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ABSTRACT The theory of rough sets is successfully applied in various algebraic systems (e.g. groups, rings,
and modules). In this paper, the concept of roughness is introduced in modules of fractions with respect to
its submodules. Hence, the notion of the lower and upper approximation spaces based on a submodule of
the modules of fractions is introduced. Some fundamental results related to these approximation spaces are
examined with examples. Moreover, this paper establishing several connections between the approximation
spaces of two different modules of fractions with respect to the image and pre-image under a module
homomorphism. This technique of building up a connection among the approximation spaces via module
homomorphisms is useful to connect two information systems in the field of information technology.

INDEX TERMS Rough sets, rough modules, module homomorphisms.

I. INTRODUCTION
Data handling is encountered in many daily life problems
as well as complex problems of specialized fields including
computer sciences, medical sciences and environmental sci-
ences. Many mathematical approaches are proposed in liter-
ature to solve such kind of issues, One of the most successful
among these is fuzzy set theory, proposed by Zadeh [1]
in 1965. Fuzzy set theory is a generalization of the crisp sets.
In crisp set theory, a set is uniquely defined by its elements,
i.e. an element is either a member of a set or not. So, there
is a membership function describing the belongingness of
elements of the universe to the set. This function can attain
only one value, 0 or 1. In fuzzy set theory membership
function assigns the grade of membership to the elements of
the universe in the unit interval [0, 1]. For example, in real
worldwe say that aman is young or old, an object is expensive
or cheap, a painting is beautiful or not and etc. Let us take a
painting as an illustration.We cannot classify all the paintings
into two distinct classes, i. e. beautiful or not. Some paintings
cannot be decidedwhether they are beautiful or not. Thus they
remain in doubtful area. Similarly, we cannot say confidently
that either a person is ill or not. Because a person’s disease
may on its initial or last stage. In fuzzy set theory, a person
who is very sick, could have the degree of sickness near
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to 0.89. On contrary, a person could have sickness degree
of 0.12 indicating that a person has nearly recovered from
illness. Likewise, a painting having degree of beauty near
to 1 represents that a painting is very beautiful and degree
of 0.2 indicates that a painting is somehow beautiful. How-
ever, assigning the grade of membership is also sometimes a
problem.

In 1982, a computer scientist Zdzislaw I. Pawlak intro-
duced the concept of rough set theory [2] to manage various
types of uncertainties and imprecision including the raw data.
Rough set theory is mainly concerned with the classification
and analysis of imprecise information. This theory is an
extension of classical set theory, which is not defined by
means of membership function but by two precise sets, called
the lower and upper approximations. These approximations
are beneficent in the extraction of useful information hidden
in data. Rough set theory provides us very simple algorithms
to characterize the original objects having the same value of
attributes in an information system.

Rough set theory is based on the assumption that we have
some additional information (data) about the elements of
a set. Consider as an example, a group of some patients
suffering from malaria. To diagnose malaria, one must see
various symptoms, e.g. headache, fever, fatigue, muscle pain,
back pain, chills, sweating, dry cough, enlargement, nausea
and vomiting. The patients revealing the same symptoms are
indiscernible with respect to the available information and
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form elementary classes of knowledge. Similarly, two acids
with pH level of 4.12 and 4.53 will be in many contexts,
be perceived as so equally weak, that they are similar with
respect to this attribute. They are part of a rough set ‘‘weak
acids’’ as compared to ‘‘strong’’ or ‘‘medium’’ or whatsoever
other category are relevant in this context of classification.

Primarily, rough set theory is used to reveal useful infor-
mation from an information system (i.e. data table, where
columns are labeled by attributes and rows are labeled by
objects) based on the indiscernibility relation which is an
equivalence relation. The classes obtained from this relation
containing similar elements in view of available information,
are the fundamental blocks of knowledge about the objects of
the universe. Any union of these classes is a crisp set, and any
other set is a rough set. The lower approximation of a set X
is the set of all elements that surely belongs to set X , whereas
the upper approximation of X is the set of all elements that
possibly belongs to X . Thus, based on the lower approxima-
tion certain information can be derived, while by using upper
approximation partially certain information may be derived.
The difference of the lower and upper approximation spaces
of X is its boundary region. A set is rough if its boundary
region is non-empty, otherwise it is a crisp set.

The theory of rough sets has been demonstrated to be of
fundamental importance to numerous fields of computer sci-
ences. For example, data mining, pattern recognition, knowl-
edge acquisition, artificial intelligence, cognitive sciences,
machine learning, decision support systems, knowledge dis-
covery from databases, expert systems and inductive rea-
soning are the most auspicious amongst it’s applications.
Furthermore, the theory has been applied to solve several real
life problems of diverse fields including medicine, engineer-
ing, banking, financial and market analysis, pharmacology
and others. Hence, this theory grabbed attention of sev-
eral researchers, scientists, philosophers and mathematicians
owed to valuable features.

From the beginning, the applications of rough set theory to
various algebraic systems was of great interest to researchers.
Hence, many attempts were made to apply the theory of
rough sets to a numerous algebraic structures. For instance,
Biswas and Nanda [3] was the first to initiate the study of
roughness in a special algebraic structure-groups and intro-
duced the notion of rough subgroups. However, the work of
Biswas and Nanda [3] was based only on the lower approx-
imation. Keeping this idea in mind, Kuroki and Wang [4]
introduced the notion of the lower and upper approximation
spaces in groups based on the normal subgroups to study
the algebraic properties of rough sets in groups. Moreover,
Kuroki [5] elaborated the notion of rough ideals in semi-
groups [5]. In [6], Mahmood et al. established a relationship
between the lower and upper approximation spaces of groups
bymanoeuvring the group homomorphisms. Later in [7], they
also studied the concept of roughness in quotient groups and
established several homomorphisms. In [8], Ayub et al. intro-
duced the concept of roughness in soft-intersection groups

and developed connection between the approximation spaces
via group homomorphisms.

Large number of mathematicians proposed meaningful
extensions of Pawlak’s rough sets [2]. In this regard, Yao [9]
was one amongst those beginners to introduce the notion of
rough sets using binary relations. Shabbir et al. [10] inves-
tigated the notion of modified soft rough sets (MSR-sets)
using soft sets to improve the soft rough sets provided by
Feng et al. [11]. In [12], Davvaz established the notion of
T−rough sets by utilizing the set-valued homomorphisms.
Some properties of generalized rough sets [12] was studied
by Ali et al. in [13].

