
Received June 15, 2019, accepted July 1, 2019, date of publication July 8, 2019, date of current version July 26, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2927220

SNIRD: Disclosing Rules of Malware Spread in
Heterogeneous Wireless Sensor Networks
SHIGEN SHEN 1, HAIPING ZHOU1, SHENG FENG1,
JIANHUA LIU 1, (Member, IEEE), AND QIYING CAO 2
1Department of Computer Science and Engineering, Shaoxing University, Shaoxing 312000, China
2College of Computer Science and Technology, Donghua University, Shanghai 201620, China

Corresponding authors: Shigen Shen (shigens@126.com) and Jianhua Liu (ljh_541@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 61772018 and Grant 61572014, and in
part by the Public Welfare Technology Research Project of Zhejiang Province under Grant LGG19F020007.

ABSTRACT Heterogeneous wireless sensor networks (WSNs) are widely deployed, owing to their good
capabilities in terms of network stability, dependability, and survivability. However, they are prone to the
spread of malware because of the limited computational capabilities of sensor nodes. To suppress the
spread of malware, a malware spread model is urgently required to discover the rules of malware spread.
In this paper, a heterogeneous susceptible-iNsidious-infectious-recovered-dysfunctional (SNIRD) model
was proposed, which not only considers the communication connectivity of heterogeneous sensor nodes
but also reflects the characteristics of malware hiding and dysfunctional sensor nodes. Then, the fraction
evolution equations of heterogeneous sensor nodes in different states in discrete time were obtained. Further-
more, the existence of equilibria for the heterogeneous SNIRD model was proved, and the malware spread
threshold was obtained, which indicates whether malware will spread or fade out. Finally, the heterogeneous
SNIRD model was simulated and it was contrasted with the conventional SIS and SIR models to validate
its effectiveness. The results construct a theoretical guideline for administrators to suppress the spread of
malware in heterogeneous WSNs.

INDEX TERMS Heterogeneous wireless sensor networks, malware, epidemic theory, heterogeneity,
equilibria, malware spread threshold.

I. INTRODUCTION
Currently, heterogeneous wireless sensor networks (WSNs)
have become the most universal method to network sen-
sor nodes and smart devices to construct smart Internet of
Things [1], [2]. In contrast to homogeneous WSNs, where
all the sensor nodes involved have the same capabilities
including power, communication, and computation, hetero-
geneous WSNs allow for all types of sensor nodes with
energy, link, and computational heterogeneities. Therefore,
heterogeneousWSNs are more scalable and have better capa-
bilities in terms of network stability, dependability, and sur-
vivability. They have been widely employed in areas such
as smart cities, medical treatment, agriculture, factories, and
so on [3]–[6].

Malware (short for malicious software) refers to any soft-
ware intentionally designed by attackers to inflict damage

The associate editor coordinating the review of this manuscript and
approving it for publication was Amjad Mehmood.

on computer systems [7]–[15]. Malware is prone to spread
in heterogeneous WSNs [16]–[20], because the sensor nodes
have limited computational capabilities and high-strength
security measures cannot be efficiently deployed. Once mal-
ware has broadly spread, it can interfere with the regular
sensing processes, eavesdrop on data sensed by the nodes,
and even destroy sensor nodes [21], [22]. These malicious
behaviors do great damage to the service availability and
data confidentiality of heterogeneous WSNs. To solve the
problems associated with the spread of malware, the most
important issue is to set up a malware spread model and thus
disclose the rules of malware spread to suppress the malware
infection.

Epidemic models are usually borrowed to formulate the
spread of malware [23]–[25], owing to the fact that malware
spread has similarities, especially with the spread processes
of epidemic diseases. Conventional epidemic models include
the SI, SIR, and SIS models, which are based on node state
classification. The SI and SIS models classify all nodes into
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two states Susceptible (S) and Infectious (I ), whereas the
SIR model has three states S, I and Recovered (R).

According to the behaviors of the heterogeneous sen-
sor nodes, a heterogeneous epidemic model called the
SNIRD model was put forward, which includes the states S,
N (iNsidious), I , R, and D (Dysfunctional), by extending
the conventional SIR model. The state N was introduced for
cases where the malware may have hidden itself to avoid
being detected by the sensor IDS (intrusion detection system).
Moreover, a heterogeneous sensor node in state N is infected
by malware but it doesn’t infect other neighbor nodes, which
is motivated by the exposed state of the SEIR model. On the
other hand, the state D was supplemented for the motivation
that a heterogeneous sensor node may become dysfunctional
due to malware destruction, power exhaustion, or physical
damage. Obviously, a heterogeneous sensor node in state D
cannot infect others even if the node has been infectious.
Further, the heterogeneity of heterogeneous sensor nodes was
distinguished by their communication connectivity, which
universally exists in heterogeneous WSNs and denotes the
number of connections a heterogeneous sensor node has
to other nodes. Next, the heterogeneous SNIRD model in
discrete time was constituted, integrating the communica-
tion connectivity of the heterogeneous sensor nodes. Fur-
ther, the equilibria of the heterogeneous SNIRD model was
obtained and the malware spread threshold was computed
as an indicator to guide administrators in taking security
measures.

