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ABSTRACT This paper proposes a new approach for function optimization using a new variant ofmulti-scale
quantum harmonic optimization algorithm (MQHOA). The new approach introduces a centroid motion to
improve the convergence efficiency, which is called MQHOAwith centroid motion (CM-MQHOA). Instead
of replacing the worst particle by the current best individual in the quantum harmonic oscillator process in
MQHOA, the weakest player is replaced by a current centroid position in the proposed algorithm. Simple
mechanisms are added to maintain the diversity of the population and help achieve the global optima in
difficult unimodal and multimodal search spaces. The benefits of the proposed algorithm are improved
performance in terms of effectiveness, reliability, accuracy, and efficiency. The approach appears to be
able to efficiently deal with several unimodal and multimodal benchmark functions. A variety of standard
benchmark functions are used to illustrate the proposed approach. The experimental results are compared
with several state-of-the-art optimization algorithms. The comparative results indicate the competitiveness
of the proposed algorithm and suggest a viable and attractive addition to the portfolio of computational
intelligence techniques.

INDEX TERMS Multi-scale quantum harmonic oscillator algorithm, heuristic algorithm, population-based
algorithm, global optimization, centroid motion.

I. INTRODUCTION
Global optimization problems universally exist in the real-
world scenarios, such as maximization of benefit or mini-
mization of cost in science, engineering and business. These
issues are often complicated or even NP hard. In the past
decades, global optimization problems have broadly aroused
interest of researchers to develop a large number of opti-
mization algorithms. Typically, these approaches can be cat-
egorized as deterministic (direct search) algorithms [1], [2]
and stochastic algorithms [3], [4]. Deterministic algorithms
obtain the same output when given the same input and
locate to the global optimum with a level of assurance. Most
determined methods like coordinate search algorithm [2] and
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branch and bound [5] are local search techniques which are
time-consuming and cannot prevent from falling into local
optima.

Although stochastic algorithms output different solutions
with the same input, they obtain results with an accept-
able calculation error within polynomial time [6]. Among
stochastic algorithms, nature inspired heuristic algorithms
are compelling for their remarkable robust, fast convergence,
parallelism and their global search capability [7]–[9]. Typical
heuristics include single solution heuristics such as Simulated
Annealing (SA) [10], [11], and population-based heuristics
like Genetic Algorithm (GA) [12], Ant Colony Optimiza-
tion (ACO) [13], Artificial Bee Colony (ABC) [14], [15],
Bat Algorithm (BA) [16], Harmony Search (HS) [17], Fire-
works Algorithm (FA) [18] and Particle Swarm Optimization
(PSO) [19], [20].
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For researchers, pursuing better performance of an
algorithm never stops. Generally, improvements of an
algorithm may be summarized as hybridising of some algo-
rithms, parameter regulation and introducing new mecha-
nisms into the original algorithms. For instance, quantum
behavior is integrated with classic heuristic algorithms
to perform efficient parallel computation [21]. These
algorithms include Quantum-inspired Differential Evolu-
tion (QDE) [22], Quantum-inspired Genetic Algorithm
(QGA) [23], Quantum-inspired Ant Colony Optimization
(QACO) [24], Quantum-inspiredArtificial Fish SwarmAlgo-
rithm (QAFSA) [25], Quantum-behaved Particle Swarm
Optimization (QPSO) [26], [27], and Multi-scale Quantum
Harmonic Oscillator Algorithm (MQHOA) [28], [29] and etc.

MQHOA is a population-based heuristic algorithm pro-
posed recently and proved effective in dealing with unimodal
and multimodal problems [29], [30]. However, there are
defects in the original MQHOA. For one thing, it adopts
the mechanism to substitute the worst solution with the cur-
rent optimum in each iteration cycle, which will weaken
the diversity of particles. For another, particles in MQHOA
repeatedly explore promising areas one after another which
is time-consuming and inefficient. In this paper, a centroid
motion mechanism is introduced into MQHOA to improve
the optimization performance. The proposed approach is
evaluated from different aspects and compared with several
state-of-the-art algorithms. Experiments are carried out by
evaluating the algorithms on several well-defined benchmark
functions from IEEE Congress on Evolutionary Computation
[31], [32]. The computational results indicate the competi-
tiveness of the proposed algorithm. The contribution of the
proposal can mainly be summarized as follows:

First, a new Multi-scale Quantum Harmonic Oscillator
Algorithm with centroid motion (CM-MQHOA) is proposed.
Second, the efficiency of convergence process is validated
by comparing the proposed algorithm with the original
MQHOA, the trajectory of their convergence path indicates
the significant improvement of CM-MQHOA. Third, a fall-
back mechanism is proposed and added to the proposed
algorithm to jump out local optima. Forth, the convergence
process is theoretically analysed and proved. Last but not
least, the proposed algorithm is sufficiently evaluated on
several unimodal and multimodal benchmark functions, and
the experiments are compared with several state-of-the-art
optimization algorithms. The comparative results indicate the
competitiveness of the proposed algorithm.

The remainder of this paper is organized as follows:
Section II briefly states the mathematical and physical back-
ground of MQHOA, followed by the introduction of the pro-
posed algorithm in Section III. Then, Section IV extensively
evaluates the effectiveness and efficiency of CM-MQHOA by
testing it on several well defined benchmark functions and
comparing it with several state-of-the-art algorithms. Finally,
Section V outlines the conclusion and our research work in
the near future.

II. OVERVIEW OF MQHOA
A. THEORETICAL BACKGROUND
An optimization problem f (x) in this paper is designated as
follows.

Minimize f (x) subject to xi ∈ [xl, xu]D (1)

where f (x) is an objective function, xi is a decision variable,
xl and xu are the lower and upper bounds for each deci-
sion variable, D is the dimension of the decision variable.
In quantum system, the motion of particles can be defined
by Schrödinger equation as follows [33], [34].

Eψ(x) =

(
−
h̄2

2m
∂2

∂x2
+ V (x)

)
ψ(x) (2)

(2) is an eigenvalue equation, where E is the system energy
of stationary state ψ(x), ψ(x) is probability amplitude and
|ψ |2 designates the probability distribution of the particles in
the quantum space. h̄ = h/2π (h is the Planck constant), V (x)
is the potential energy and a bound in the quantum space.

Inspired by quantum theory [34], [35] and quantum anneal-
ing method [36], the main idea of MQHOA is that the process
of solving an optimization problem f (x) can be regarded as
particles in quantum system transferring from high energy
levels to the ground state under a potential well V (x) [29].

Correspondingly, the probability of finding the global opti-
mum in the evaluation of an optimization problem is deemed
as the probability of locating to the ground state in quan-
tum system. As wavefunction in quantum physics reflects
the probability density of particles appear in the ground
state [33], the probability of particles appears in the quantum
space can be demonstrated as follows [29].
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When n→ 0, (3) is equal to:

|ψ0|
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where (4) is a form of Gaussian equation:

ψ(x) =
1

√
2πσ

exp(−
(x − µ)2

2σ 2 ) (5)

Accordingly, for n particles, (5) can be rewritten as follows:

ψn(x) =
n∑
i=1

ψ(i) =
n∑
i=1

1
√
2πσ

exp(−
(xi − µi)2

2σ 2 ) (6)

where µ is the mean value of the optimal solutions, σ is
the standard deviation of the current optimal solutions. The
smaller the σ is, the narrower the search space will be.

It can be seen in (3) and (4), from high energy levels
to the ground state, the wavefunction of quantum harmonic
oscillator changes from n scattered and intertwined Gaussian
functions in (3) to an overlapped Gaussian function in (4).
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Wavefunction plays an important role in quantum-
behaved algorithms. In QPSO, the ground state wavefunction
δ potential well works as a sampling probability density func-
tion [27].While inMQHOAwavefunction of harmonic oscil-
lator potential is employed as a sampling probability density
function. Wavefunction reflects the convergence process of
the proposed algorithm. For simple object functions, few
iterations are needed for particles to jump from high energy
levels to the ground state. While for sophisticated functions,
a large number of running generations will be required.