Current work is about roughness in modules of frac-
tions. The concept of roughness in modules was first stud-
ied by Davvaz and Mahdavipour [14]. Later, this concept
has been further studied by Hosseini and Saberifar [15]
utilizing the concept of set valued homomorphisms given
by Davvaz [12]. In [16], Ayub et al. introduced the notion
of Fuzzy modules of fractions and defined the notion of
fuzzy approximation spaces using soft modules of fractions
making use of multi-granulation rough sets defined in [17].
Some authors also established the notion of roughness in
hyperstructures. For example, Kanzanci et al. [18] intro-
duced the notion of the lower and upper approximations
in quotient hypermodules with respect to fuzzy sets. More-
over, the notion of the lower and upper approximations in
Hv−modules is studied by Davvaz [19]. He also investi-
gated the concept of rough approximation spaces of hyper-
rings in [20]. Miravakili et al. [21] studied the concept
of roughness in hypermodules by maneuvering set-valued
homomorphisms. Furthermore, Leoreanu and Davvaz [22]
and Anvariyeh et al. [23] applied the notion of Pawalk’s
rough sets to n−array hypergroups and γ−semihypergroups,
respectively.

In the present paper, an endeavor to investigate a con-
nection between rough set theory and modules of fractions
is made. In this regard, the submodules are used to define
the rough approximation spaces in modules of fractions.
This paper is organized as follows: In Section 2, some basic
material related to the modules of fractions is presented.
Then, an equivalence relation on it’s submodules is defined
and the notion of lower and upper rough approximation
spaces is introduced. Some important properties related to the
proposed objective are discussed with illustrative examples.
Moreover, a linkage between the rough approximation spaces
of two different modules of fractions via module homo-
morphisms is established in Section 3. As an application,
an example is constructed to create a connection between two
information systems using module homomorphisms. This is
practical illustration of our work in the field of information
technology.

II. ROUGHNESS IN MODULES OF FRACTIONS
In this section, the roughness in modules of fractions will be
defined. And some of it’s fundamental results will be proved.
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First some basic definitions and results on commutative alge-
bra will be presented. For more details, see [24], [25]. In this
paper, R denotes a commutative ring with identity 1R.
Definition 1: [25, Definition 1.1] A commutative group

(M ,+) is called an R−module, if the map:

R×M −→ M , (r,m) 7→ r · m,

satisfies the following properties:
(1) r1 · (m1 + m2) = r1 · m1 + r1 · m2,
(2) (r1 + r2) · m1 = r1 · m1 + r2 · m1,
(3) r1 · (r2 · m) = (r1r2) · m,
(4) 1R · m = m,

for all r1, r2 ∈ R and m1, m2 ∈ M .
Definition 2: [25, Definition 1.3] LetM be an R−module.

A non-empty subset N of M is called an R-submodule, if it
fulfils the following two properties:
(1) N is an additive subgroup of M .
(2) r · n ∈ N , for any r ∈ R and n ∈ N .
If {Ni : 1 ≤ i ≤ n} is a family of R-submodules ofM and I

an ideal of R, then the following sets are R-submodules ofM :

∩i∈INi = {x ∈ M : x ∈ Ni for all 1 ≤ i ≤ n} .
n∑
i=1

Ni =

{
n∑
i=1

xi : xi ∈ Ni for all 1 ≤ i ≤ n

}
.

IN1 =

{
n∑
i=1

ai · ni : ai ∈ I , ni ∈ N1 and n ∈ N

}
.

Definition 3: [25, Definition 1.2] Let M and M ′ be
R-modules, then a map f : M → M ′ is called an R−linear
map (or R−module homomorphism), if it satisfies the follow-
ing conditions:
(1) f (m1 + m2) = f (m1)+ f (m2),
(2) f (r · m1) = r · f (m1),

for all m1, m2 ∈ M and r ∈ R.
Definition 4: [25, Definition 3.1] A non-empty subset S of

R is called multiplicatively closed, if the following conditions
hold:
(1) 1R ∈ S,
(2) s1s2 ∈ S, for any s1, s2 ∈ S.
For an R-moduleM , there exists a well-known equivalence

relation on the set M × S, defined by:

(m, s)∼
(
m′, s′

)
⇔ t ·

(
s′ · m−s · m′

)
= 0, for some t ∈S.

The equivalence class of (m, s) is denoted by m
s . Consider the

following set of equivalence classes:

S−1M =
{m
s
: m ∈ M , s ∈ S

}
.

If M = R, then S−1R is a commutative ring with identity
under the following addition and multiplication:

r1
s1
+
r2
s2
=
r1s2 + r2s1

s1s2
and

r1
s1
·
r2
s2
=
r1r2
s1s2

,

where
r1
s1
,
r2
s2
∈ S−1R.

Note that S−1M is an S−1R−module with the following
scalar multiplication:

r
t
·
m1

s1
=
rm1

ts1
, where

m1

s1
∈ S−1M and

r
t
∈ S−1R.

In the rest of paper, S andM will be denoting the multiplica-
tive closed subset of R and module over R respectively.
Lemma 1: [25] If f : M → M ′ is an R−linear map, then

it induces the following S−1R−linear map:

S−1f : S−1M → S−1M ′,
m
s
7→

f (m)
s
.

Definition 5: Suppose that X ⊆ R, X1 ⊆ S−1R Y , Z ⊆ M
and W ,V ⊆ S−1M are non-empty subsets, then define the
following sets:

XY =

{
n∑
i=1

xiyi : xi ∈ X , yi ∈ Y and n ∈ N

}
,

Y + Z = {y+ z : y ∈ Y , z ∈ Z } and

S−1X =
{x
s
: x ∈ X , s ∈ S

}
.

Similarly, X1W and V +W can be defined. It is clear that the
sets XY and X1W are closed under addition.

In the following Lemma, some fundamental properties of
any non-empty subsets of modules of fractions are given:
Lemma 2: If ∅ 6= Xi ⊆ M for all i = 1, 2 and ∅ 6= X ⊆ R.

Then:

(1) S−1 (X1 ∪ X2) = S−1X1 ∪ S−1X2.
(2) S−1 (X1 ∩ X2) ⊆ S−1X1 ∩ S−1X2.
(3) S−1 (X1 + X2) ⊆ S−1X1 + S−1X2.
(4) S−1 (XX1) ⊆

(
S−1X

) (
S−1X1

)
.