The contributions of this paper are summarized as follows.
First, a heterogeneous SNIRD model for heterogeneous

WSNswas proposed. To our knowledge, this model is the first
work to not only consider the communication connectivity of
heterogeneous sensor nodes as a characteristic of their het-
erogeneity but also introduce the states N and D to reflect the
characteristics of malware hiding and dysfunctional sensor
nodes.

Second, the conversion quantity of all states of the hetero-
geneous SNIRD model was analyzed, and then fraction evo-
lution equations for heterogeneous sensor nodes in different
states were obtained as time evolves in a discrete manner.
These equations can disclose the changeable quantities of
all the heterogeneous sensor nodes in a heterogeneous WSN
under the spread of malware.

Finally, the existence of the equilibria of the heteroge-
neous SNIRDmodel was proved. Further, themalware spread
threshold was obtained by computing the basic reproduc-
tion number, which can indicate whether the malware will
spread or fade out. Thus, a theoretical guideline for adminis-
trators was constructed to suppress the spread of malware in
heterogeneous WSNs.

The rest of the paper was arranged as follows. Related
work was surveyed in Section II, and the unsolved prob-
lems of current epidemic models for heterogeneous WSNs
were addressed. In Section III, the state transitions of het-
erogeneous sensor nodes were analyzed. In Section IV, the
heterogeneous SNIRD model was presented. Then, the

TABLE 1. Notations.

existence of equilibria for the proposed model was proved
in Section V, and the malware spread threshold was obtained.
In SectionVI, the heterogeneous SNIRDmodel was validated
and the proposed model was compared with the conventional
SIS and SIR models. Finally, the paper was summarized.

Notations used in this paper are listed in Table 1 for easy
examination.

II. RELATED WORK
To date, there are some malware spread models for WSNs
which are developed by extending the conventional epidemic
models. An SEIRS-V model proposed in [26] adds states
E (Exposed) and V (Vaccination), based on the SIR model,
to disclose the dynamics of malware spread in WSNs. The
SEIR model presented in [27] reflects latency and immunity
delays. A geographical SI model, given in [28], considers
the spatial and geometrical features of the sensor nodes. The
SITR model in [29] adds the state T (Terminally Infected)
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to the SIR model to characterize the sleeping mode of sen-
sor nodes. An SIS-based passive dynamical system in [30]
develops adaptive strategies, which can restrain the spread
of multiple malware threats. With regard to malware spread
in mobile WSNs, there are reaction diffusion equations [31],
pulse differential equations [32], and delay reaction diffusion
equations [33], all based on the SIRmodel. The SEIRVmodel
in [34] and the improved SIRS model in [35] both reflect
the deployed density and the communication radius of sensor
nodes. A discrete-time absorbing Markov process used in
the SIS model of [36] characterizes the spread of malware
across nontrivial topologies of large networks. In addition,
typical epidemic models for WSN malware spread include a
stochastic SIS model [37], an SEIR model considering time
delay [38], a developed SEIRS model with a changeable
infection rate [39], and an SEIRmodel with a variable contact
rate [40].

Some researchers have focused on the spread of malware
in heterogeneous WSNs. Qu and Wang [41] considered the
infection rate heterogeneity among nodes and employed the
SIS model to analyze the influence with log-normal, gamma
and newly designed distribution functions on the fraction of
infected nodes, respectively. Nowzari et al. [42] proposed
an epidemic model called the susceptible-exposed-infected-
vigilant model, which analyzes the spread of malware
over universal directed graphs with heterogeneous nodes.
Eshghi et al. [43] presented a general epidemic framework,
which can be employed in any node cluster with univer-
sal contact rates between any two nodes. Yang et al. [44]
proposed a heterogeneous SIRS model, which considers the
network topology heterogeneity.

However, there are still some problems with malware
spread models for heterogeneous WSNs that need to be
solved. One problem is how to simultaneously reflect
three practical circumstances: the heterogeneity of sensor
nodes, malware hiding and dysfunctional sensor nodes. The
other problem is how to indicate whether malware will
spread or fade out after solving the first problem. Herein,
the first problem was addressed by adding states N and D
to the traditional SIR model and employing a communication
connectivity measure to reflect the sensor node heterogene-
ity. Then, the second problem was addressed by exploring
the equilibria of the heterogeneous model and obtaining the
malware spread threshold.

III. STATE TRANSITIONS OF A HETEROGENEOUS
SENSOR NODE
In the heterogeneous SNIRD model, a heterogeneous sensor
node in state S indicates that it has system bugs and is
susceptible to infection by malware. N indicates that the het-
erogeneous sensor node has been infected and is controlled
by malware, and that the resident malware is insidious to
attack other heterogeneous sensor nodes. I indicates that the
heterogeneous sensor node has been infected and controlled
by malware, and that the resident malware can infect other
heterogeneous sensor nodes by communicating with them.

FIGURE 1. State conversion flow of a heterogeneous sensor node.

