assisted
quantum MDS codes with parameters [[ q

2
+1
5 ,

q2+1
5 − 2d +

3, d; 1]]q and [[
q2+1
5 ,

q2+1
5 −2d+7, d; 5]]q, whose minimum

distance is even and the range of the ones are 2 ≤ d ≤ 16χ+2
and 16χ + 4 ≤ d ≤ 24χ + 4 respectively. The minimum
distance can be transformed to 2 ≤ d ≤ 4q−2

5 and 4q+8
5 ≤

d ≤ 6q+2
5 respectively and the minimum distance is even.

From Theorem 7, we have entanglement-assisted quantum
MDS codes with parameters [[ q

2
+1
5 ,

q2+1
5 − 2d + 3, d; 1]]q

where 2 ≤ d ≤ 4q−2
5 is even, and [[ q

2
+1
5 ,

q2+1
5 − 2d +

7, d; 5]]q where
4q+8
5 ≤ d ≤

6q+2
5 is even. Moreover, when q

is an odd prime power in the form of 20χ + 7 with a positive
integer χ , there exist entanglement-assisted quantum MDS
codes with parameters [[ q

2
+1
α
,
q2+1
α
− 2d + 3, d; 1]]q where

2 ≤ d ≤ 16χ + 6 is even, and [[ q
2
+1
α
,
q2+1
α
− 2d + 7, d; 5]]q

where 16χ+8 ≤ d ≤ 24χ+8 is even. Theminimum distance
can be transformed to 2 ≤ d ≤ 4q+2

5 and 4q+12
5 ≤ d ≤

6q−2
5 respectively and the minimum distance d is even. From

Theorems 3 and 4, we have entanglement-assisted quantum
MDS codes with parameters [[ q

2
+1
5 ,

q2+1
5 − 2d + 3, d; 1]]q

where 2 ≤ d ≤ 4q+2
5 is even, and [[ q

2
+1
5 ,

q2+1
5 − 2d +

7, d; 5]]q where 4q+12
5 ≤ d ≤ 6q−2

5 is even. Therefore,

entanglement-assisted quantum MDS codes of length q2+1
5

listed in Table 5 of [27] are included in this paper.
Although the number of pre-shared entangled states

is fixed relative to the codes of [11], [28], entanglement-
assisted quantum MDS codes with different lengths in
this paper are got in the Hermitian case that not covered
in [11], [28]. In order to get more entanglement-assisted
quantum MDS with flexible entangled states, we will use
combinatorial method or computer search algorithm to obtain
them in the future work. Moreover, how to determine the
minimum required number of pre-shared entangled states to
make some entanglement-assisted quantum MDS codes con-
structed from other constacyclic codes with better parameters
is still an interesting topic.
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