Equality holds, if either X is an ideal of R or X1 is a
submodule of M.

Proof: All claims are straightforward. �
The following result is the special case of Lemma 2.
Corollary 1: [26, Corollary 3.4] Let N and P be

R-submodules of M. For any ideal I of R, the following
conditions hold:

(1 S−1N and S−1 (IN ) are S−1R-submodules of
S−1R-module S−1M.

(2) S−1 (N ∩ P) = S−1N ∩ S−1P.
(3) S−1 (N + P) = S−1N + S−1P.
(4) S−1 (IN ) =

(
S−1I

) (
S−1N

)
.

In what follows, a special kind of an equivalence relation
on the submodules of S−1M is defined. This gives the notion
of approximation spaces in modules of fractions.
Definition 6: For an R-submodule N of M , define a rela-

tion θS−1N on S−1N as follows:

m
s
θS−1N

n
t
⇔

m
s
=
r
u
·
n
t

for some
r
u
∈ U

(
S−1R

)
,
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whereU
(
S−1R

)
denotes the set of all unit elements of S−1R.

Since R is a commutative ring with identity, then one can
verify that θS−1N is an equivalence relation on S−1N .

For any m ∈ N and s ∈ S, the equivalence class of m
s ∈

S−1N will be denoted as:[m
s

]
θS−1N

=

{n
t
∈ S−1N :

m
s
θS−1N

n
t

}
=

{ r
u
·
m
s
:
r
u
∈ U

(
S−1R

)}
.

where n ∈ N , t ∈ S.
Lemma 3: With the previous notion, assume that I is an

ideal of R and P an R-submodule of M. Then, the following
assertions hold:
(1) [

m1

s1
+
m2

s2

]
θS−1N+S−1P

⊆

[
m1

s1

]
θS−1N

+

[
m2

s2

]
θS−1P

,

(2)

r
t
·

[
m1

s1

]
θS−1N

=

[
rm1

ts1

]
θS−1N

,

(3) [
u · m1

vs1

]
θS−1(IN )

⊆

[u
v

]
θS−1I

·

[
m1

s1

]
θS−1N

,

(4) [
x
y

]
θS−1N

=

[
x
y

]
θS−1P

=

[
x
y

]
θS−1N

∩

[
x
y

]
θS−1P

=

[
x
y

]
θS−1(N∩P)

.

for all
r
t
∈ S−1R,

u
v
∈ S−1I ,

x
y
∈ S−1 (N ∩ P) ,

m1

s1
∈ S−1N ,

and
m2

s2
∈ S−1P.

Proof: The proof is straightforward in view of Lemma 2.
�

In the following Example, it is shown that θS−1R is not a
congruence relation. Hence, the reverse inclusion in Lemma 3
(1) is not true.
Example 1: Consider R = Z4 and S =

{
1, 3

}
, then

S−1R =

{
0,

1

1
,
2

1
,
3

1

}
,

U
(
S−1R

)
=

{
1

1
,
3

1

}
.

It follows that: [
0
]
θS−1R

=
{
0
}
,[

1

1

]
θS−1R

=

[
3

1

]
θS−1R

=

{
1

1
,
3

1

}
and [

2

1

]
θS−1R

=

{
2

1

}
.

Note that: [
1

1

]
θS−1R

+

[
3

1

]
θS−1R

=

{
0,

1

1
,
2

1

}
and [

1

1
+

3

1

]
θS−1R

=
{
0
}
.

Definition 7: Let X be a non-empty subset of M . If N is
an R-submoduleM . Then, by the rough approximation in the
approximation space(

S−1N , θS−1N
)
,

there is a mapping

Apr : P
(
S−1N

)
→ P

(
S−1N

)
× P

(
S−1N

)
such that

Apr
(
S−1X

)
=

(
S−1XS−1N , S−1XS−1N

)
,

where

S−1XS−1N =
{
n
s
∈ S−1N :

[n
s

]
θS−1N

⊆ S−1X
}

and

S−1XS−1N =
{
n
s
∈ S−1N :

[n
s

]
θS−1N

∩ S−1X 6= ∅
}
.

The sets S−1XS−1N and S−1XS−1N are called lower and
upper approximations of S−1X in the approximation space(
S−1N , θS−1N

)
respectively.

Remark 1: Note that S−1XS−1N ⊆ S−1X. If X ⊆ N, then
the following inclusion is also true:

S−1X ⊆ S−1XS−1N .

Hence, both the lower and upper approximations of a non-
empty set S−1X can be empty sets simultaneously, see
Examples 2 and 3.

The following Lemma is the generalized form of
[14, Lemma 3.10].
Lemma 4: With the above notion, suppose that N ⊆ P are

R-submodules of M and X ⊆ Y ⊆ M. Then:

S−1XS−1N ⊆ S−1Y S−1P
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and

S−1XS−1N ⊆ S−1Y S−1P.

Proof: It is an easy consequence of the definition of
approximation spaces. �
If X is a submodule of M , then the approximation spaces

of S−1X do not yield any new information.
Lemma 5: If X and N are R-submodules of M, then

S−1XS−1N = S−1X = S−1XS−1N .

Proof: Let ns ∈ S
−1XS−1N . By definition of the upper

approximation,
[ n
s

]
θS−1N

∩ S−1X 6= ∅. There exists n′
s′ ∈

S−1N such that n′
s′ ∈

[ n
s

]
θS−1N

and n′
s′ ∈ S−1X . It implies

that: [n
s

]
θS−1N

=

[
n′

s′

]
θS−1N

.

Since

r
s
·
n′

s′
∈ S−1X

for all rs ∈ S
−1R, then[

n′

s′

]
θS−1N

⊆ S−1X .

Thus,
n
s
∈ S−1XS−1N .

This completes the proof. �
Proposition 1: Let I be an ideal of R and N an

R-submodule of M. For any non-empty subsets X and Y of
R and M respectively, we have:

S−1 (XY )
S−1(IN )

⊆

(
S−1X

) (
S−1Y

)
S−1(IN )

.(
S−1XS−1I

) (
S−1Y S−1N

)
⊆

(
S−1X

) (
S−1Y

)
S−1(IN )

.

In addition, if X is an ideal of R or Y is a submodule of M,
then:

S−1 (XY )
S−1(IN )

=

(
S−1X

) (
S−1Y

)
S−1(IN )

.