R indicates that the infected node has had the resident mal-
ware removed through the sensor IDS launched by admin-
istrators, and it is vaccinated against the given malware.
D indicates that the heterogeneous sensor node is dysfunc-
tional, because it may be physically damaged or intentionally
destroyed by the resident malware. Note that malware resided
in a heterogeneous sensor node of stateN will not infect other
heterogeneous sensor nodes, whereas the resident malware
in a heterogeneous sensor node of state I can infect other
heterogeneous sensor nodes.

Figure 1 illustrates the state conversion flow of a het-
erogeneous sensor node. In fact, these state conversions are
implemented by the actions of the sensor IDS and the mal-
ware, which are controlled by administrators and adversaries,
respectively. For a heterogeneous sensor node, it initially is
in state R. Its state converts from state R to S, once malware
scans the heterogeneous sensor node and finds its security
vulnerabilities, and thus malware can inject itself into the
heterogeneous sensor node. Then, its state converts from
state S to N , once the malware continually attacks and suc-
cessfully resides in the heterogeneous sensor node. The node
state may be in state N over a long period of time, because
the malware can be more easily detected by the sensor IDS if
the malware is frequently launching attacks. Further, its state
converts from state N to I , once the resident malware infects
other heterogeneous sensor nodes. In general, administrators
employ the sensor IDS to detect and remove the resident mal-
ware and patch the security programs of the susceptible nodes
to immunize them from the given malware. These actions
convert states S,N , and I to R. In addition, any heterogeneous
sensor node may have software and hardware failures, energy
exhaustion, or destruction incurred by malware. These cases
convert states S, N , I , and R to D. These dysfunctional nodes
are generally replaced by new nodes, because most hetero-
geneous sensor nodes cannot be repaired. The replacement
makes these dysfunctional nodes convert from state D to R.
At that time, note that the heterogeneous sensor nodes con-
verting state D to R are no longer dysfunctional nodes
and dashed arrows are employed in Fig. 1 to denote this
conversion. More specifically, the incoming dashed arrow
in Fig. 1 means that some new nodes are added to replace
those dysfunctional nodes, whereas the outgoing dashed
arrow means that those dysfunctional nodes are discarded.

In the heterogeneous SNIRD model, a heterogeneous
sensor node initially is in state R, which is different from
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conventional epidemic models where the initial state is S.
This treatment is made for the following reason. Generally,
a new heterogeneous sensor node is patched with the newest
security programs. Therefore, the new node has the ability to
defend the knownmalware. This characteristic is correspond-
ing to state R. In fact, this paper is motivated by conventional
epidemic models, but this paper flexibly deals with the initial
state according to the characteristic of a new heterogeneous
sensor node.

IV. HETEROGENEOUS SNIRD MODEL
In the proposed model, the heterogeneity of heterogeneous
sensor nodes is based on their communication connectivity.
As a result, all heterogeneous sensor nodes are divided into
K assemblages, each of which has the same communication
connectivity. Let k ∈ {1, 2, · · · ,K } be the communication
connectivity of assemblage k . S tk , N

t
k , I

t
k , R

t
k , and Dtk are

the fractions of assemblage k in states S, N , I , R, and D at
time t , respectively. They obviously satisfy

S tk + N
t
k + I

t
k + R

t
k + D

t
k = 1 (1)

at any time. As assumed in other epidemic models [43], let
ϕ be the initial fraction of nodes in state I belonging to
assemblage k , that is,

I0k = ϕ, 0 < ϕ < 1. (2)

The initial fractions of nodes in states N , R, and D belonging
to assemblage k are 0. That is,

N 0
k = R0k = D0

k = 0. (3)

Thus, the initial fraction of nodes in state S belonging to
assemblage k is achieved by

S0k = 1− ϕ. (4)

At time t , the probability, ωtk , that a heterogeneous sensor
node in state S belonging to assemblage k communicates with
one of the infectious nodes is

ωtk =
1

< m >

K∑
k=1

αkδk I tk , (5)

where < m > is the average communication connectivity of
the heterogeneousWSN, andαk and δk are the probability and
the infectious capability of a heterogeneous sensor node hav-
ing communication connectivity k , respectively. Inherently,
these parameters are characterized by

K∑
k=1

αk = 1 (6)

and

< m >=
K∑
k=1

kαk . (7)

As for the δk that can be applied to heterogeneous WSNs,
researchers have presented typical formulas such as

1) δk = k [45]; 2) δk = C [46], where C is a constant; and
3) δk = ϑkς/(1 + ξkς ) [47], with three parameters: ϑ , ς ,
and ξ .

Next, the conversion quantity of all the states is analyzed.
Let qkij be the probability of heterogeneous sensor nodes in
assemblage k converting from i ∈ {S,N , I ,R,D} to j ∈
{S,N , I ,R,D}. For heterogeneous sensor nodes with com-
munication connectivity k in state S at time t , the quantity
increment of converting from state R is the probability qkRS
times the fraction Rtk at time t−1, i.e., qkRSR

t−1
k . The quantity

decrements of converting into states N , R, and D are the
probability qkSN times the probability ωtk at time t − 1 times
the fraction S tk at time t − 1, the probability qkSR times the
fraction S tk at time t − 1, and the probability qkSD times the
fraction S tk at time t − 1, i.e., qkSNω

t−1
k S t−1k , qkSRS

t−1
k , and

qkSDS
t−1
k , respectively. Thus, when time evolves from t − 1

to t , the fraction S tk is

S tk=S
t−1
k +q

k
RSR

t−1
k − qkSNω

t−1
k S t−1k −q

k
SRS

t−1
k −q

k
SDS

t−1
k .