B. FRAMEWORK OF MQHOA
The structure of MQHOA is concise, including quantum
harmonic oscillator process (QHO process) and multi-scale
process (M process). In QHO process, particles explore new
neighbor fields of current optimal positions to exploit better
optimal solutions. While in M process, the search domain
is narrowed by half. The framework of MQHOA is demon-
strated in Fig. 1 [29].

FIGURE 1. Framework of Multi-scale Quantum Harmonic Oscillator
Algorithm.

In Fig.1, for each generation of convergence within the
current search domain, elitist strategy is employed to obtain
the present optimal solutions. When all of the particles fin-
ish exploration and exploitation within an iteration cycle,
the worst performer (particle with the largest fitness value)
will be replaced by the particle with the fittest value. Then
the standard deviation of the current optimal solutions is
calculated and compared with the current search length
(distance between the current upper bound and the lower
bound). If the current standard deviation is less than the cur-
rent search domain, the search domain will be reduced by the

declining coefficient λ. Otherwise, the algorithm will return
to generate new neighbour solutions for each particle. The
whole optimization process ceases when the given stopping
criteria are satisfied.

III. MQHOA WITH CENTROID MOTION
In MQHOA, the worst position in each iteration is replaced
by the current best solution. This will weaken the diversity
of the particles, because the current best solution may not
be changed within several iterations. In this case, the worst
position in each iteration process will be substituted by the
same solution. In this section, we introduce an improved
MQHOA with centroid motion (CM-MQHOA) to enhance
the diversification of the particles and reduce the total
iteration time.

A. MAIN IDEA
Centroid is the equilibrium point of a geometric figure or
mass centre of a physical object. In mathematics, centroid
is the geometric center of a plane figure [37]. In physics,
centroid is the center of mass which is the arithmetic mean
of all points weighted by the local density [37]. As a matter
of fact, centroid motion is universally applied in global opti-
mization [38]–[40]. The main idea of CM-MQHOA in this
paper is to utilize the centroid of the propulation to guide an
efficient exploration process toward the global optimum.

For a symmetric object, given k points in a search region
M ⊆ RN and a density function ρ, defined in M, the mass
centroid y∗ of M is defined as follows [38].

y∗ =

∫
M xρ(x)dx∫
M ρ(x)dx

(7)

where x is an independent variable. (7) indicates that the
centroid of a continuous region is a combined action of all the
particles. Meanwhile, for a finite k points in the continuous
region M , the centroid can be defined as follows.

y∗ =

∑k
i=1miyi∑k
i=1mi

(8)

In CM-MQHOA, we apply the centroid to balance the
particles in the search region.

B. MQHOA WITH CENTROID MOTION
In MQHOA, the trajectory of convergence is conducted by
replacing the worst solutions with the current best ones. This
process can be described as follows.

X |fworst ← X |fbest (9)

where X = x1, . . . , xd , d is the dimension of the variable.
As the X |fbest may not be changed in several iteration cycles,
there will be Xi, (1 ≤ i ≤ k) changed by the same optimal
solution. That will weaken the diversity of the particles.
Meanwhile, current optimal solution in each iteration cycle
obtains very little information from other particles, whichwill
result in inefficiency of exploration and exploitation. In order
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FIGURE 2. Wavefunction in the course of function evaluation.

to overcome these shortcomings, we apply the centroid of the
particles to guide the convergence process toward the global
optimal solution.

In CM-MQHOA, given k points yi, i = 1, ..., k , we can
define their associated exploration regions M̂i, i = 1, ..., k .
Meanwhile, given the search regions M̂i, i = 1, ..., k , we can
define their mass centroid y∗i , i = 1, ..., k . As the particles
yi, i = 1, ..., k serves as the generators, the mass centroids
of the particle are themselves in the search region M̂i. In this
case, we get

y∗i = yi (10)

In CM-MQHOA, the mass of particle is ignored, the poten-
tial energy is considered. Analogy to (8), we define the cen-
troid of CM-MQHOA in an iteration cycle as follows.

y∗ =

∑k
i=1 xie

−fi(x)∑k
i=1 e

−fi(x)
(11)

where xi is the variable in the search region, fi(x) is the fitness
value of the ith particle, e−fi(x) is defined as the Potential
Energy, which will be decreasing as the fitness value fi(x)
increases. Since the e−fi(x) is not less than zero, the denomi-
nator of (11) is assured not to be zero.