Proof: We will only prove the second containment, see
Lemma 2(4). Suppose that x ∈

(
S−1XS−1I

) (
S−1Y S−1N

)
.

Then, x =
∑n

i=1
ai
si
·
mi
ti
, where ai

si
∈ S−1XS−1I and

mi
ti
∈

S−1Y S−1N for all i = 1, . . . , n. By definition of the lower
approximation,

[
ai
si

]
θS−1I

⊆ S−1X and
[
mi
ti

]
θS−1N

⊆ S−1Y

for all i = 1, . . . , n. Then, x ∈ S−1 (IN ) such that:[
ai
si
·
mi
ti

]
θS−1(IN )

⊆

[
ai
si

]
θS−1I

·

[
mi
ti

]
θS−1N

⊆

(
S−1X

) (
S−1Y

)
,

for all i = 1, . . . , n, see Lemma 3.

Since
(
S−1X

) (
S−1Y

)
is closed under addition, then

Lemma 3(1) implies that:[
n∑
i=1

ai
si
·
mi
ti

]
θS−1(IN )

⊆

n∑
i=1

[
ai
si
·
mi
ti

]
θS−1(IN )

⊆

(
S−1X

) (
S−1Y

)
.

Hence,

x =
n∑
i=1

ai
si
·
mi
ti
∈

(
S−1X

) (
S−1Y

)
S−1(IN )

.

�
Note that in [14, Proposition 3.6], only second inclusion is

proved of Proposition 1.
Example 2: (1) Let R = Z6, I =

{
0, 3

}
and S =

{
1, 2, 4

}
.

Then

S−1R =

{
0,

1

1
,
1

2

}
and IR = I .

Also, S−1I = S−1 (IR) =
(
S−1I

) (
S−1R

)
=

{
0
}
. Since

U
(
S−1R

)
=

{
1
1
, 1
2

}
, then:[

0
]
θS−1R

=
[
0
]
θS−1I
=
{
0
}

and [
1

1

]
θS−1R

=

[
1

2

]
θS−1R

=

{
1

1
,
1

2

}
.

If X =
{
2
}
and Y =

{
3
}
, then

S−1X =

{
1

1
,
1

2

}
,

S−1Y =
{
0
}
,

XY = S−1 (XY ) =
{
0
}

and (
S−1X

) (
S−1Y

)
=
{
0
}
.

This implies that:

S−1XS−1I =
(
S−1XS−1I

) (
S−1Y S−1R

)
= ∅,

S−1Y S−1R =
{
0
}

and

(
S−1X

) (
S−1Y

)
S−1(IR)

=
{
0
}
.

This proves that
(
S−1X

) (
S−1Y

)
S−1(IR)

is not a subset of(
S−1XS−1I

) (
S−1Y S−1R

)
.

Proposition 2: With the same assumptions as in Proposi-
tion 1, the following inclusion hold:

S−1 (XY )S−1(IN ) ⊆
(
S−1X

) (
S−1Y

)
S−1(IN ).
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If we assume in addition that X ⊆ I , Y ⊆ N and either X is
an ideal of R or Y is a submodule of M, then:

S−1 (XY )S−1(IN ) =
(
S−1X

) (
S−1Y

)
S−1(IN )

⊆

(
S−1XS−1I

) (
S−1Y S−1N

)
.

Proof: By Lemma 2, it follows that

S−1 (XY )S−1(IN ) ⊆
(
S−1X

) (
S−1Y

)
S−1(IN ). (1)

Now, let X ⊆ I and Y ⊆ N . Also, assume that either X is an
ideal of R or Y is a submodule of M . Then,

S−1 (XY )S−1(IN ) =
(
S−1X

) (
S−1Y

)
S−1(IN ),

see Lemma 2. To prove the other inclusion, suppose that x ∈
S−1 (XY )S−1(IN ). Then, there exists y ∈ S−1 (IN ) such that
y ∈ [x]θS−1(IN ) ∩ S

−1 (XY ).

Note that y can be written as y =
∑n

i=1

[
xi
si

] [
yi
ti

]
with xi ∈

X and yi ∈ Y .
Also, x = a

by, for some a
b ∈ U

(
S−1R

)
. It follows that

x =
n∑
i=1

[
a
b
xi
si

] [
yi
ti

]

=

n∑
i=1

[
xi
si

] [
a
b
yi
ti

]
∈

(
S−1X

) (
S−1Y

)
⊆

(
S−1XS−1I

) (
S−1Y S−1N

)
.

(see Remark 1). Hence,

S−1 (XY )S−1(IN ) ⊆
(
S−1XS−1I

) (
S−1Y S−1N

)
,

see Equation (1). �
The following Example shows that the inclusion in Propo-

sition 2 is strict.
Example 3: Suppose that R, I , S, X and Y are same as in

Example 2. It can be seen that:

S−1XS−1I =
(
S−1XS−1I

) (
S−1Y S−1R

)
= ∅,

S−1Y S−1R =
{
0
}

and (
S−1X

) (
S−1Y

)
S−1(IR) =

{
0
}
.

So, it follows that:(
S−1X

) (
S−1Y

)
S−1(IR) *

(
S−1XS−1I

) (
S−1Y S−1R

)
.

The following result is same as [14, Proposition 3.2 (11)
and (12)].
Proposition 3: Suppose that N is an R-submodule of M.

For any non-empty subsets X1 and X2 of M, the following
conditions are true:

(1)

S−1 (X1 ∪ X2)S−1N = S−1X1 ∪ S−1X2S−1N
⊇ S−1X1S−1N ∪ S

−1X2S−1N .

(2)

S−1 (X1 ∪ X2)S−1N = S−1X1 ∪ S−1X2S−1N
= S−1X1S−1N ∪ S−1X2S−1N .

Proof: By Lemmas 2 and 4, the following results are
true:

S−1 (X1 ∪ X2)S−1N = S−1X1 ∪ S−1X2S−1N
⊇ S−1X1S−1N ∪ S

−1X2S−1N

and

S−1 (X1 ∪ X2)S−1N = S−1X1 ∪ S−1X2S−1N
⊇ S−1X1S−1N ∪ S−1X2S−1N .

Now, we prove that S−1X1 ∪ S−1X2S−1N is a subset of
S−1X1S−1N ∪ S−1X2S−1N . Consider the element

n
s
∈ S−1X1 ∪ S−1X2S−1N .