(8)

After a similar analysis on the heterogeneous sensor nodes
with communication connectivity k in other states, other
fractions are obtained by

N t
k = N t−1

k + q
k
SNω

t−1
k S t−1k −q

k
NRN

t−1
k −q

k
NIN

t−1
k −q

k
NDN

t−1
k ,

(9)

I tk = I t−1k + q
k
NIN

t−1
k −q

k
IRI

t−1
k −q

k
IDI

t−1
k , (10)

Rtk = Rt−1k + η + q
k
SRS

t−1
k + q

k
NRN

t−1
k + q

k
IRI

t−1
k −q

k
RSR

t−1
k

−qkRDR
t−1
k , (11)

and

Dtk=D
t−1
k + qkSDS

t−1
k +q

k
NDN

t−1
k +q

k
IDI

t−1
k +q

k
RDR

t−1
k −η.

(12)

Thus far, (8)–(12) constitute the heterogeneous SNIRDmodel
in discrete time. Note that the fraction η is added to the
fraction Rtk in (11) and is conversely subtracted from the
fraction Dtk in (12), because some new heterogeneous sensor
nodes have replaced those irreparably dysfunctional nodes so
that the heterogeneous WSN can work normally.

V. ANALYSES OF THE HETEROGENEOUS SNIRD MODEL
A. EQUILIBRIUM
As an epidemic model, the equilibrium of the heterogeneous
SNIRD model is required to obtain the malware spread
threshold which will determine whether the malware in the
heterogeneous WSN will spread or dissipate. Mathemati-
cally, the equilibrium of the heterogeneous SNIRD model is
denoted by the value (S#k , N

#
k , I

#
k , R

#
k , D

#
k ) of (S

t
k ,N

t
k , I

t
k , R

t
k ,

Dtk ) at a given time t#, satisfying

∀t > t#, (S tk ,N
t
k , I

t
k ,R

t
k ,D

t
k )= (S

#
k ,N

#
k , I

#
k ,R

#
k ,D

#
k ). (13)

That is, (S tk ,N
t
k , I

t
k , R

t
k , D

t
k ) stays constant for all t > t#.

In this manner, the following theorem is obtained.
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Theorem 1: There exist equilibria for the heterogeneous
SNIRD model expressed in (8)–(12).

Proof: Once the heterogeneous SNIRDmodel approaches
its equilibrium at time t#, (S tk ,N

t
k , I

t
k , R

t
k , D

t
k ) stays constant

for all t > t#. Thus, all fraction increments of S tk − S t−1k ,
N t
k − N t−1

k , I tk − I t−1k , Rtk − Rt−1k , and Dtk − Dt−1k become
0 for all t > t#. That is

qkRSR
t−1
k −q

k
SNω

t−1
k S t−1k −q

k
SRS

t−1
k −q

k
SDS

t−1
k =0

qkSNω
t−1
k S t−1k −q

k
NRN

t−1
k −q

k
NIN

t−1
k −q

k
NDN

t−1
k =0

qkNIN
t−1
k −q

k
IRI

t−1
k −q

k
IDI

t−1
k =0

η+qkSRS
t−1
k +q

k
NRN

t−1
k +q

k
IRI

t−1
k −q

k
RSR

t−1
k −q

k
RDR

t−1
k =0

qkSDS
t−1
k +q

k
NDN

t−1
k +q

k
IDI

t−1
k +q

k
RDR

t−1
k −η=0

(14)

After solving (14), two equilibria

11(SMFk ,NMF
k , IMFk ,RMFk ,DMFk )

and

12(SMEk ,NME
k , IMEk ,RMEk ,DMEk )

are obtained, which means that (S tk ,N
t
k , I

t
k , R

t
k ,D

t
k ) will finally

stay 11 or 12. Here,

SMFk =
ηqkRS

qkRSq
k
SD + q

k
RDq

k
SR + q

k
RDq

k
SD

, (15)

NMF
k = 0, (16)
IMFk = 0, (17)

RMFk =
η(qkSR + q

k
SD)

qkRSq
k
SD + q

k
RDq

k
SR + q

k
RDq

k
SD

, (18)

DMFk = 1− SMFk − NMF
k − IMFk − RMFk

= 1−
η(qkSR + q

k
SD + q

k
RS )

qkRSq
k
SD + q

k
RDq

k
SR + q

k
RDq

k
SD

, (19)

SMEk =
ψk

qkSNq
k
NIσk

, (20)

NME
k =

qkIR + q
k
ID

qkNI
IMEk , (21)

