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ABSTRACT Real-time data processing is one of the central processes of particle physics experiments
which require large computing resources. The LHCb (Large Hadron Collider beauty) experiment will be
upgraded to copewith a particle bunch collision rate of 30million times per second, producing 109 particles/s.
40 Tbits/s need to be processed in real-time to make filtering decisions to store data. This poses a computing
challenge that requires exploration of modern hardware and software solutions. We present Compass,
a particle tracking algorithm and a parallel raw input decoding optimized for GPUs. It is designed for
highly parallel architectures, data-oriented, and optimized for fast and localized data access. Our algorithm is
configurable, and we explore the trade-off in computing and physics performance of various configurations.
A CPU implementation that delivers the same physics performance as our GPU implementation is presented.
We discuss the achieved physics performance and validate it with Monte Carlo simulated data. We show
a computing performance analysis comparing consumer and server-grade GPUs, and a CPU. We show
the feasibility of using a full GPU decoding and particle tracking algorithm for high-throughput particle
trajectories reconstruction, where our algorithm improves the throughput up to 7.4× compared to the LHCb
baseline.

INDEX TERMS CUDA, GPGPU, track reconstruction, particle tracking, parallel programming.

I. INTRODUCTION
High-energy physics experiments produce large data streams
that must be processed, filtered, and analyzed. The LHCb
(Large Hadron Collider beauty) experiment is one of the four
big physics detector experiments collecting data at the Large
Hadron Collider (LHC). LHCb aims to explore the matter-
antimatter asymmetry problem [1]. It is being upgraded and
expected to restart operation in 2021; producing data at a
rate of 40 Tbit/s [2]. Its event1 filter will be run solely on
general purpose computing resources, also known as software
filter, where the LHCb data analysis framework has to process

The associate editor coordinating the review of this manuscript and
approving it for publication was Jihad Aljaam.

1A collision event corresponds to the crossing of two bunches of protons
in the LHC beams.

data in real-time, and decide which collision events may be
discarded and which must be kept for further analysis. The
software based event filter must be modernized to be able to
handle the increased throughput [3], [4].

The LHCb experiment will have to increase its compute
power needs to handle the continuous deluge of data from
the detector. The big cost of the necessary increase in com-
puter power lead to the exploration of alternative hardware
architectures. As heterogeneous data centers comprised with
multi- and many-core CPUs and coprocessors/accelerators
emerge, LHCb and other CERN experiments are currently
considering different hardware options to reach the afore-
mentioned performance goals for the coming years. The
current LHCb computing farm consists of servers based on
the x86-64 architecture. However, alternative architectures
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and accelerators are being tested in different trigger sys-
tems [5]–[7]. This is an indication that systems requiring
high-throughput can be met in such alternative architectures.

LHCb computing farm needs to treat 30 million events
per second, producing around 109 particles per second.
Reconstructing particle trajectories, known as particle track-
ing (from here on shortly referred to as ‘‘tracking’’), plays
a central role in processing these events. Introducing an
architectural change, poses multiple challenges in terms of
software to perform particle tracking in real-time. Existing
algorithms must be redesigned to fully exploit parallel archi-
tectures. Furthermore, the expected long life cycle of these
algorithms demands not only a high degree of performance
optimization but also maintainability and portability. Those
goals are ubiquitous in the scientific and engineering software
areas and different solutions have been proposed. Among
these, GPU-based approaches have been a successful alter-
native in providing high-throughput in different scenarios
[8]–[10]. This paper presents the implementation of a data-
oriented approach, focusing on creating algorithms for SIMD
(Single Instruction Multiple Data) architectures, minimizing
thread divergence, reducing data movements and memory
footprint of the algorithm, which have been successful strate-
gies to optimize algorithms for GPUs [11], [12]. We run as
part of the LHCb GPU sequence framework defined in [13],
which allows multiple concurrent GPU stream execution.

The main contributions of this paper are as follows:
a) We present a fast tracking algorithm for high-energy

physics detectors targeting SIMD architectures called
Compass. The proposed algorithm can deal with devi-
ated particle trajectories by a magnetic field.

b) We introduce a parallel version for the decoding of
the raw input data, which ensures coalesced data write
patterns and produces a sorted SoA data structure, ben-
eficial to our tracking algorithm.

c) We investigate the impact of our algorithm configura-
tion on the physics quality of the results and analyze
its computing performance on a variety of GPUs and
CPUs.

The rest of this paper is organized as follows. Section II
explores the state-of-the-art on high-throughput, real-time,
and scientific usage of GPUs. Section III briefly intro-
duces the concepts used in high-energy physics for track-
ing, specifically for the LHCb experiment and UT tracking.
On Section IV, the implementation of the decoding of the raw
input data is explained, whereas in Section V the main algo-
rithm design and implementation are presented. Section VI
shows the experimental evaluation carried out and presents
the obtained physics efficiency. Finally Section VII closes the
paper with concluding remarks and future research lines.

II. RELATED WORK
We focus on high-throughput computing fields that process
large scientific datasets and have similarities to those encoun-
tered in track reconstruction algorithms, this is, they pro-
cess numerous small units of work. We discuss real-time

FIGURE 1. Schematic view of the LHCb upgrade detector.

approaches and other scientific applications which need to
deliver high-throughput.

GPUs have been used before in the field of high-energy
physics with success. The ALICE experiment at CERN
implemented track reconstruction in GPUs obtaining differ-
ent speedups compared to the previously used hardware [14].
We note how the approach we follow is different than the
one implemented in ALICE, as we aim to implement the full
High Level Trigger to run in GPUs, including the decod-
ing and tracking of all subdetectors, thus avoiding much
of the needed data transmission between main memory and
GPU memory. Other HEP experiments have seen significant
improvements when using GPUs to amend the performance
of online selection [7], [15], or using a common code base
to target both CPUs and GPUs using OpenCL, which shows
the performance improvement of GPUs while supporting the
x86-64 architecture [16].