C. WAVEFUNCTION
According to (6), the wavefunction of the population reflects
the probability of appearance of particles in the search
domain. As centroid represents the collective wisdom to some
extent, the centroid motion will theoretically help the pop-
ulation move towards the global optimal landscape. As an
example, Fig. 2 illustrates the variation of wavefunctions
in the course of evaluating a benchmark function (Ackley,
100-dimensional).

As seen in Fig. 2, the figures in the first row depict the
distribution of particles in the course of function evaluation.
In 2-D coordinate system, the centroid of the population is
closer to the global optimal solution (0,0) compared with
the fittest particle (with the smallest fitness value). As the
search domain narrows, the particles constantly aggregate to
the global optimum. Correspondingly, the second row reveal
thewavefunction of the populationmoving towards the global
optimal area. As sigma decreases, the figure of wavefunction
shrinks from a flat bell-shaped figure Fig.2(e) to a needle-
shaped figure Fig.2(h).

D. CONVERGENCE OF CM-MQHOA
According to Chebyshev’s inequality [41], for a random vari-
able with finite mathematical expectation E(X ) = µ and
variance D(X ) = σ 2, the probability of the variable can be
written as:

P(|X − µ| < ε) > 1−
σ 2

ε2
(12)

where ε is a small arbitrary and positive number.
In CM-MQHOA, µ is the best position Ex at current search
domain, σ is the standard deviation of the best sampling
points, ε in (12) is the computation accuracy (ε = 1e − 6).
Then, we can rewrite (12) as follows:

lim
t→∞

P(|X − Ex| < ε) > 1−
σ 2
s

ε2
(13)

where t is the iteration time or iteration cycles in function
evaluation. As iteration goes on, the search range σs will
be narrowed by a reduction coefficient λ, and thus σs is
reduced by σs/λ. As ε is a small positive constant, σs will be
continuingly reduced until the ceasing condition is satisfied.
In CM-MQHOA, the stopping criteria for function evaluation
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is met when the current solution domain σs is less than the
computational accuracy ε. In this case, we get

lim
t→∞

σ 2
s

ε2
⇒ 0 (14)

That is

lim
t→∞

P(|X − Ex| < ε) > 1−
σ 2
s

ε2
⇒ 1 (15)

(15) indicates that when the converging time is enough or
the generation number is large enough, CM-MQHOA will
converge to a local optimum.

E. PSEUDO CODE OF CM-MQHOA
The pseudo code of CM-MQHOA is shown in Algorithm 1.

Algorithm 1 : CM-MQHOA Pseudocode

Input: k , Xi ∈ [dl, du]D (i=1,2,...,k), ε, λ, c
Output: the global optimum fbest , the optimal position

Xbest
Initialization, calculate fitness value fi = f (Xi) and the
current minimum fbest=minimize f (X )
while ( σs > ε) do

while (σk > σs) do
∀Xi ∈ X , generate X ′i ∼ N (Xi, σ 2

s )
∀Xi and X ′i , if f (X

′
i ) < f (Xi) then Xi = X ′i

update X by Xworst ← Xcentroid
update σk ;
if σk < σs then

finish the iteration cycle
else

sNO=sNO+1
end
if sNO > 100 then

initialize the Xworst and sigma=c*sigma
sNO=0

else
continue

end
end
σs = σs/λ

end

In Algorithm 1, k is the number of optimal solutions Xi
(i = 1, ..., k), Xi=x1i , x

2
i , ..., x

D
i , D is the dimension, f (Xi)

is the fitness value, λ is the factor of scale reduction, σs is
the current standard deviation of the population fitness, dl
and du are the lower and upper bounds of the search domain,
ε is the computational accuracy, ε = σmin, N (xi, σ 2

s ) is the
Gaussian distribution. c is the expansion coefficient (in this
paper c=2.0). If new generated particle is out of boundaries,
it is shifted onto the boundaries.