IMEk =
ηqkRSq

k
SNq

k
NIσk−ψk (q

k
RSq

k
SD+q

k
RDq

k
SR+q

k
RDq

k
SD)

qkSNσk (q
k
RSq

k
ND(q

k
IR+q

k
ID)+ q

k
RSq

k
NIq

k
ID + q

k
RDψk )

,

(22)

RMEk =
ψk (qkSR + q

k
SD + q

k
SNσk I

ME
k )

qkRSq
k
SNq

k
NIσk

, (23)

and

DMEk = 1− SMEk − NME
k − IMEk − RMEk , (24)

where

ψk = (qkIR + q
k
ID)(q

k
NR + q

k
NI + q

k
ND), (25)

and

σk =
1

< m >

K∑
k=1

αkδk . (26)

Thus, the proof is finished. �

In Theorem 1, the equilibrium 11 is referred to a
malware-free equilibrium, because the fraction IMFk is 0,
which means malware extermination, after the heterogeneous
SNIRD model reaches the equilibrium 11. On the other
hand, the equilibrium 12 is named the endemic equilibrium,
because the fraction IMEk is better than zero, which means
that the malware still spreads after the heterogeneous SNIRD
model reaches the equilibrium 12. Obviously, the equilib-
rium 11 is the target that an administrator pursues for man-
aging the heterogeneous WSN, because the malware will be
exterminated after the administrators continually adopt the
security actions. Contrarily, the equilibrium 12 should be
avoided, because malware will continue to spread and a frac-
tion IMEk of the heterogeneous sensor nodes will be infected
and disrupt the normal operation of the heterogeneous WSN.

B. MALWARE SPREAD THRESHOLD
Here, the malware spread threshold of the heterogeneous
SNIRD model is explored, which is an indicator that guides
administrators in taking security measures. The threshold
determines whether or not the malware can spread in the
heterogeneous WSN, and thus it plays an important role in
analyzing the dynamics of the heterogeneous SNIRD model.
Mathematically, the threshold is obtained by the basic repro-
duction number γ , which equals the mean quantity of infec-
tious sensor nodes added by the primary sensor nodes in
state I .
Theorem 2: There exists a malware spread threshold for

the heterogeneous SNIRD model.
Proof: Based on the next-generationmatrixmethod [48],

the malware spread threshold γ equals the spectral radius
of the next-generation matrix. That is, γ = ρ(AB−1),
where ρ(·) is the spectral radius, A is the advent rate matrix
of fresh heterogeneous sensor nodes in state I at equilib-
rium 11(SMFk ,NMF

k , IMFk ,RMFk ,DMFk ), B is the transition
rate matrix of a heterogeneous sensor node at equilibrium
11(SMFk ,NMF

k , IMFk ,RMFk ,DMFk ), and B−1 is the inverse of
matrix B. From this method, states N and I are included to
compute the malware spread threshold. To clearly describe
the process of computing A and B according to their defini-
tions, two temporary matrices Ã and B̃ are introduced, where
a11, a21, b11, and b21 are used in computing A and B. Let

Ã =
[
a11
a21

]
=

[
qkSNω

t−1
k S t−1k
0

]
, (27)

and

B̃ =
[
b11
b21

]
=

[
(qkNR + q

k
NI + q

k
ND)N

t−1
k

−qkNIN
t−1
k + (qkIR + q

k
ID)I

t−1
k

]
, (28)

satisfying

Ã− B̃ =
[
N t
k − N

t−1
k

I tk − I
t−1
k

]
. (29)
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Thus, the advent rate matrix is

A =


∂a11
∂N t−1

k

∂a11
∂I t−1k

∂a21
∂N t−1

k

∂a21
∂I t−1k


11

=

[
0 qkSNσkS

MF
k

0 0

]
, (30)

and the transition rate matrix is

B=


∂b11
∂N t−1

k

∂b11
∂I t−1k

∂b21
∂N t−1

k

∂b21
∂I t−1k


11

=

[
qkNR+q

k
NI+q

k
ND 0

−qkNI qkIR+q
k
ID

]
.

(31)

Further, the malware spread threshold γ is obtained as

γ = ρ(AB−1) =
qkNIq

k
SNσkS

MF
k

(qkNR + q
k
NI + q

k
ND)(q

k
IR + q

k
ID)
. (32)

Thus, the proof is finished. �
The malware spread threshold obtained from

Theorem 2 has a practical meaning in terms of guide-
lines. If the threshold is less than one, which means that
each heterogeneous sensor node in state I will infect less
than one fresh node among all the heterogeneous sensor
nodes in state S, then 11(SMFk ,NMF

k , IMFk ,RMFk ,DMFk ) will
be stable. That is, malware will fade from the heteroge-
neous WSN. On the other hand, if the threshold is bet-
ter than one, which means that each heterogeneous sensor
node in state I will infect more than one fresh susceptible
node, then 12(SMEk ,NME

k , IMEk ,RMEk ,DMEk ) will be stable.
That is, the spread of malware will persist at the level
value IMEk . In conclusion, administrators should try to control
the parameters in (32) and ensure that the threshold is less
than one, in order to suppress the spread of malware in the
heterogeneous WSN.