The performance of DNA sequencing problems has been
improved with GPUs in different high-throughput scenarios.
The Arioc read aligner showed how using parallel algo-
rithms with GPUs improved DNA sequencing throughput,
achieving an order of magnitude faster alignments [17], [18].
Pawar et al. benchmarked various DNA sequencing algo-
rithms with different GPU-based tools against a CPU one;
concluding that GPUs will replace CPUs in DNA sequencing
for its higher-throughput processing [19]. Other DNA-related
fields exhibit similar speedups: Samsi et al. [20] demon-
strated how a single GPU is able to compare millions of DNA
samples in seconds, Cadenelli et al. [21] compared offloading
a genomics workload into FPGAs and GPUs from a CPU,
resulting in the GPU outperforming both, although the GPU
consuming more energy.

Other scientific fields benefit from high-throughput, real-
time processing in GPUs. Radio telescopes need to filter data
in their data acquisition systems; where software frameworks
employing GPUs like Bifrost [22] have shown significant
performance improvements. Other real-time radio telescope
experiments studied the viability of using GPUs, where they
encountered large computing speedups at a local level, but
were limited by I/O when using multiple GPUs [23]. Others
in the same field have successfully implemented GPU opti-
mization schemes [24] achieving a 6× speedup compared
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FIGURE 2. Complete High Level Trigger 1 sequence of algorithms at LHCb. We highlight the UT algorithms described in this paper (dotted
lines). UT is the second tracking sub-detector in the chain of algorithms, and it receives input from the UT raw banks and the VELO tracks.
UT outputs reconstructed tracks for other sub-detectors.

to the CPU scenario, or used a GPU-based software frame-
work and aggressive optimizations to be able to process
data rates close to 1Tbit/s, like the CHIME Pathfinder radio
telescope [25].

GPUs have also been studied in scenarios requiring real-
time processing at fusion experiments [26] greatly reducing
the wall-time compared to the CPU version. Real-time split-
and-merge executions have been improved in multi-GPU
scenarios by Han et al. [27], and X-ray computer tomography
reconstruction in GPUs has shown how different optimiza-
tions can be implemented and combined to speedup GPU
computations [28].

Our approach for using GPUs in high-energy physics
presents a parallel tracking algorithmwhich reconstruct parti-
cle trajectories that are bent under the influence of a magnet,
describing a non-straight trajectory. We focus on achieving
high-throughput to meet the collision rate and real-time con-
straints of the LHC at CERN. Other scientific fields have
been successful on implementing real-time high-throughput
solutions with GPUs, where fields like DNA sequencing are
already ditching CPU-based architectures to process their
large datasets. Successful results in the HEP fields suggest
that implementing a full filter with GPUs, including the
decoding and tracking of charged particles, is a feasible
task that will increase the filtering throughput capabilities of
LHCb.

III. BACKGROUND
In Figure 2 we depict the full chain of algorithms needed to
run theHigh Level Trigger 1 at LHCb required to filter events.
In this section we describe the UT (Upstream Tracker) sub-
detector, which provides part of the input data needed for the
tracking algorithm. UT algorithms are second in the chain,
receiving input from the UT raw banks and the reconstructed
tracks from the VELO (Vertex Locator). This paper covers all

FIGURE 3. UT planes. The four UT planes are presented in this figure. The
plane in the front (UTaX) is the closest to the VELO. Planes have a height
of around 1.3 m, where the width is determined by the plane and changes
between roughly 1.5 to 1.7 m. Different colors indicate the different types
of sensors which accommodate different number of strips. The sensors
around the center have higher resolution. This design follows the
simulation data, which indicates higher number of particles around the
beam in the center.

the UT steps highlighted in Figure 2: the decoding of UT raw
banks, and the UT tracking. 2

A. UT SUB-DETECTOR
The LHCb detector is composed of various sub-detectors,
as shown in Figure 1. In order to reconstruct particle tra-
jectories, information from various sub-detectors is required.
The sub-detectors that provide tracking information are the
VELO, the UT, the SciFi Tracker and the µ (Muon) tracker.
The UT is located in between the VELO and the SciFi
Tracker [4].

2UT decoding and Compass algorithms are available at https://
gitlab.cern.ch/lhcb-parallelization/Allen
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The UT sub-detector is composed of four planes, where
each plane is a single sided silicon strip detector. We refer to
the four consecutive planes as UTaX, UTaU, UTbV, UTbX
respectively, as can be seen in Figure 3. These are sorted into
two layers containing 2 planes each, the a and b layers. The
X planes are composed of vertical strips whereas the U and
V planes are tilted around the Z axis at +5◦ and −5◦ respec-
tively. By combining the measurements from the tiltedU and
V planes, the Y coordinate can also be determined. Each UT
plane is composed of micro-strip sensors arranged in vertical
staves [29]. A UT plane can be divided into 3 regions with
different geometry, where the inner-most region has a finer
granularity, and the outer regions have coarser granularity.
Each stave measures 160 cm high and 10 cm wide, where
various sensors are placed alongside each stave. The sensors
in a stave overlap with their neighbor sensors, to avoid gaps,
and the vertical staves also overlap for the same reason. The
X planes are composed of 16 staves while the U and V
are composed of 18 staves. The acceptance of the UT sub-
detector is defined by its volume in space, the UT planes for
the UT sub-detector. Only particles that traverse this volume
can leave signals and are measured.

The UT detector serves various purposes in the LHCb
experiment: noitemsep
• Reconstructs charged particles trajectories that decay
after the VELO sub-detector.

• Reconstructs low momentum particles that are bent by
the magnet, and go out of acceptance before reaching
the SciFi Tracker.

• Gives additional information in the form of hits, that can
be used in conjunction with the VELO and SciFi Tracker
information to reject tracks.

• As the UT is influenced by the magnet, it can provide
momentum resolution for charged particles.

• It can reject low momentum tracks.
• Decreases time to extrapolate VELO tracks to SciFi
Tracker by at least a factor of 3.

Finally, UT plays an important role by marking tracks
that won’t be used by the next tracking detector, the SciFi
Tracker. This allows for a faster processing of the whole track
reconstruction in the LHCb detector.

B. TRACK TYPES, EFFICIENCY, AND FAKE RATES
When performing particle tracking in the LHCb detector,
tracks are classified according to the sub-detectors they
traversed.

The tracks that traverse the UT sub-detector or serve as
input for it are classified as follows:
• Long tracks: contains hits detected from the VELO to
SciFi Trackers, and they may contain hits in the UT.
Long tracks analyzed here have hits in the UT.