IV. EXPERIMENTAL RESULTS AND DISCUSSION
In this section, the effectiveness and efficiency of the pro-
posed algorithm are evaluated. Several well-defined bench-
mark functions are utilized to compare the performances

of CM-MQHOA with the original MQHOA. Meanwhile,
several state-of-the-art methods such as Stud Genetic Algo-
rithm (StudGA) [42], Particle Swarm Optimization version
2011 (SPSO2011) [43], Comprehensive Learning Parti-
cle Swarm Optimization (CLPSO) [44], Quantum-behaved
Particle Swarm Optimization (QPSO) [45] and Artificial
Bee Colony (ABC) [15] are applied to compete with
CM-MQHOA and the original MQHOA.

A. TEST FUNCTIONS
In order to sufficiently validate the characteristics of the
proposed algorithm, several unimodal andmultimodal bench-
marks are applied in the simulation. The test functions are
from the benchmark suit from IEEE Congress on Evolu-
tionary Computation [31], [32], [46]. Function f1-f7 are uni-
modal functions. Function f8-f12 are multimodal functions
with many local optima. The test benchmark functions are
listed in Table 1.

B. PARAMETER SETTING
Parameters used in every algorithm are set as same as pos-
sible. The number of particles (population size) is defined
Np = 20. The maximum iteration cycle is set according
to the rule used in CEC2017 [47], the maximal iteration
generation is defined as maxFE = 10000 ∗ dimension, e.g.,
if the function dimension is 100, the maximal iteration will
be 1000000. The search space [dl , du]D for each benchmark
function is set according to Table 1. The calculation accuracy
(error) is set to ε = 0.000001. Meanwhile, for StudGA [42],
the crossover probability is defined 1.0, the number of points
in each crossover is 1, the mutation rate is set 0.01, main-
taining 2 best individuals from one generation to the next.
For SPSO2011 [43], the inertia weight ω = 1/2log(2),
the learning factor c1 = c2 = 0.5+ log(2) . The parameters
used in CLPSO [44] are the inertia weight linearly declined
from 0.9 to 0.2, the accelerate constant c1 = c2 = 1.49445.
For QPSO [26], [27], the contraction-expansion coefficient α
increases linearly from 0 to 0.5. For ABC [14], [15], the size
of the food sources is set half of the colony. The probability
to choose a food source is defined as follows:

Prob = 0.9 ∗ Fitness/max(Fitness)+ 0.1 (16)

where Fitness is a vector holding fitness (quality) values
associated with food sources.

Meanwhile, the stopping criteria for all of the algorithms
are uniformly defined as: the computational accuracy is less
than 1e-6 or the maximal running generation is larger than
10000*D. All of the algorithms are coded in Matlab R2016a
and executed on the same personal computer with an Intel
core(TM) i5-4200U 64 bit, 2.3 GHz and windows 7 operation
system.

C. EFFECTIVENESS EVALUATION
In order to evaluate the effectiveness of the proposed algo-
rithm, several well-defined benchmark functions are utilized
as test functions. To minimize the stochastic nature of the
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TABLE 1. Benchmark functions.

algorithms, 51 independent trials on each function are con-
ducted and the reported results for each function are the
average values. In this subsection, the experiments includes
two parts: the trajectory evaluation of the algorithms and the
successful rate (SR) evaluation over 51 independent trails.

1) TRAJECTORY OF CONVERGENCE
To reveal the different convergence performances between
the CM-MQHOA and the original MQHOA, we traced the
trajectory of their optimal solutions in multi-dimensional
plane figures in the experiments. The evaluations were con-
ducted on well-defined benchmark functions. Without losing
of generality, the dimension of the benchmarks was set 10.
The trajectory pace and fitness-iteration figures are shown
in Fig.3 and Fig.4.

In Fig.3 and Fig.4, the first row of the figures records
the motion path of the best particles of MQHOA. The sec-
ond row shows the motion trajectory of the best players of
CM-MQHOA. The third row illustrates the convergence ten-
dency of the two algorithms, and so on.