VI. SIMULATION OF THE HETEROGENEOUS
SNIRD MODEL
In this section, the heterogeneous SNIRD model is simulated
with MATLAB R2018a. Further, the model is validated when
the malware spread threshold γ is less than one and better
than one, respectively. The proposed model is also contrasted
with the conventional SIS and SIR models.

A. SIMULATION PARAMETERS AND ALGORITHM
During the simulation, the heterogeneous WSN contain
1,500 heterogeneous sensor nodes. The interval time of the
heterogeneous WSN evolving from the current stage to the
next one is 1 d. The topology of the heterogeneous WSN
and the related parameter values which are deployed are
described in [49], as scale-free networks and heterogeneous
WSNs [50], [51] have similar characteristics. Here, the
minimum communication connectivity, the maximum com-
munication connectivity, and the average communication
connectivity < m > are set at 2, 20 (i.e., K = 20), and 4,
respectively. Moreover, the probability qkSN indicating the

malware spread probability, which is closely related to the
communication connectivity of a heterogeneous sensor node,
is set as qkSN = βk , where β = 0.01.
Let

G(t) = [(st1, d1), (s
t
2, d2), · · · , (s

t
1500, d1500)] (33)

be the heterogeneousWSN simulated at time t . Here, sti stores
the state of the i-th heterogeneous sensor node at time t;
di stores the communication connectivity of the i-th hetero-
geneous sensor node, which is randomly set to an integer
between 2 and 20, referring to [49], and satisfies the condition
that the average value of all the di values is 4.
Next, the simulation algorithm is described in detail. First,

the heterogeneous WSN simulated is initialized based on the
given parameter values. After the artificial malware randomly
infects heterogeneous sensor nodes, the numbers of heteroge-
neous sensor nodes having communication connection k ∈
{1, 2, . . . ,K } in states S, N , I , R, and D are counted and
stored. Correspondingly, their fractions can be computed.
Then, the artificial malware randomly communicates with
other nodes and the administrator randomly distributes secu-
rity patches. According to the heterogeneous SNIRD model
proposed in Section IV, all fractions of nodes belonging to dif-
ferent states are computed and stored at every discrete time.
Eventually, if all differences of different fractions between
two adjacent discrete time are less than a small enough value,
then the heterogeneous WSN simulated reaches stable and
the final fractions of nodes belonging to different states can
be obtained.

B. VALIDATION FOR THE HETEROGENEOUS SNIRD
MODEL WHEN γ < 1
In this instance, the infectious capability δk is set as δk =
ϑkς/(1 + ξkς ) [47], where ϑ = 5, ς = 0.5, and ξ = 1.
Therefore, the average value of qkSNσk is∼0.1383. Consider-
ing the characteristics of heterogeneous WSNs, the probabil-
ities are set as shown in Table 2. Under these circumstances,
the malware spread threshold is less than one from (32).

Figs. 2–6 present the changeable fractions of heteroge-
neous sensor nodes in states S, N , I , R, and D, respectively,
when γ < 1. From Fig. 2, the fractions of heterogeneous sen-
sor nodes in state S remain at ∼90%, ∼80%, ∼70%, ∼60%,
and ∼50%, in the first ∼12 d, as the initial fraction, ϕ, of the
heterogeneous sensor nodes in state I evolves from 0.1 to 0.5
with a step size of 0.1. These fractions then gradually
decrease to∼48.69%, which is nearly equal to SMFk from (15)
after∼90 d. Fig. 3 shows that the fractions of insidious nodes
all remain at 0 in the first ∼12 d when ϕ evolves. These
fractions then gradually increase to their maximum values,
∼1.63%, ∼2.84%, ∼3.67%, ∼4.14%, and ∼4.3% for ϕ =
0.1, ϕ = 0.2, ϕ = 0.3, ϕ = 0.4, and ϕ = 0.5, respectively.
Eventually, all of these fractions converge to 0, which is equal
toNMF

k from (16). Fig. 4 shows that the fractions of infectious
nodes remain∼10%,∼20%,∼30%,∼40%, and∼50% in the
first ∼12 d for ϕ = 0.1, ϕ = 0.2, ϕ = 0.3, ϕ = 0.4, and ϕ =
0.5, respectively. All of them gradually decrease to 0, which
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Algorithm 1: Simulation Algorithm to Validate the
Heterogeneous SNIRD Model

1: t ← 0;
2: Initialize G(t) = [(st1, d1), (s

t
2, d2), · · · , (s

t
1500, d1500)];

3: The artificial malware randomly infects ϕ × 1500
heterogeneous sensor nodes;

4: Count the numbers of heterogeneous sensor nodes
having communication connection k ∈ {1, 2, . . . ,K } in
states S, N , I , R, and D, and store them into S tk , N

t
k , I

t
k ,

Rtk , and D
t
k , respectively;

5: S̃k (t)← S tk/1500;
6: Ñk (t)← N t

k/1500;
7: Ĩk (t)← I tk/1500;
8: R̃k (t)← Rtk/1500;
9: D̃k (t)← Dtk/1500;