• Upstream tracks: comprise hits recorded in VELO and
UT detectors, but not in SciFi Tracker. These tracks are
bent by the magnetic field, so they travel outside the
SciFi tracker, without crossing it. We refer to them as
VELO+UT tracks.

FIGURE 4. LHCb track types. Each track type is classified according to the
sub-detectors it traverses. This figure represents a top view of the
tracking sub-detectors, where particles travel from the collision point at
the VELO to the right, crossing the UT and the SciFi Tracker, or travelling
out of acceptance.

• Downstream tracks: contains hits recorded in UT and
SciFi detectors, but not in the VELO, so their origin
is external to the collision point. These tracks are not
relevant for the tracking algorithm covered in this paper,
but they leave hits in the UT sub-detector that are not
matched to a VELO track.

• VELO tracks: contains hits recorded in the VELO.
During UT tracking, these tracks are extended to other
types of tracks if matching hits are found.

In the context of the LHCb experiment, long tracks play
an important role as they traverse the full magnetic field and
therefore have the most precise momentum information [30].

When doing the track reconstruction, a particle is consid-
ered to be reconstructible in the UT sub-detector if it has hits
in three of the four layers. Various parameters are measured
to determine physics efficiency [31]:

• Track reconstruction efficiency: It is measured with
simulation data comparing the number of tracks cor-
rectly reconstructed against the number of tracks that are
reconstructible. To be considered reconstructed, 70% of
the hits on a track need to be associated to the particle
from the Monte Carlo simulation. The reconstruction
efficiency is given as:

Nreconstructed & reconstructible

Nreconstructible
• Clone rate: When two or more tracks are associated to
the same Monte Carlo particle, only one is considered
to be reconstructed correctly and the others are counted
as clones. The clone rate is the number of clone tracks
relative to all reconstructed tracks. The clone rate is
defined as:

Nclone tracks
Nreconstructed tracks
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FIGURE 5. VELO track extrapolation to UT hits. A VELO track can be
associated to various UT hits, where the UT track extrapolation does not
necessarily follow a straight line. This leads to high combinatorics
between the hits in the four panels, holding the main complexity of the
algorithm.

• Fake rate: A track is considered a fake when it is
reconstructed, but it cannot be associated with a Monte
Carlo particle. The fake rate is defined as follows:

Nfake tracks
Nreconstructed tracks

We refer to physics efficiency to describe how good our
tracking algorithm is performing, analogous to a cost function
that uses the three parameters, reconstruction efficiency rate,
clone and fake rates. There is no analytical form of such cost
function, where an algorithm is said to attain good physics
efficiency if the reconstruction efficiency is high, and the
clone and fake rates are low.

C. UT TRACKING
Particles collide at the interaction point, and the resulting
particles from the collisions are first reconstructed by the
VELO sub-detector. A percentage of those particles travel
out of the acceptance range of the UT, and the rest of them,
in acceptance, leave activation signals with a high probability
which are decoded in software to hit information. Using
the VELO tracks and the UT hit information, combined
with the geometry information and magnetic field influence
from the magnet, we are able to perform the UT tracking.

Tracking is done by finding matching UT hits for every
input VELO track, where a VELO track is a straight line.
UT hits are considered to be compatible with a VELO track,
resulting in a curved track bent proportionally to the track
momentum. As the UT sub-detector is under the influence
of the magnetic field, multiple possible matching hits can be
matched for different slightly bent tracks [32]. This situation
is represented in Figure 5, where a real situation is better
represented with hundreds of tracks, and makes the prob-
lem of finding matching hits an exponential combinatorics
problem [33].

The p-Kick method [34] is used to estimate the momentum
of the track. Using it allows to perform a χ2 fit providing the
momentum of the particle. This method is used instead of a
Kalman filter, used in other tracking algorithms, as it yields a
better computing performance [35]. To take into account the
magnetic field during the algorithm, look-up tables are used,
which give quick access to the influence of the magnetic field
in different parts of the particle trajectory. Using the look-up
tables, the deflection a track is expected to experience can be
determined.

A UT tracking algorithm is expected to achieve a high
reconstruction efficiency with a low fake and clone rates for
various types of tracks. The computing performance of the
algorithm is determined by how many events per second can
be processed for a given hardware configuration. This is a key
aspect of event filtering in high-energy physics, especially
for the LHCb experiment which will rely only on software
for its event filter system. The combination of hardware and
optimized software for it will need to process the 30MHz rate
of events in real-time.

IV. UT DECODING ON GPU
Before being able to execute the tracking algorithm, the raw
input from the subdetector needs to be decoded into hit infor-
mation. The decoding step needs to perform efficiently to run
in real-time. We parallelize it by processing different chunks
of raw input using GPUs, as it is a fundamental previous step
for the tracking algorithm.

UT detector data is encoded into raw banks, in a highly
compact format, containing the information required to
obtain the UT hits. These raw banks are decoded into the
parameters that define a UT hit. We reduced the decoded
parameters to the minimum to run the UT tracking algorithm,
lowering the memory footprint of the algorithm. The decoded
parameters are the following:
• LHCbID: a unique 32 bit identifier for the hit, which
indicates the spatial position of the detection element.

• Z at Y = 0: the Z coordinate of the hit at the Y = 0
position, which is the center of the panel in the Y axis.
The Z coordinate indicates the panel for a specific hit.

• X at Y = 0: similarly to the previous parameter, this is
the X position at the center of the panel in the Y axis.
This coordinate is given by the activated strip in a sector
and it is different for the U and V layers.

• yBegin and yEnd: as the UT subdetector is a strip detec-
tor where the strips are arranged vertically, the specific
Y coordinate of a hit cannot be gotten. Instead, a range
on the Y axis delimits where the hit is located.

• weight: the uncertainty of the hit position.
The decoded parameters are stored in a structure of arrays

(SoA). We use a SoA layout storing the hits in a coalesced
manner to maximize the memory bandwidth usage. To access
the hits efficiently, a separated array is used to store the
offsets between the hits. Using the offsets, we are able to
determine which panel we are referring to when accessing
the hits, and so every GPU thread can access its specific hit.
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TABLE 1. Kernel configuration for UT decoding. events_in_execution are
the number of selected events to process, where array_size is defined as
the events_in_execution × 84. 84 is the number of pre-defined sectors,
where the number 4 used in various kernels is the number of panels.