Then, [n
s

]
θS−1N

∩

(
S−1X1 ∪ S−1X2

)
6= ∅.

It follows that:([n
s

]
θS−1N

∩ S−1X1

)
∪

([n
s

]
θS−1N

∩ S−1X2

)
6= ∅.

Hence,
n
s
∈ S−1X1S−1N ∪ S−1X2S−1N .

�
The following Example shows that S−1X1 ∪ S−1X2S−1N is

not a subset of S−1X1S−1N ∪ S
−1X2S−1N .

Example 4: Let R = Z8 and S =
{
1, 3

}
, then

S−1R =

{
0,

1

1
,
1

3
,
2

1
,
2

3
,
4

1
,
5

1
,
5

3

}
and

U
(
S−1R

)
=

{
1

1
,
1

3
,
5

1
,
5

3

}
.

The equivalence classes with respect to θS−1R are:[
0
]
θS−1R

=
{
0
}
,[

2

1

]
θS−1R

=

{
2

1
,
2

3

}
,

[
4

1

]
θS−1R

=

{
4

1

}
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and [
1

3

]
θS−1R

=

{
1

1
,
1

3
,
5

1
,
5

3

}
.

Take X1 =
{
3, 4

}
and X2 =

{
5
}
, then

S−1X1 =

{
1

1
,
3

1
,
4

1

}
,

S−1X1 ∪ S−1X2 =

{
1

1
,
1

3
,
4

1
,
5

1
,
5

3

}
and

S−1X2 =

{
5

1
,
5

3

}
.

By Lemma 2, it can be obtained:

S−1X1S−1R =

{
4

1

}
,

S−1X2S−1R = ∅

and

S−1X1 ∪ S−1X2S−1R = S−1 (X1 ∪ X2)S−1R

=

{
1

1
,
1

3
,
4

1
,
5

1
,
5

3

}
.

Therefore,

S−1X1 ∪ S−1X2S−1R * S−1X1S−1R ∪ S
−1X2S−1R.

The following result provides the generalized form of
[14, Propositions 3.2, 3.12 and Corollary 3.1].
Proposition 4: With the previous notion, suppose that P is

an R-submodules of M. Then:
(1)

S−1 (X1 ∩ X2)S−1(N∩P) ⊆ S−1X1 ∩ S−1X2S−1(N∩P)
= S−1X1S−1N ∩ S

−1X2S−1P.

(2)

S−1 (X1 ∩ X2)S−1(N∩P) ⊆ S−1X1 ∩ S−1X2S−1(N∩P)

⊆ S−1X1S−1N ∩ S−1X2S−1P.

Proof: Note that S−1 (X1 ∩ X2) ⊆ S−1X1 ∩ S−1X2 ⊆
S−1Xi, for all i = 1, 2 (see Lemma 2). By Lemma 4,
the following containments are easy to prove:

S−1 (X1 ∩ X2)S−1(N∩P) ⊆ S−1X1 ∩ S−1X2S−1(N∩P)
⊆ S−1X1S−1N ∩ S

−1X2S−1P. (2)

S−1 (X1 ∩ X2)S−1(N∩P) ⊆ S−1X1 ∩ S−1X2S−1(N∩P)

⊆ S−1X1S−1N ∩ S−1X2S−1P.

Now, suppose that x ∈ S−1X1S−1N ∩ S−1X2S−1P. Then,
x ∈ S−1N and x ∈ S−1P such that [x]θS−1N ⊆ S−1X1 and

[x]θS−1P ⊆ S−1X2. By Lemma 3 and Corollary 1, it implies
that:

x ∈ S−1N ∩ S−1P = S−1 (N ∩ P)

such that

[x]θS−1(N∩P) ⊆ S−1X1 ∩ S−1X2.

Consequently, we get

x ∈ S−1X1 ∩ S−1X2S−1(N∩P).

Form Equation (2), the following equality holds:

S−1X1 ∩ S−1X2S−1(N∩P) = S−1X1S−1N ∩ S
−1X2S−1P.

�
In general,

S−1 (X1 ∩ X2)S−1(N∩P) 6= S−1X1 ∩ S−1X2S−1(N∩P)

and

S−1 (X1 ∩ X2)S−1(N∩P) 6= S−1X1 ∩ S−1X2S−1(N∩P).

Example 5: Consider the ring R with multiplicative subset
S of Example 2. Let X1 =

{
0, 1

}
and X2 =

{
0, 2, 3, 4

}
, then

X1 ∩ X2 =
{
0
}
. It implies that

S−1X1 = S−1X2 = S−1R.

This proves that

S−1X1 ∩ S−1X2 = S−1R

and

S−1 (X1 ∩ X2) =
{
0
}
.

The following results can be easily deduced:

S−1X1 ∩ S−1X2S−1R = S−1X1 ∩ S−1X2S−1R = S−1R

and

S−1 (X1 ∩ X2)S−1R = S−1 (X1 ∩ X2)S−1R =
{
0
}
.

It is worthy to note that the following Proposition is a
generalized form of [14, Propositions 3.8, 3.9 and 3.13].
Proposition 5: With the same notion as in Proposition 4,

the following statements hold:
(1) S−1 (X1 + X2)S−1(N+P) ⊆ S−1X1 + S−1X2S−1(N+P).

(2) S−1X1S−1N + S
−1X2S−1P ⊆ S−1X1 + S−1X2S−1(N+P).

(3) S−1 (X1 + X2)S−1(N+P) ⊆ S−1X1 + S−1X2S−1(N+P).
Proof: By Lemmas 2 and 4, the claims in (1) and (3)

are obvious. Now, we prove (2).
Suppose that

x ∈ S−1X1S−1N + S
−1X2S−1P,

then

x =
n
s
+
p
t
, for some

n
s
∈ S−1X1S−1N
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and
p
t
∈ S−1X2S−1P.

Note that n
s ∈ S

−1N such that
[ n
s

]
θS−1N

⊆ S−1X1 and p
t ∈

S−1P such that
[ p
t

]
θS−1P

⊆ S−1X2. Consequently, x = n
s +

p
t ∈ S

−1N +S−1P such that
[ n
s

]
θS−1N

+
[ p
t

]
θS−1P

⊆ S−1X1+

S−1X2 (see Corollary 1). Using Lemma 3(1), we obtain:

[x]θS−1N+S−1P =
[n
s
+
p
t

]
θS−1N+S−1P

⊆ S−1X1 + S−1X2.