As illustrated in Fig. 3(a), in evaluation of function f1,
the motion path of particles in MQHOA is more round-
about than the trajectory of particles in CM-MQHOA
in Fig. 3(e), which indicates that particles in CM-MQHOA
move faster than MQHOA toward the optimal landscape.
In Fig. 3(a), the fitness-iteration chart of the MQHOA
is above CM-MQHOA, and the fitness-iteration graph of
CM-MQHOA ismuch closer to the horizontal coordinate axis
which indicate more efficient of CM-MQHOA in finding the
global optimal solution. Similar situations happen to the rest
functions.

Meanwhile, in the evaluation of unimodal function f1-f7,
though both MQHOA and CM-MQHOA are able to locate
to the global optimal landscape, CM-MQHOA performs
much better than MQHOA. The fitness-iteration curves of
MQHOA is much higher than that of CM-MQHOA. In the

evaluation of multimodal functions f8-f12 the difference
between MQHOA and CM-MQHOA is more significant.
As shown in Fig. 3(p) and (t), in evaluation of function f8,
the trajectory of best individuals in MQHOA is more disper-
sive than that of CM-MQHOA.Meanwhile, Fig. 3(x) demon-
strated that CM-MQHOA converges closely to horizontal
axis within about 1200 iterations (function evaluations),
while MQHOA is not able to converge within 3500 gen-
erations. Similarly, in the evaluation of function f9, f10
and f12, the CM-MQHOA converges much faster than
MQHOA. In evaluation of function f11, though bothMQHOA
and CM-MQHOA are not capable of finding the global
optimum within the maximal function evaluation maxFE,
CM-MQHOA performs much better than MQHOA, because
the fitness-iteration of CM-MQHOA is much lower than that
of MQHOA in Fig. 4(k).

2) SUCCESSFUL PROPORTION
In order to reveal the effectiveness and reliability of the
CM-MQHOA, experiments are carried out by evaluating
the successful proportions in locating to the global opti-
mum within 51 independent trials. Meanwhile, to reveal
the different performance of the proposed algorithm, exper-
iments are carried out on 10-dimensional, 30-dimensional,
50-dimensional, 80-dimensional and 100-dimensional bench-
mark functions. The experimental results are compared with
several state-of-the-art algorithms, such as StudGA [42],
SPSO2011 [43], CLPSO [44], QPSO [45] and ABC [15]. The
statistical results are displayed in Table 2.

As illustrated in Table 2, from an overall perspective, ABC
algorithm performs the best among the compared techniques,
obtaining 52 100%s in total, followed by CM-MQHOA,
StudGA, MQHOA, SPSO2011, QPSO and CLPSO, getting
37, 33, 33, 29, 18 and 7 times of 100% respectively.

For unimodal functions f1-f6 and multimodal function
f12, both CM-MQHOA and MQHOA perform excellent,
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FIGURE 3. Trajectory of the convergence process for MQHOA and CM-MQHOA (part 1).

successfully locating to the global optima in every experi-
ment, except that MQHOA obtains 98.04% and 90.20% suc-
cessful proportions in the evaluation of 80-dimensional and

100-dimensional function f2 and gets 50% SR in the evalua-
tion of 100-dimensional function f6. It should be noticed that
in the evaluation of function f6, CM-MQHOA and MQHOA
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FIGURE 4. Trajectory of the convergence process for MQHOA and CM-MQHOA (part 2).

are the only two algorithms which are capable of finding
the global optima. And CM-MQHOA is the only approach
which is able to find the global optimum in the evaluation of
100-dimensional function f6.
In the evaluation of function f7-f11, CM-MQHOA and

MQHOA are not doing as well as in function f1-f6 and f12.
They are not able to find the global optima with large success-
ful proportions in these function evaluations. In the evaluation
of function f7, StudGA and ABC algorithms are the only two
algorithmswhich are able to find the global optima every time
in the 51 independent trials, while other algorithms nearly fail
to locate to the global minima. Similar situation happens in
the evaluation of function f11.
In the evaluation of function f8, ABC is the only technique

which is capable of fully finding the global optima in the
10, 30, 50, 80 and 100 dimensional experiments, while other
algorithms are nearly unable to find the global optima espe-
cially in the 80 and 100 dimensional experiments. Similarly,
in evaluation of function f9, ABC obtains the highest SR in
the multi-dimensional function evaluations, and it is the only
one which is able to find the global minima with 100% SR
in the 30, 50, 80 and 100 dimensional trials (80.39% SR in
10-dimensional function evaluation).