We compute the events by processing them in parallel, assign-
ing single events to single blocks to distribute them in the
GPU. An event results in various tracks, where we apply
different nested parallelization schemes for different kernels,
which are described here.

We group the decoded hits into sector groups, which are
composed of various sensors. Each sector group carries a
number of hits that are guaranteed to be within certain X
coordinates. Within a sector group hits are not sorted by
X coordinate, making it faster to sort. This also allows for
quick look-up of hits in the tracking algorithm, targeting
specific sector groups and searching hits only in those. Hits
are sorted into pre-defined regions of the sector groups, then
sorted by Y coordinate within the sector group. We divide the
complete decoding into 7 GPU kernels, where we found the
configuration in Table 1 to be the fastest for the UT decoding.
• Calculate number of hits: the first kernel uses pre-
defined regions in the X axis, where the regions in the
center of the panel are narrower due to the increased
number of tracks expected based on previous LHCb
data takings. Raw banks are processed to calculate the
number of hits, used to create the array to store the
offsets between the hits in memory, in a coalesced man-
ner. To process the raw banks in parallel we set a two-
dimensional kernel, parallelizing over the raw banks and
over the number of hits in each raw bank.

• Prefix sum: we implement a parallel prefix sum of the
hits, specifically a two-step Blelloch scan composed of
a reduce and down sweep operations. It results in an
array with the sums of the offsets, so their positions and
sizes can be obtained [36]. After doing the prefix sum
the total number of hits is obtained, which allows us
to pre-allocate the memory for the hits. The prefix sum
is implemented here in three separate kernels, as seen
in Table 1.

• Pre-decode: using the data structure created during the
prefix sum, the coordinates of the hits for each raw
bank can be decoded. Parallelising over the raw banks
and over the number of hits in each raw bank, the strip
information to get the subdetector region, panel and
sector of the hit is extracted. Using this information we
decode the X at Y=0, and yBegin coordinates to delimit
the hit in the Y axis.

• Find permutation: it calculates the required permuta-
tions to sort the hits by Y coordinate, based on their

decoded Y coordinate limits. Hits are sortedwithin every
group defined by the previously decoded X coordinate.
We implement an insertion sort in shared memory, stor-
ing the Y coordinate in it, and parallelizing over the hits
found in each sector group.

• Decode raw banks in order: to perform the actual decod-
ing of the UT hits a gather operation is used. It gets
geometry and panel information from the subdetector,
and stores the parameters in a coalesced manner. The
hit information is stored in its correct position using the
pre-defined X coordinate regions and the permutations
calculated in the previous kernel. For this kernel, we par-
allelize over the hits found on each layer.

V. COMPASS TRACKING ALGORITHM
We designed the Compass tracking algorithm so it can be
configured by two parameters: the number of sectors to
search for hit candidates, and the number of valid found
candidates to test to form a track. Different configurations
of these parameters gives us a configurable trade-off between
computing and physics performance.
Compass is focused on the SIMD many-core parallelism

offered by GPUs and its memory characteristics to develop
a high-throughput algorithm. To achieve high-throughput we
perform tracking on thousands of tracks in parallel, in real-
time, where each particle trajectory can be computed inde-
pendently one from each other. We benefit from this to
design the algorithm around an SIMD model, where GPUs
implement it in a SIMT (Single Instruction Multiple Thread)
execution model. The operations needed to calculate the
particle trajectories require arithmetic and matrix operations
with single precision floating point numbers, where GPUs
have shown to offer speed-ups in scientific computations.
We access the decoded window ranges stored in a SoA
data layout. Other multi-threaded architectures like modern
x86-64 should also benefit from a SoA layout, as the access
pattern by the different threads also benefit from data locality
and coalesced access. The NVIDIA Profiler was used to
optimize and find the spots to parallelize.
Compass is divided in two main components: searching

for the UT window ranges in the indicated sectors, and using
those window ranges to perform the tracking. In both cases,
VELO tracks are used as input, and are extrapolated to the
UT panels.

A. SEARCH UT WINDOWS
UT window ranges are defined by the indexes of two hits,
one at the beginning of the window and the other at the end,
where hits in between these two are considered for creating
a track. The search for UT windows is performed using the
information about how hits are sorted during the decoding.
A two-dimensional kernel is used to search the windows: the
first dimension parallelizes over the four UT panels, where
the second does it over the input VELO tracks. We define
the kernel like this to optimize for the windows ranges to
be stored in SoA layout, where we tested different kernel
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configurations, concluding this one to yield the best perfor-
mance. Window ranges are stored in a coalesced manner for
a panel, where panels are also stored contiguously between
them. The two-dimensional kernel is used to favor the access
pattern, first over the panels, then over the different tracks.
We found this configuration to be faster than setting the kernel
the opposite way, or just parallelizing over the tracks in a one-
dimensional kernel.

For each input VELO track, the extrapolation to the UT
panels is calculated taking into account the magnetic field.
The extrapolation defines the sector group in the UT to search
for. Since sector groups are sorted by X into known regions,
a binary search is used to efficiently locate the region where
the extrapolation is pointing to. With the region delimited by
X , a tolerancewindow based on theVELO track extrapolation
is used to delimit the Y region. Searching with two binary
searches over the Y axis, one to delimit the beginning of the
region and another to delimit the end of it, leaves us with
the window range that indicates the valid UT hits for the
associated VELO track. Only two pointers to the hits are
used to indicate a window range. Finally the window range
is refined by checking the hits to be valid within the VELO
tolerance window. Iterating forward for the beginning hit, and
backward for the end hit, hits are tested to meet the conditions
for the VELO track tolerance. This calculation is performed
here to reduce the window ranges, which we found to be
faster compared to only perform it in the tracklet finding
kernel. When computing the tracking kernel combinations
between the hits in different panels are tested. Using a larger
window range during the tracking has a larger impact in the
complexity to compute the kernel compared to refining the
window range during the window search. As the hits in a
sector group are not sorted, the VELO tolerance check has
to still be performed again in the tracking kernel because hits
could be out of the tolerance window.