Hence, x ∈ S−1X1 + S−1X2S−1(N+P). �
In following Example, the inclusions in Proposition 5

are proved strict. Also, it is proved that S−1X1S−1N +
S−1X2S−1P * S−1X1 + S−1X2S−1(N+P).
Example 6: Suppose R and S as used in Example 4.

Assume that I = R and J =
{
0, 4

}
then I + J = I . Then:

S−1J =

{
0,

4

1

}
, S−1I = S−1R and S−1 (I+J)=S−1I .

Suppose that X1 =
{
2
}
, X2 =

{
3, 4

}
, then X1 + X2 =

{
5, 6

}
.

It implies that:

S−1X1 =

{
2

1
,
2

3

}
, S−1X2 =

{
1

1
,
1

3
,
4

1

}

S−1 (X1 + X2) =

{
2

1
,
2

3
,
5

1
,
5

3

}
and

S−1X1 + S−1X2 =

{
1

1
,
2

1
,
2

3
,
1

3
,
5

1
,
5

3

}
By definition of the approximation spaces, it can be seen that:

S−1X2S−1J = S−1X2S−1J =

{
4

1

}
,

S−1X1S−1I = S−1X1S−1I
= S−1 (X1 + X2)S−1I

=

{
2

1
,
2

3

}
,

S−1X1 + S−1X2S−1I = S−1X1 + S−1X2S−1I

=

{
1

1
,
1

3
,
2

1
,
2

3
,
5

1
,
5

3

}
and

S−1X1S−1I + S
−1X2S−1J = S−1X1S−1I + S−1X2S−1J

=

{
2

1
,
2

3

}
.

Hence, S−1 (X1 + X2)S−1I + S−1X1 + S−1X2S−1I ,

S−1X1 + S−1X2S−1I * S−1X1S−1I + S−1X2S−1J and
S−1X1S−1I + S

−1X2S−1J + S−1X1 + S−1X2S−1I .

Now, if we take X1 =
{
1
}
and continuing with same X2,

then S−1X1 =
{
1
1
, 1
3

}
, X1 + X2 =

{
4, 5

}
and hence:

S−1 (X1 + X2) =

{
4

1
,
5

1
,
5

3

}
and

S−1X1 + S−1X2 =

{
2

1
,
2

3
,
4

1
,
5

1
,
5

3

}
It follows us that:

S−1 (X1 + X2)S−1I =

{
1

1
,
1

3
,
4

1
,
5

1
,
5

3

}
and

S−1X1 + S−1X2S−1I =

{
1

1
,
1

3
,
2

1
,
2

3
,
4

1
,
5

1
,
5

3

}

Therefore, S−1 (X1 + X2)S−1I + S−1X1 + S−1X2S−1I .
Finally assume that X1 =

{
1
}
and X2 =

{
5
}
, then:

S−1X1 =

{
1

1
,
1

3

}
, S−1X2 =

{
5

1
,
5

3

}
and

S−1X1 + S−1X2 =

{
0,

2

1
,
2

3

}
Consequently, we have:

S−1X1 + S−1X2S−1I =

{
0,

2

1
,
2

3

}
, and

S−1X1S−1I = S−1X2S−1I =

{
1

1
,
1

3
,
5

3
,
5

1

}

Note that 4
1
=

1
1
+

1
3
∈ S−1X1S−1I + S−1X2S−1I but

4
1
/∈

S−1X1 + S−1X2S−1I .

III. LOWER AND UPPER APPROXIMATIONS
VIA S−1R-LINEAR MAPS
Let f : M −→ M ′ be an R−linear map. By Lemma 1,
the induced map S−1f : S−1M −→ S−1M ′; m

s 7→
f (m)
s is

an S−1R−linear map. If M1 and M ′1 are R-submodules of M
and M ′ respectively. Then, it is well-known that f (M1) and
f −1

(
M ′1
)
are R-submodules of M ′ and M respectively.

Lemma 6: With the same notion followed and m
s ∈

S−1M1, the following statement is true:

m′

s′
∈

[m
s

]
θS−1M1

H⇒S−1f
(
m′

s′

)
∈

[
S−1f

(m
s

)]
θS−1f (S−1M1)

.

In addition, if S−1f is one-one, then the converse is also true.
Proof: The following implication can be proved in view

of linear property of S−1f :

m′

s′
∈

[m
s

]
θS−1M1

H⇒S−1f
(
m′

s′

)
∈

[
S−1f

(m
s

)]
θS−1f (S−1M1)

.
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Conversely, assume that S−1f is one-one and S−1f
(
m′
s′

)
∈[

S−1f
(m
s

)]
θS−1f (S−1M1)

. By definition of S−1f , it implies that:

S−1f
(m
s

)
=

f (m)
s
=
r
u
·
f
(
m′
)

s′
=
f
(
r · m′

)
us′

= S−1f
(
r · m′

us′

)
,

for some r
u ∈ U

(
S−1R

)
.

Since S−1f is injective, it follows that m
s =

r
u ·

m′
s′ . This

proves the required result. �
The following Example shows that the converse of

Lemma 6 is not true, if S−1f is not one-one.
Example 7: Let us consider R = Z4. Define f : R −→ R

as follows:

f (x) =

{
0, if x = 0, 2
2, if x = 1, 3

Then, f is an R−linear map. Take S =
{
1, 3

}
, then S−1R ={

0, 1
1
, 2
1
, 3
1

}
. By definition of S−1f , we obtain:

S−1f
( r
s

)
=


0, if

r
s
= 0,

2

1
2

1
, if

r
s
=

1

1
,
3

1

Since, S−1f
(
S−1R

)
=

{
0, 2

1

}
. By Example 1, it follows that:

S−1f
(
0
)
∈

[
S−1f

(
2

1

)]
θS−1f (S−1R)

and 0 /∈

[
2

1

]
θS−1R

.

Example 8: Since there exists a one-one ring homomor-
phism f : Z5 → Z10; x 7→ 6̂x. Then Z10 becomes
a Z5−module under the scalar multiplication defined as
follows:

r .̂x = f (r) .̂x = 6̂rx, for all r ∈ Z5 and x̂ ∈ Z10.