In the evaluation of function f11, though all of the algo-
rithms are able to completely find the global optimum with
100% SR in the 10-dimensional experiments, the successful

proportions of CLPSO, QPSO, MQHOA and CM-MQHOA
are decreasing when the function dimension is larger than 30.
When the dimension increases to 100, all of the algorithms are
unable to find the global optima except for StudGA and ABC
algorithm. StudGA and ABC are the only two approaches
which are able to successfully find the global optima with
100% SR in the 51 independent trials.

D. EFFICIENCY EVALUATION
Section IV-C qualitatively reveals the effectiveness and
improvements of CM-MQHOA.However, it is difficult to fig-
ure out the better performer when the competitors obtain the
same successful proportion in Table 2. In this section, the effi-
ciency of CM-MQHOA is evaluated by detailed records and
fitness-iteration relations.

1) COMPUTATIONAL PRECISION
To estimate the efficiency of the proposed algorithm, several
items are considered such as the best fitness, mean fitness
(the average of the fitness value obtained by the population),
standard deviation of the fitness value, iteration time (CPU
run time, time from start to finish the function evaluation)
and function evaluation number (FE). Without losing of gen-
erality, the experiments were carried out on 100-dimensional
function evaluations. Meanwhile, to reveal the differ-
ences among the CM-MQHOA and some congeneric
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TABLE 2. Successful proportions for StudGA, SPSO2011, CLPSO, QPSO, ABC, MQHOA and CM-MQHOA in 10, 30, 50, 80 and 100 dimensional function
evaluations. The results are the average of the 51 independent trials.
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algorithms, the experimental results are compared with
MQHOA and several state-of-the-art optimization algo-
rithms such as StudGA [42], SPSO2011 [43], CLPSO [44],
QPSO [45] and ABC [15]. In the experiments, for all
of the competitors, the stopping criterion were defined as
the maximal function evaluation (maxFE) was larger than
10000*dimension or the computational accuracy is less than
1e-6. The experimental results are the average over the
51 independent trials and listed in Table 3.

In Table 3, the items of the table are defined as follows:
Best denotes the averaged best fitness in the 51 independent
trials, Mean is the average of the mean fitness values, Std
represents the average of standard deviation obtained in every
independent trial, IterNO. denotes the averaged function eval-
uation times and Time represents the average of CPU run
time in the 51 independent trial. As illustrated in Table 3,
from an overall perspective, StudGA, ABC, MQHOA and
CM-MQHOA perform better than SPSO2011, CLPSO and
QPSO in the 100-dimensional function evaluations. StudGA
obtains the largest number of the best fitness values, such as in
the evaluation of function f3, f4, f8, f9, f10 and f12. ABC per-
forms excellently in most of the function evaluations, espe-
cially on function f7 and f8 that ABC is the only one which
is able to find the global optima. Although CM-MQHOA
does not find the smallest fitness values, it spends the least
time and takes the fewest iteration (function evaluation) in
the evaluation of function f1, f3, f4, f5, f9, f10 and f12.

2) FITNESS-ITERATION EVALUATION
Although Table2 and Table3 reflect the performances of
CM-MQHOA to some extent, it is not enough to figure out
the efficiency of the algorithms. In this subsection, fitness-
iteration evaluation is introduced to estimate the efficiency of
the algorithms. The fitness-iteration curve records the fitness
value as the run times (function evaluation times) increases.
The fitness-iteration figures are shown in Fig.5.