When looking for window ranges, a VELO track may be
outside the UT acceptance region or may be directed in back-
wards direction, making the track unsuitable for UT tracking.
When a thread is assigned to a track that meets any of those
conditions, the whole thread is left unused until the rest of the
threads in its warp finish finding the window regions. Some
threads are left unused for every event, lowering the through-
put capacity of the algorithm. To maximize thread occupation
an array of pointers to tracks in shared memory is used, which
is filled with valid tracks only. The array is filled until it
holds at least the same amount of tracks as number of threads
per block. We search windows parallelizing over the array of
pointers to valid tracks, maximizing thread occupation.

We implement the window search to look for hits in one,
three or five sectors. We do this because we found the number
of hits found in only one sector to be insufficient to achieve
good enough physics performance. The selected sector and
its neighbors are used to get hit candidates, as can be seen in
the Figure 6. If the extrapolated VELO track is pointing to a
sector close to the borders of the UT panel, less sectors are
searched. The window ranges are stored in a pre-allocated

FIGURE 6. UT window ranges: Representation of a VELO track
extrapolation to a sector. Window ranges are set for the sector and its
neighbors. Several hits lie within the range of the windows, which are
considered for UT tracking.

memory space, as the number of sectors to use and VELO
track is already known, so they can be stored in parallel for
every thread. When an invalid window range is found, it is
stored with (−1, −1), indicating that no valid hits were
found. By doing this the kernel presents a lower branching
ratio, leaving a similar code path for all tracks searching the
windows, making it efficient for GPUs.

Finally, window ranges are stored as pairs composed of a
beginning hit and the size of the window. As we will iterate
over the hits in the window, knowing in which window the
hit starts and the size of the window is all the information
we need to access the hits. To store the hit and the size
of each window we use two signed 16-bit types (short).
The hit index is set to be relative to its own track, for all the
possible indexes to fit in a short type, thus reducing the
memory footprint. Hit pointers and window range sizes are
stored grouped so all hits are contiguous between them, and
per track, as can be seen in Figure 7.

B. TRACKLET FINDING
To perform UT tracking, a search for the best compatible
hits needs to be performed in all the UT panels to form a
tracklet. A tracklet is composed of at least 3 hits on different
panels. The combination that best matches the extrapolation
from theVELO track is searched, considering the influence of
the magnetic field that introduces a small kink in the particle
trajectory. The window ranges calculated in the previous
kernel are used to find a tracklet of one hit per UT panel,
allowing for one missing UT hit. The main complexity of
Compass lies in the tracklet search, where compatible hits
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FIGURE 7. Memory layout of window ranges. A beginning hit, and a size are stored per window range, using 16 bits for each element. In this figure,
a 3 sectors window ranges is shown, where each elements has a size of 16 bits, making it a total of 96 bits for all the elements of a panel.

between all panels are tested for compatibility, increasing the
multiplicity of the combinations.

When a valid hit is found in the first panel, it is selected to
be combined with a valid hit from the third panel. If a valid
hit is also found in the latter the slope formed between them is
calculated. The just calculated slope and the one of the VELO
track are used to define a tolerance window in the second and
fourth panels. Compatible hits are searched in these panels
to form the final tracklet, as can be seen in Figure 8. Finding
a third hit is enough to from a tracklet, where a tracklet of
four is preferred if it is found. The complexity of tracklet
search is O(n3), as the search for third and fourth hits are not
nested between them. The tracklet search is performed both in
forward and backwards directions, where the same algorithm
is applied changing the order of the panels. Forward and
backwards search is merged into one single loop, where hits
are searched first in forward direction and if no hits are found,
the backwards direction is tested to find a tracklet.

The algorithm may be configured to use more than one
window range, in this paper for one, three or five window
ranges. Instead of looping independently over the ranges to
find a tracklet, these are combined into one single loop, as if
these were one single range. A pointer to a selected hit within
a window range is used to iterate. The ranges are combined
so the central one is used first, then its immediate neighbors.
If five sectors were selected, the sectors in the extremes
are searched the last. Forward and backward searches are
combined, as we found this way of iterating over the hits to
be faster than performing two separate searches for forward
and backward direction, as thread divergence is removed.
We parallelize the searches for every VELO track, where all
the threads in a warp will have to wait if a divergent branch
is encountered in one of the threads. When we split the hit
search into two loops, a divergent branch is introduced if

FIGURE 8. Tracklet finding kernel. Combinatorics between all 4 panels
when searching for hits candidates to form a tracklet are shown. The fine
dotted line represents the slope between the two first hits found in the
first and third panels. The coarse dotted line represents the VELO track
slope. A tolerance window defined by them is calculated to search for a
tracklet.

different tracks are searching in forward and backward direc-
tion within a warp. A small divergent branch is introduced
at the beginning of the loop when combining the window
ranges. This is done to set the pointer to the correct hit, which
allows the warp to run all tracks in a parallel fashion even if
they diverge in both ranges or direction.
Compass implements a configurable number of search hit

candidates that will be considered. When a valid tracklet is
found, if more than one candidate was configured, the next
valid hits within the window ranges are tested to form a
different tracklet. For every tracklet the χ2 fit of the track
is obtained in combination with the VELO track. If more
than one tracklet is found, we perform a selection favoring
tracklets with 4 hits instead of 3, and with the lowest χ2

fit value. The algorithm keeps searching for a better tracklet
according to the configured hit candidates value.
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Compass is parallelized over the VELO tracks, where each
thread processes the tracklet search for each track. When
processing the VELO tracks a similar filtering mechanism is
applied as when searching for the window ranges explained
in subsection V-A. It differs in the conditions to save a valid
track, looking for the track to be within UT acceptance, not
backwards and to have at least one valid window range.
Only the size of the window range is checked to be different
from −1 to indicate a window range with at least one valid
hit.

We also take advantage of the GPU shared memory
to cache the window ranges, as these are accessed dur-
ing the tracklet search. A shared memory array of size
num_threads× num_panels× size_window_range is used to
accommodate all the window ranges in a block. As in the
search window ranges kernel, we store the window ranges
using a signed 16-bit type to save in memory. When process-
ing a valid track, the window ranges for that track are copied
to its correct position relative to the block size into shared
memory, where only the pointers to the shared memory array
are used afterwards. We found this to be faster in all the
configurations and GPUs we tested.

When a final tracklet is selected as the best one, the found
hits are stored and associated to its VELO track as a
VELO+UT track. Alongside the hits, the charge of the par-
ticle, calculated from the momentum of the track from the
χ2 fit, and the index of the track within the event are stored,
obtained by atomic addition of the track number for this event.