Assume that S =
{
1, 2, 3, 4

}
. Let U = S−1Z5 =

{v1, v2, v3, v4, v5} and U ′ = S−1Z10 = {u1, u2, u3, u4, u5}
be two universe sets of stores, where

v1 = 0, v2 =
1

1
, v3 =

1

2
, v4 =

1

3
, v5 =

1

4
and

u1 = 0̂, u2 =
1̂

1
, u3 =

1̂

2
, u4 =

1̂

3
, u5 =

1̂

4
.

Suppose that a, b ∈ U (resp. a′, b′ ∈ U ′) have the same
value of attributes, if (a, b) ∈ θU (resp.

(
a′, b′

)
∈ θU ′ ).

Let A = {E,Q,L,P} be the subset of attributes, where E =
Empowerment of sales personnel, Q = Perceived quality of
merchandisers, L = High traffic location, P = Store profit
or loss. Consider the following information system

(
U ′,A

)
:

Since, S−1f is one-one. By Lemma 6, the following informa-
tion system (U ,A) can be deduced from Table 1:

TABLE 1. Information system
(
U ′, A

)
.

TABLE 2. Information system
(
U, A

)
.

Theorem 1: With the above notion, suppose that X ⊆ M,
X ′ ⊆ M ′ and N =

(
S−1f

)−1 (
S−1M ′1

)
. Then the following

implications are true:
m
s
∈ S−1XN H⇒ S−1f

(m
s

)
∈ S−1f

(
S−1X

)
S−1M ′1

m
s
∈
(
S−1f

)−1 (S−1X ′)N H⇒ S−1f
(m
s

)
∈ S−1X ′S−1M ′1

Proof: Let ms ∈ S
−1XN . Then, ms ∈ N such that

[m
s

]
θN
∩

S−1X 6= ∅. There exists m′
s′ ∈ N such that m

′

s′ ∈
[m
s

]
θN

and
m′
s′ ∈ S

−1X . By Lemma 6, S−1f
(
m′
s′

)
∈
[
S−1f

(m
s

)]
θS−1f (N )

and S−1f
(
m′
s′

)
∈ S−1f

(
S−1X

)
. Since, S−1f

(m
s

)
∈ S−1M ′1.

By Lemma 3(4), it follows that:[
S−1f

(m
s

)]
θS−1f (N )

=

[
S−1f

(m
s

)]
θS−1M ′1

and

S−1f
(
m′

s′

)
∈

[
S−1f

(m
s

)]
θS−1M ′1

∩ S−1f
(
S−1X

)
.

Hence, S−1f
(m
s

)
∈ S−1f

(
S−1X

)
S−1M ′1

. This proves the first
implication. The second implication can be proved on the
same lines. �
In following Theorem, the converse of above result is

proved.
Theorem 2: With the same assumptions as in Theorem 1,

we have:

S−1f
(m
s

)
∈ S−1X ′S−1M ′1 H⇒

m
s
∈
(
S−1f

)−1 (S−1X ′)N
In addition, if S−1X is an additive subgroup of S−1M with
Ker

(
S−1f

)
⊆ S−1X, then

S−1f
(m
s

)
∈ S−1f

(
S−1X

)
S−1M ′1

H⇒
m
s
∈ S−1XN

where N =
(
S−1f

)−1 (
S−1M ′1

)
.

Proof: Let S−1f
(m
s

)
∈ S−1X ′S−1M ′1 . By definition

of the upper approximation S−1f
(m
s

)
∈ S−1M ′1 such that[

S−1f
(m
s

)]
θS−1M ′1

∩ S−1X ′ 6= ∅. It implies that n
t ∈
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[
S−1f

(m
s

)]
θS−1M ′1

and n
t ∈ S−1X ′, for some n

t ∈ S−1M ′1.

Then,
n
t
=
r
u
S−1f

(m
s

)
= S−1f

( rm
us

)
, for some

r
u
∈U

(
S−1R

)
.

Hence, rmus ∈
(
S−1f

)−1 (
S−1X ′

)
. Note that ms ∈ N and rm

us ∈[m
s

]
θN
, where N =

(
S−1f

)−1 (
S−1M ′1

)
. Thus, rmus ∈

[m
s

]
θN
∩(

S−1f
)−1 (

S−1X ′
)
. This proves the first implication.

Now, assume that S−1X is an additive subgroup of
S−1M with Ker

(
S−1f

)
⊆ S−1X and S−1f

(m
s

)
∈

S−1f
(
S−1X

)
S−1M ′1

, then S−1f
(m
s

)
∈ S−1M ′1 such that[

S−1f
(m
s

)]
θS−1M ′1

∩ S−1f
(
S−1X

)
6= ∅. There exists

n
t ∈ S−1M ′1 such that n

t ∈
[
S−1f

(m
s

)]
θS−1M ′1

and n
t ∈

S−1f
(
S−1X

)
. So,

n
t
=
r
u
S−1f

(m
s

)
= S−1f

( rm
us

)
, for some

r
u
∈U

(
S−1R

)
.

Assume that S−1f
( rm
us

)
= S−1f

( x
t

)
, for some x

t ∈ S−1X .
It implies that rm

us −
x
t ∈ Ker

(
S−1f

)
⊆ S−1X . By the

assumption on S−1X , we have rm
us ∈

[m
s

]
θN
∩ S−1X . Hence,

m
s ∈ S

−1XN . �
An illustration of the second implication in Theorem 2 is

made in following Example.
Example 9: Let R = M = Z24, M ′ = Z10. Define a map

f : Z24→ Z10; x 7→ 5̂x, i.e.,

f (x) =

{̂
0, ifx = 0, 2, 4, 6, . . . , 22
5̂, ifx = 1, 3, 5, 7, . . . , 23

Then f is a ring homomorphism. Hence,Z10 is aZ24−module
over the scalar multiplication defined as:

r .̂x = f (r) .̂x = 5̂r .̂x

for all r ∈ Z24, x̂ ∈ Z10. For S =
{
1, 9

}
, we have:

S−1Z24 =

{
0,

1

1
,
2

1
,
3

1
,
4

1
,
5

1
,
6

1
,
7

1

}
and S−1Z10 =

{̂
0,

1̂

1

}
By Lemma 1, the map S−1f : S−1Z24 → S−1Z10 is defined
as follows:

S−1f
(m
s

)
=


0̂, if

m
s
= 0,

2

1
,
4

1
,
6

1
1̂

1
, if

m
s
=

1

1
,
3

1
,
5

1
,
7

1

for all ms ∈ S
−1Z24. Let M ′1 =

{̂
0, 2̂, 4̂, 8̂

}
, then S−1M ′1 ={̂

0
}
and

(
S−1f

)−1 (
S−1M ′1

)
=

{
0, 2

1
, 4
1
, 6
1

}
= N (say). Since

U
(
S−1Z24

)
=

{
1
1
, 3
1
, 5
1
, 7
1

}
. Then,

[̂
0
]
θS−1M ′1

=
{̂
0
}
,
[
0
]
θN
=
{
0
}
,

[
4

1

]
θN

=

{
4

1

}
and[

2

1

]
θN

=

[
6

1

]
θN

=

{
2

1
,
6

1

}

Assume that X =
{
1, 2, 3

}
, then S−1X =

{
1
1
, 2
1
, 3
1

}
and(

S−1f
) (
S−1X

)
=

{̂
0, 1̂

1

}
. Hence:

S−1XN =

{
2

1
,
6

1

}
and

(
S−1f

) (
S−1X

)
S−1M ′1

=
{̂
0
}

Note that S−1f
(
0
)
= S−1f

(
4
1

)
= 0̂ ∈

(
S−1f

) (
S−1X

)
S−1M ′1

and 0, 4
1
/∈ S−1XN .

Theorem 3: Suppose that ∅ 6= X ′ ⊆ M ′, M ′1 is a submod-
ule of M ′ and N =

(
S−1f

)−1 (
S−1M ′1

)
. Then the following

claims are true:

m
s
∈

(
S−1f

)−1 (
S−1X ′

)
N
H⇒ S−1f

(m
s

)
∈ S−1X ′S−1M ′1 .

m
s
∈ S−1XN H⇒ S−1f

(m
s

)
∈ S−1f

(
S−1X

)
S−1M ′1

.

Proof: Let ms ∈ N . Note that S−1f
(m
s

)
∈ S−1M ′1. If

n
t is

an arbitrary element of
[
S−1f

(m
s

)]
θS−1M ′1

. Then there exists

r
u ∈ U

(
S−1R

)
such that

n
t
=
r
u
· S−1f

(m
s

)
= S−1f

( rm
us

)
. (3)

Firstly, suppose that m
s ∈

(
S−1f

)−1 (
S−1X ′

)
N
. Since,

rm
us ∈

[m
s

]
θN
⊆

(
S−1f

)−1 (
S−1X ′

)
. It follows that

n
t = S−1f

( rm
us

)
∈ S−1X ′ (see Equation 3). Thus,[

S−1f
(m
s

)]
θS−1M ′1

⊆ S−1X ′. The proof of the other claim is

on the similar lines. �
In the next result, the converse of Theorem 3 is proved.
Theorem 4: With the previous notion, the following state-

ment holds:

S−1f
(m
s

)
∈ S−1X ′S−1M ′1 H⇒

m
s
∈

(
S−1f

)−1 (
S−1X ′

)
N

In addition, if S−1X is an additive subgroup of S−1M with
Ker

(
S−1f

)
⊆ S−1X, then:

S−1f
(m
s

)
∈ S−1f

(
S−1X

)
S−1M ′1

H⇒
m
s
∈ S−1XN

where N =
(
S−1f

)−1 (
S−1M ′1

)
.

Proof: Let ms ∈ N . Suppose that m
′

s′ ∈
[m
s

]
θN

is an arbi-

trary element. From Lemma 6, it follows that S−1f
(
m′
s′

)
∈[

S−1f
(m
s

)]
θS−1f (N )

. Since, S−1f
(m
s

)
∈ S−1M ′1 ∩ S

−1f (N ).

It implies that

S−1f
(
m′

s′

)
∈

[
S−1f

(m
s

)]
θS−1f(N)

=

[
S−1f

(m
s

)]
θS−1M ′1

, (4)

see Lemma 3. Now, assume that S−1f
(m
s

)
∈ S−1X ′S−1M ′1 .

By definition of the lower approximation,
[
S−1f

(m
s

)]
θS−1M ′1

VOLUME 7, 2019 93097



Z. Chen et al.: Study of Roughness in Modules of Fractions

is a subset of S−1X ′. By Equation (4), it follows that m′
s′ ∈(

S−1f
)−1 (

S−1X ′
)
. This proves that[m

s

]
θN

⊆

(
S−1f

)−1(
S−1X ′

)
and

m
s
∈

(
S−1f

)−1 (
S−1X ′

)
N
.

The second implication can be proved using same methodol-
ogy as used in proof of Theorem 2. �
Theorem 5: Let ∅ 6= X ⊆ M and ∅ 6= X ′ ⊆ M ′. If M1 is a

submodule of M and m
s ∈ S

−1M1, then following statements
hold:

m
s
∈

(
S−1f

)−1 (S−1X ′)S−1M1

⇐⇒ S−1f
(m
s

)
∈ S−1X ′S−1f (S−1M1)

m
s
∈ S−1XS−1M1

H⇒ S−1f
(m
s

)
∈ S−1f

(
S−1X

)
S−1f (S−1M1)

Further, if S−1X is an additive subgroup of S−1M with
Ker

(
S−1f

)
⊆ S−1X. Then, the converse of second statement

can also be proved.
Proof: This proof is analogous to the proof of

Theorems 1 and 2. �
Theorem 6: With the same notion as in Theorem 5, the

following assertions hold:

m
s
∈

(
S−1f

)−1 (
S−1X ′

)
S−1M1

⇐⇒ S−1f
(m
s

)
∈ S−1X ′S−1f (S−1M1)

m
s
∈ S−1XS−1M1

H⇒ S−1f
(m
s

)
∈ S−1f

(
S−1X

)
S−1f (S−1M1)

Moreover, if S−1X is an additive subgroup of S−1M with
Ker

(
S−1f

)
⊆ S−1X. Then, the converse of second assertion

hold.
Proof: This proof is parallel to the proof of Theorems 3

and 4. �

IV. CONCLUSION
Rough sets are technical tool for modeling an incomplete
information system. The module theory is largely employed
in Algebra, Geometry and Physics. In the present work,
the lower and upper approximations between modules of
fractions are establishedwith respect to its submodules. Some
significant properties related to these notions are studied
with illustrative examples. The rough modules of fractions
presented here may contribute significantly in advancement
and implementation of this theory. We refer [28] for insight
about applications.
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