10: do while T
11: The heterogeneous sensor nodes in state I randomly

communicate with other nodes;
12: Convert the state of a heterogeneous sensor node in state

S into N with the probability qkSNω
t−1
k if the

heterogeneous sensor node received a packet from an
infectious node;

13: Convert the state of a heterogeneous sensor node in state
N into I with the transition probability qkNI ;

14: The administrator randomly distributes security patches;
15: Convert the state of heterogeneous sensor nodes in states

S, N , and I into R with the probabilities qkSR, q
k
NR, and

qkIR, respectively;
16: Convert the state of a heterogeneous sensor node in state

R into S with the probability qkRS to simulate the actual
scenario in which the malware produces new varieties;

17: Convert the state of heterogeneous sensor nodes in states
S, N , I , and R into D with the probabilities qkSD, q

k
ND,

qkID, and q
k
RD, respectively;

18: Convert η × 1500 heterogeneous sensor nodes in state D
into R to simulate the actual scenario in which
dysfunctional nodes are replaced by new nodes;

19: Count the numbers of heterogeneous sensor nodes
having communication connection k ∈ {1, 2, . . . ,K } in
states S, N , I , R, and D, and store them into S t+1k , N t+1

k ,
I t+1k , Rt+1k , and Dt+1k , respectively;

20: S̃k (t + 1)← S t+1k /1500;
21: Ñk (t + 1)← N t+1

k /1500;
22: Ĩk (t + 1)← I t+1k /1500;
23: R̃k (t + 1)← Rt+1k /1500;
24: D̃k (t + 1)← Dt+1k /1500;
25: if |S̃k (t + 1)− S̃k (t)| < τand |Ñk (t + 1)− Ñk (t)| < τ

and |Ĩk (t + 1)− Ĩk (t)| < τ and |R̃k (t + 1)− R̃k (t)| < τ

and |D̃k (t + 1)− D̃k (t)| < τ //τ is a small enough value
26: exit do;
27: endif
28: t ← t + 1;
29: enddo
30: return G(t) and the arrays S̃k , Ñk , Ĩk , R̃k , and D̃k ;

TABLE 2. Experimental parameters.

FIGURE 2. Fraction of heterogeneous sensor nodes in state S in terms of
ϕ and time when γ < 1.

is equal to IMFk from (17). Fig. 5 shows that the fractions
of the recovered nodes all remain at 0 in the first ∼12 d,
then gradually increase and eventually stabilize at ∼31.63%,
which is nearly equal to RMFk from (18). Fig. 6 shows that
the fraction trends of the dysfunctional nodes are similar to
those of recovered nodes. However, these fractions shown
in Fig. 6 eventually stabilize at ∼19.68%, which is nearly
equal to DMFk from (19).
Based on the above analyses, fractions of heterogeneous

sensor nodes in states S, N , I , R, and D closely converge
to SMFk , NMF

k , IMFk , RMFk , and DMFk , respectively, regardless
of the different fractions of initial infectious nodes. Experi-
mental results have validated that the heterogeneous SNIRD
model has a stable point 11(SMFk ,NMF

k , IMFk ,RMFk ,DMFk ) if
the malware spread threshold is less than one. Particularly,
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FIGURE 3. Fraction of heterogeneous sensor nodes in state N in terms
of ϕ and time when γ < 1.

FIGURE 4. Fraction of heterogeneous sensor nodes in state I in terms
of ϕ and time when γ < 1.

FIGURE 5. Fraction of heterogeneous sensor nodes in state R in terms
of ϕ and time when γ < 1.

the experiments reflect that the fraction of infectious nodes
finally converges to 0,meaning that themalware in the hetero-
geneousWSNwill dissipate via the current security strategies
adopted by the network administrators. Therefore, adminis-
trators should try to control parameters in (32) and ensure

FIGURE 6. Fraction of heterogeneous sensor nodes in state D in terms of
ϕ and time when γ < 1.

that the malware spread threshold is less than one in order
to suppress the malware spread in heterogeneous WSNs.

C. VALIDATION FOR THE HETEROGENEOUS SNIRD
MODEL WHEN γ > 1
In this instance, the heterogeneous WSN parameters are set
as those presented in Section VI.B, except for ϑ = 10 [49].
Therefore, the average value of qkSNσk is ∼0.2766. Consid-
ering the characteristics of heterogeneous WSNs, the other
parameters are set differently from those presented in
Section VI.B: qkRS = 0.1, qkNI = 0.5, and qkIR = 0.05. Thus,
the malware spread threshold γ ≈ 1.6740 > 1 from (32).
Figs. 7–11 respectively illustrate the changeable fractions

of heterogeneous sensor nodes in states S, N , I , R, and D
when γ > 1. From these figures, the final fractions of
heterogeneous sensor nodes in states S, N , I , R, and D
when γ > 1 are ∼40.11%, ∼1.11%, ∼5.63%, ∼13.71%,
∼39.45%, respectively, which are nearly equal to SMEk , NME

k ,
IMEk , RMEk and DMEk from (20), (21), (22), (23), and (24),
respectively. Thus, the heterogeneous SNIRDmodel with the
stable point 12(SMEk ,NME

k , IMEk ,RMEk ,DMEk ), if the malware
spread threshold is better than one, is validated. Note that
the fraction of infectious nodes is not equal to 0, mean-
ing that the malware will spread in heterogeneous WSNs.
Further, the spread of malware makes more nodes become
dysfunctional; therefore, the fraction of dysfunctional nodes
is notably greater than that in the case γ < 1. Obviously,
a practical guideline is that administrators should try to con-
trol parameters in (32) by adopting security strategies and
ensure that the malware spread threshold is not better than
one, so that the heterogeneous WSN can work normally.