C. CPU IMPLEMENTATION
We implement a CPU version of Compass tracking to com-
pare its computing performance against our baseline GPU
implementation. To port the algorithm part of the structure of
the algorithm is modified. The GPU specific optimizations
are removed, which cannot be exploited in a non-GPU archi-
tecture. On the baseline GPU version we minimize thread
divergence and store various structures into shared memory,
whereas the impact of branches is minimized by design in a
CPU architecture compared to a GPU architecture [37], [38].
We consider the impact of using shared memory and caching
the window ranges in the ported version to be better man-
aged by the large caches found in a modern CPU, compared
to the ones in the GPUs. The computation of searching
window ranges and tracklet finding is not split into sep-
arated kernels, where the window searches are calculated
for every VELO track in-place before doing the tracklet
search. We do so to benefit from cache locality, as the just
calculated window ranges will be used by the tracklet search
algorithm.

VI. EXPERIMENTAL EVALUATION
This section covers the performance and physics efficiency
evaluation of our proposed algorithms. We have conducted
multiple micro-benchmarks using different configurations
for both the number of sectors and the number of
candidates.

TABLE 2. GPU and CPU hardware employed for the evaluation. Two
high-end consumer graphics cards (GeForce GTX 1080Ti and
GeForce RTX 2080Ti), two server-grade cards (Tesla T4 and Tesla V100),
and an Intel Xeon CPU are compared. We show the number of cores of
each processor, where for the GPUs we count the CUDA cores only (no RT
cores or Tensor cores are used in the benchmarks). We take the MSRP
(manufacturer suggested retail price) for each hardware unit used here.
The price for a single Intel Xeon CPU is shown, whereas for the
benchmarks a dual socket server with two Intel Xeon CPUs is used. This is
reflected in the price performance figure.

A. EXPERIMENTAL SETUP
Four GPUs and a x86-64 CPUwere used for the benchmarks.
Two consumer-grade GPUs of different generations and two
server-grade GPUs are employed. A dual socket server-grade
CPU is used for the Compass tracking CPU implementation.
The specifics of the hardware are detailed in Table 2.

The software relies on CUDA 10.0 and gcc 7.3.0 under
the -O3 optimization flag. The following compilation
flags were used: -use_fast_math -expt-relaxed-
constexpr and -maxrregcount=63. The use of those
flags were beneficial for the overall execution time of our
algorithm [39].

All the benchmarks use the same sets of Monte Carlo sim-
ulated events, generated using the LHCb simulation frame-
work. Two different testbeds of events are evaluated: the
minbias set for throughput performance and the BsPhiPhi
to check reconstruction efficiency. The minbias (minimum
bias) set is a realistic simulation of the current expected
physics, where data rate and therefore computing perfor-
mance obtained with it match the realistically expected one.
The BsPhiPhi set contains more tracks from the rare decay
Bs → φφ. This allows to determine the track reconstruc-
tion efficiency for these physically interesting decays with
higher statistical significance. It is important to highlight that
the same reconstruction efficiency can be achieved in both
testbeds. However, we would need more minbias samples to
obtain the same number of tracks from the rare Bs → φφ

decay. Each set contains 1,000 events. For the throughput
measurements, we iterate 40 times over the minbias events
to get a sustained throughput. Both server grade GPUs are
set to ECC (Error-Correcting Code) memory disabled. The
evaluation metrics shown in this paper correspond with the
average value of 10 consecutive executions.

B. COMPASS TRACKING PHYSICS PERFORMANCE
AND THROUGHPUT
The computing performance of the algorithm is measured in
terms of throughput of events per second. Different configu-
rations of the algorithm are evaluated, taking measurements
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TABLE 3. Comparison between searching in 1, 3 or 5 sector groups, and using 1 to 16 hit candidates. Two type of tracks are compared: long tracks and
VELO+UT tracks. For each type of track, the track reconstruction efficiency and track clone rate achieved are presented. The obtained fake rate for each
case is also shown.

when looking into 1, 3, and 5 sectors and different number of
hit candidates for 1 to 16 when looking for a better tracklet.

The obtained physics efficiency is shown in Table 3 for
the long and VELO+UT tracks. We focus on the long tracks,
as these are the preferred ones for analysis. Long tracks carry
more information about the momentum resolution. We also
analyze the VELO+UT tracks, as these are constructed with
the two main inputs of the Compass algorithm, VELO tracks
and UT hits [40]. Note how for the 3 sector cases, when
searching for more hit candidates, the physics efficiency
improves. The biggest improvements are achieved in track
reconstruction efficiency, where the clone rate increases by
less than 0.1% in all cases. Note how the reconstruction
efficiency gains flattens when using more hit candidates.
While the number of hit candidates is increased exponen-
tially, the track reconstruction efficiency gains do not follow
the same increase pattern, but the opposite. This behavior
matches our expectations, as in most of the cases, the best
tracklet is found in the first set of hit candidates, and there-
fore, the subsequent ones do not yield a better hit tracklet
as often. Calculating the subsequent tracklets has an impact
on the throughput performance even if no better tracklet is
found, where the physics performance does not improve. The
fake rate decreases when using more sectors and candidates,
with differences in the range of 1% across the whole scope
of benchmarks. Note how the impact of both changing the
sectors and candidates has little effect on the clone and
fake rates, whereas it has a big impact in the reconstruction
efficiency rate.

The reconstruction efficiency achieved when searching in
one sector does not reach 90% for long tracks nor 80% for
VELO+UT tracks for any number of hit candidates. These
reconstruction efficiency does not meet the requirements for
the LHCb UT reconstruction, and therefore, we discard the
one sector configuration in the following analysis.

In Figure 9, we plot the differences in throughput between
all the configurations, using 3 and 5 sectors, and from 1 to
16 candidates. Note how searching for more candidates

decreases the throughput, as it needs to iterate over more
hits in a O(n3) algorithm to find a better hit tracklet. The
performance degrades more when using more candidates,
contrary to what we observed with the physics performance,
where the gains were very small by doubling the number
of candidates when using the bigger number of candidates.
When searching for more hit candidates, the hit tracklet needs
to be constructed, and their χ2 calculated, even if for most of
the cases the last calculated hit tracklet does not improve over
the previous one.

We highlight the difference in performance between the
four evaluated GPUs devices. The 1080Ti and Tesla T4 have
a comparable performance despite of the difference in terms
of number of cores. We attribute the comparable performance
between the two cards to the bigger cache size encountered in
the Tesla T4 and its faster GDDR6 memory. The difference
in thermal design power (TDP) is very significant, where
the 1080Ti consumes 3× more compared to the Tesla T4 to
deliver a comparable throughput. The difference in perfor-
mance between the 1080Ti / T4 compared to the 2080Ti is
bigger than the difference found between the 2080Ti and the
Tesla V100, with closer comparable performance when using
5 sectors compared to 3. Tesla V100 outperforms the rest
of the GPUs due to its High Bandwith Memory (HBM) and
increased number of cores, having double the number of cores
compared to the T4, 15% more compared to the 2080Ti, and
30% more compared to the 1080Ti as show in Table 2. One
generation difference for the high-end consumer cards yields
double the throughput for the 1080Ti compared to the 2080Ti
for our algorithm.

Note the difference in performance for comparable physics
efficiency on different results. We observe a comparable
physics efficiency in the long tracks between the 5 sectors
- 8 candidates case, and the 3 sectors - 16 candidates case.
Taking the Tesla V100 as reference example, a difference
in performance of roughly 15% (500k vs 585k) is observed,
whereas the difference in physics efficiency is below 1%. The
throughput differences change between the tested hardware
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FIGURE 9. 3 vs 5 sectors Compass tracking comparison. Throughput comparison between the two consumer grade GPUs, two server grade GPUs and a
dual socket Intel Xeon CPU, comparing with 1 to 16 number of hit candidates. The throughput shown here corresponds to running the Compass
algorithm. In the figure in the left we plot the throughput when looking for hits in 3 sectors. In the right figure, we depict the throughput when looking for
hits in 5 sectors, adding an extra neighbor sector on each side with respect to the 3 sectors case.

for different number of candidates and sectors. Not that for
comparable physics performance, the 5 sectors version per-
forms better in throughput.

We port our Compass tracking algorithm so that it runs
on architectures other than the GPUs, to perform a cross-
architecture tracking performance comparison. The CPU ver-
sion differentiate from the GPU version in the implemented
optimizations but computes the same algorithm and uses the
same data layout and access patterns, as explained in V-C.
OpenMP is used to parallelize over the events and tracks,
following the same parallelization scheme as in the GPU ver-
sion. We ensure all cores are used in both the CPU and GPU
versions for the comparison. Note how the parallelization
differs in the SIMD approach of the GPUs compared to the
multi-threaded version of the CPUs, where the CPU version
relies on the improvements made by the compiler due to the
SoA data layout to exploit the SIMD capabilities of the CPU.
The performance difference between a dual socket Intel Xeon
CPU and the 1080Ti GPU and Telsa T4 is found to be up to
3× faster for the GPUs, up to 6× faster for the 2080Ti, and
more than 6× faster for the V100. Note how the CPU version
of the algorithm degrades less its performance compared to
the GPUs when increasing both the number of sectors and
candidates. We attribute this to the better branch prediction
in the CPU, and the impact of divergent threads on the GPU,
where the GPU runtime performance is affected more by
the increased number of branches, and the work imbalance

FIGURE 10. Price performance ratio for Compass in GPU. All prices are
factored to MSRP price indicated in Table 2. We compare the price
performance of the 5 sectors case, for the best physics efficiency case
with 16 candidates.

keeps warps active with low occupation, due to the increased
number of candidates and sectors.

In Figure 10, we plot the price performance ratio for the
different target GPUs. This figure shows the case for best
physics performance with 5 sectors, using 16 hit candidates.
It is normalized to the TeslaV100 and compares the other ana-
lyzed hardware accelerators in terms of achieved speedup in
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FIGURE 11. Incremental optimizations speedup. Speedup achieved after
applying different optimizations to the baseline code. A maximum
speedup of 2.6× is achieved in the final version, compared to the
baseline implementation. Various small optimizations and changes are
grouped into steps.

terms of price/performance. Note how the price performance
achieved for all the evaluated hardware is given for itsMSRP3

with the prices shown in Table 2. Tesla V100 performs the
worse in all the tested GPUs for its price performance, while
it achieves the best throughput. Note the comparable price
performance between the server grade Tesla GPUs compared
to the consumer GPUs, where the consumer GPUs perform
around 5× better than the server grade ones despite their
differences in throughput. We note a 1.7× speedup between
the Tesla V100 and the Tesla T4, and a 1.15× speedup
between the 1080Ti and the 2080Ti, being the consumer
grade GPUs close in price performance despite the 2080Ti
doubling the 1080Ti in throughput. The achieved price per-
formance speedup between the Tesla V100 and the 1080Ti is
5.9×, and 6.7× for the 2080Ti. The 2080Ti obtains the best
price performance due to the achieved high throughput and
low unit price. The 2080Ti delivers a throughput close to the
Tesla V100 with significant less price due the lack of some
server-grade characteristics such as HBM or ECC memory.

C. UT DECODING AND TRACKING PERFORMANCE
In Figure 11, we show the speedup achieved for various
iterations of optimizations, compared to the initial GPU
implementation. Various small improvements and optimiza-
tions are grouped into the 11 steps presented in Figure 11.
We refer to the first working version that implements themain
ideas of the algorithm as baseline implementation and apply
various optimization on top of it to achieve the final 2.6×
speedup. For floats unroll, we get the biggest improvement
of 35%. We first applied various small modifications to the
algorithm, mainly changing all the floating point variables to
single precision ones, unrolling some loops manually, and by
giving compiler hints with the use of #pragma. We note how
the change from double to single precision does not affect

3The prices shown in this paper are collected from those recommend by
NVIDIA and Intel web site or Amazon.com otherwise.