D. COMPARISON WITH CONVENTIONAL MODELS
In this section, the effectiveness of the heterogeneous SNIRD
model is validated by comparing with the conventional SIS
and SIR models. The same two cases are still considered as
those in Sections VI.B and VI.C. All models are implemented
with the same parameters in the same case. The changeable
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FIGURE 7. Fraction of heterogeneous sensor nodes in state S in terms
of ϕ and time when γ > 1.

FIGURE 8. Fraction of heterogeneous sensor nodes in state N in terms
of ϕ and time when γ > 1.

FIGURE 9. Fraction of heterogeneous sensor nodes in state I in terms
of ϕ and time when γ > 1.

fraction of heterogeneous sensor nodes in state I is selected
as the comparison object, because this fraction of infectious
nodes determines the effectiveness of the epidemic malware
models.

FIGURE 10. Fraction of heterogeneous sensor nodes in state R in terms
of ϕ and time when γ > 1.

FIGURE 11. Fraction of heterogeneous sensor nodes in state D in terms
of ϕ and time when γ > 1.

FIGURE 12. Infectious node fraction comparison among the
heterogeneous SNIRD, SIS, and SIR models, when γ < 1.

Figs. 12 and 13, where the initial fraction of infectious
nodes is set at 40%, show the comparisons among the three
epidemic models under cases γ < 1 and γ > 1, respectively.
From Fig. 12, the fractions of the heterogeneous sensor nodes
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FIGURE 13. Infectious node fraction comparison among the
heterogeneous SNIRD, SIS, and SIR models, when γ > 1.

in state I belonging to the SIS and SIR models converge to
∼27.7% and ∼20.2% after ∼26 d and ∼61 d, respectively.
The fraction of infectious nodes in the heterogeneous SNIRD
model has a similar trend to the SIR model in the beginning
∼16 d. Afterwards, it obviously decreases quicker than that
of the SIR model. In addition, it is greater than that of the
SIS model in the beginning ∼26 d. However, this infectious
fraction converges to 0 after ∼80 d, which shows the effec-
tiveness of the heterogeneous SNIRD model from the view
of achieving the final equilibrium. Fig. 13 shows that the
fractions of infectious nodes belonging to the SIS and SIR
models converge to ∼81.9% and ∼54.61% after ∼28 d and
∼52 d, respectively. Different from the increasing trend of the
infectious fractions in the SIS and SIR models, the infectious
fraction belonging to the heterogeneous SNIRDmodel gradu-
ally decreases and finally converges to∼5.63% after∼150 d.
According to the above analyses, the heterogeneous SNIRD
model is obviously the most efficient one for the suppression
of malware in heterogeneous WSNs.

In fact, the SIS and SIR models cannot reflect the actual
case of a heterogeneous sensor node being dysfunctional
due to physical deterioration, energy exhaustion, or malware
attacks. Moreover, the SIS model cannot reflect the case that
an infected node is cured and becomes immune to known
malware threats by patching security programs. Therefore,
the heterogeneous SNIRD model is more appropriate for
heterogeneous WSNs.

VII. CONCLUSION
Motivated by the spread of malware in heterogeneousWSNs,
a heterogeneous SNIRD model was proposed, which consid-
ers states of insidious sensor nodes infected by malware and
dysfunctional nodes, as well as the communication connec-
tivity heterogeneity of nodes. Fraction evolution equations
were obtained, which can discover the changeable quanti-
ties of all the heterogeneous sensor nodes in heterogeneous
WSNs under the spread of malware. It was proved that the

equilibria of the heterogeneous SNIRD model exist, and
the malware spread threshold was obtained, which can indi-
cate whether the malware will spread or dissipate. In this
manner, a theoretical guideline was constructed to enable
administrators to suppress the spread of malware in hetero-
geneous WSNs.

In the heterogeneous SNIRD model, nodes in state D are
dysfunctional and cannot be repaired. However, a given node
can be repaired from a given infection but new threats exist
for it. This consideration will produce different fractions Rtk
andDtk when time evolves from t−1 to t , leading to a different
SNIRD model. It is interesting and can be considered as the
future work.

In addition, adding the proof of the stability of equilibria
points will make the heterogeneous SNIRD model be more
mathematically rigorous. Based on these theoretical results,
one can further obtain the optimal strategies to control the
malware spread in the heterogeneous WSNs. These works
also constitute the future directions.
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