FIGURE 12. Kernels time contribution. Runtime distribution of all the
kernels used to compute the decoding and Compass algorithm. The best
physics efficiency case is used here, with 5 sectors and 16 candidates for
the NVIDIA 2080Ti case.

the physics efficiency. We reduced the complexity of window
range search by splitting the algorithm in various kernels and
re-writing the tracklet finding to be simpler to process when
searching in more than one sector, to get a 28% improvement.
We improved the window ranges storage to be windows SoA
to get an extra 15%, and configured it to store only one hit
and the size of the window, sorting them to be efficient for
our access pattern. We copied the windows to shared memory
to cache them and improve the access pattern when searching
the tracklet. The speedup achieved by filtering the tracks
in the shared memory array is 23%, shown in active tracks
shared mem. When calculating the window ranges, we refine
the window by checking the hits in both extremes, instead
of calculating all the window range validity in the tracking
algorithm. We further reduced the complexity of the tracklet
finding by joining the loops and reducing thread divergence,
where we got to 2.37×. We grouped various small optimiza-
tion to the raw bank decoding, making the data types smaller,
aligned and more efficient to be a data oriented decoding.
We improved an extra 16% by tuning the kernel parameters
of all the kernels in the decoding and Compass, changing to
multi-dimension kernels and changing how the kernels are
parallelized. Finally, we reduced the memory footprint and
made the copies faster by reducing further the data types,
by storing types in signed 16-bit instead of 32-bits structures
to get the final overall speedup of 2.6×.
Figure 12 depicts the runtime distribution of both kernels

used to perform the decoding and the kernels of the Compass
tracking algorithm. We show the distribution for the best
physics case, 5 sectors - 16 candidates, where we encountered
similar runtime distributions when using different config-
urations and different GPUs. Note how Compass tracking
runtime is dominated by the window searching algorithm
compared to the tracklet finding. The refining of window
ranges was moved from the tracklet finding to the window
range search, increasing the time contribution of the ker-
nel while improving the overall throughput. Note how the

VOLUME 7, 2019 91623



P. F. Declara et al.: Parallel-Computing Algorithm for High-Energy Physics Particle Tracking and Decoding

FIGURE 13. Basline LHCb vs GPU decoding + Compass tracking
throughput speedup comparison. Throughput speedup of the full UT
chain of kernels, including the decoding and Compass tracking, compared
to the baseline LHCb CPU implementation as stated in Section 13.
We compare the LHCb baseline (blue) with the Compass over different
GPUs (green).

complete decoding of the UT hits accounts for more than half
the time needed to compute the whole UT sequence.

Finally the complete implementation explained in this
paper is shown, with the decoding and tracking in GPU com-
pared to the equivalent algorithms found in LHCb baseline
implementation. We acknowledge that the results compared
here have changed and improved since the publication of
these numbers in [41] used for the comparison, where more
recent results are not found or published. We set compara-
ble conditions as those found in [41], where we apply the
same Global Event Cut, which filters a selection of events,
at the beginning of the chain, thus reducing the amount of
processing the tracking algorithms need to do. We add data
preparation kernels after the full UT chain is processed, in the
form of a prefix sum and consolidation steps to leave the
tracks in coalesced memory for the algorithms using UT
tracks as input. The LHCb baseline implementation uses a
Intel Xeon E5-2630 v4,4 which delivers a top throughput
of 12,400 events per second for the full sequence.5 Combin-
ing the time contributions of the UT decoding and tracking
for peak throughput yields the results shown in Figure 13.
We compare these results to the full UT decoding and Com-
pass tracking presented in this paper. The throughput speedup
shown corresponds to ourCompass implementation using the
configuration for 5 sectors and 8 candidates. Both the Tesla
T4 and 1080Ti achieve roughly a 3× speedup, where the latter
performs slightly better than the T4. The 2080Ti achieves
a speedup of 6.5× and the Tesla V100 achieves the best
speedup at 7.4×. We acknowledge that the physics results
obtained in both implementations are comparable, but yield
different results due to the different algorithms used.

VII. CONCLUSIONS
We have presented a new algorithm, Compass, designed for
parallel GPU architectures with focus to perform efficiently

4This CPU differs from the one used for our benchmarks.

on GPUs. We designed our algorithm so that it maximizes
throughput processing onGPUs by being data-oriented, mini-
mizing branching, reducing the memory footprint of the algo-
rithm and taking advantage of the architectural characteristics
of GPUs.

We presented a SIMD parallel UT raw data decodification
algorithm, data-oriented and optimized for GPUs.We demon-
strated a new hit organization that stores hits in SoA, in a
parallel and coalescedmanner, where we sorted groups of hits
into regions for fast decoding. We benefit from the new hit
organization to search efficiently for sector regions, defining
window ranges that indicate where compatible hits are found.
We stored the windows efficiently for parallel architectures.

We designed Compass to be configurable in both number
of sectors to search for, and number of hit clusters to test for
a tracklet. We showed the physics efficiency results when
searching in one sector, proving it to yield too low recon-
struction efficiency rate to be considered for performance
benchmarks. We compared the performance for searching
in three and five sectors, and tested with different number
of hit candidates. We validated our algorithms with Monte
Carlo simulated data to verify the physics performance of the
results, getting comparable physics performance.

We developed a CPU tracking implementation and ana-
lyzed our algorithm in different parallel architectures, focus-
ing on GPU architectures and comparing them against
the parallel CPU implementation of the same algorithm.
We showed the differences in performance across the ana-
lyzed hardware. We conclude that a physics performance
close to 95% in track reconstruction is achieved with various
configurations of the algorithm, where a configuration using
5 sectors and 8 hit candidates yields a throughput of 231k
events per second in the 1080 Ti, 222k in the Tesla T4, 454k
in the 2080 Ti, 499k in the Tesla V100 and 92k in the dual
socket Intel Xeon CPU, for the Compass tracking. The 5%
of tracks that were not reconstructed correctly do not satisfy
the assumptions and selections made in this algorithm. These
are not due to computational precision, as has been verified
switching from single to double precision obtaining the same
results.

We consider this configuration to be the best trade-off for
this algorithm considering the achieved physics efficiency
and the performance. We compare with the baseline LHCb
results for the full UT decoding and tracking, where our GPU
implementation delivers up to 7.4×more throughput with the
Tesla V100, and 6.5× when comparing with 2080Ti.
We plan to evaluate the possibilities of implementing fur-

ther optimizations to the algorithm by exploiting various
hardware capabilities of NVIDIA GPUs, such as the usage
of Tensor and Ray Tracing cores. For the CPU implementa-
tion, vectorisation opportunities could be explored to further
optimize the CPU implementation of the algorithm.
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