In Fig.5, the horizontal axis represents the function evalu-
ation times, the vertical coordinate denotes the fitness value
(semilogy). As illustrated in Fig.5 (a)-(l), though MQHOA
and CM-MQHOA perform similarly in Table 2 and Table 3,
CM-MQHOA converges much faster than MQHOA in the
evaluation of function f1-f12.
In Fig. 5(a), in the evaluation of function f1, CM-MQHOA

converges much faster than other algorithms, followed by
ABC, SPSO2011 and StudGA. Although ABC converges
slower than SPSO2011 in the first 10000 generations, it out-
performs SPSO2011 after that. The performance of MQHOA
and StudGA is approximate, both converge faster than QPSO
and CLPSO. Similar situation happens in the evaluation of
function f3, f4, f9 and f10.
As demonstrated in Fig.5(b) that in the evaluation of func-

tion f2, ABC is the only algorithm which is able to converge
to the global optimum within 50000 generations. Though
CM-MQHOA cannot find the global optimum within
50000 iterations, it converges more efficient than other algo-
rithms except for ABC. For function f5, Fig.5(e) reveals

the superiority of CM-MQHOA which is the most efficient
algorithm converging to the global minimum within 600 iter-
ations. In the evaluation of function f6, CM-MQHOA
and MQHOA perform much better than other algorithms,
both of them converge to the global optimum within
720000 generations.

In the evaluation of function f8, CM-MQHOA converges
much faster than other algorithms, positioning the global
optimal landscape within 15000 generations. While algo-
rithms except CM-MQHOA converge slowly within the first
15000 function evaluation. As shown in Fig.5(k), the ABC
algorithm performs the best in the evaluation of function
f11, which is the only algorithm that is able to converge to
the global minimum within 200000 generations. Although
CM-MQHOA converges much faster than other algorithms
in the first 10000 generations, it converges very slowly after
that and its fitness-iteration curve remains a horizontal line.
In the evaluation of function f12 (Fig.5), CM-MQHOA out-
performs other algorithms, which converges quickly to the
global optimal landscape within 7500 generations.

E. BRIEF DISCUSSION
In above sections, the characteristics of the proposed algo-
rithm are evaluated from several aspects. The trajectory plots
demonstrated in Fig. 3 reveal that the centroid motion applied
in CM-MQHOA benefits the algorithm from shortening the
converging path and enhancing the converging efficiency.
To evaluate the performances of the proposed algorithm,
the effectiveness and efficient evaluations are carried out on
several multi-dimensional benchmark functions. The experi-
mental results are compared with the original MQHOA. The
comparative results indicate that generally CM-MQHOA and
MQHOA are matched in the successful rate of locating to
the global optima in the evaluation of unimodal functions.
But CM-MQHOA converges much more efficient than the
original MQHOA. Meanwhile, CM-MQHOA obtains much
higher successful rate in evaluation of multimodal functions
and converges much faster than MQHOA.

The detailed computational results in Table 3 reveal that
CM-MQHOA spends less CPU run time and fewer gener-
ations in several function evaluations, which indicates the
efficiency of CM-MQHOA in the course of converging to the
global optima. These conclusions are verified in the fitness-
iteration evaluations. In Fig.5, CM-MQHOA outperforms
other techniques, converging much faster than other algo-
rithms in all of the function evaluations except for function
f2, f7 and f11.

The reason for CM-MQHOA achieving competitive results
can mainly be summarized as follows. First, the centroid in
CM-MQHOA is the center of the potential system, the cen-
troid motion helps the population move toward the global
optimal landscape. Second, the centroid motion itself in
essence is a mutation which helps to diversify the particles.
Third, the mechanism to enlarge the search domain when
particles fall into local searching for a long time helps to
jump out stagnation. Last but not least, the centroid contains
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TABLE 3. Detailed computational results comparison among StudGA, SPSO2011, CLPSO, QPSO, ABC, MQHOA and CM-MQHOA on 100-dimensional
benchmark functions. The unit of time is second (s).
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FIGURE 5. Fitness-iteration comparison among StudGA, SPSO2011, CLPSO, QPSO, ABC, MQHOA and CM-MQHOA for 100-dimensional
function evaluations.

information from all of the individuals which helps to take
advantage of the explorative power from the population.

The experimental results also indicate that the proposed
algorithm does not perform as well as ABC in the evaluation
of some multimodal benchmark functions, such as f11. As the
3-D figure of function f11 in Fig. 6 shows, there are many
local optimal solutions in the search domain. It is easy for

a continuous optimization technique to fall into the local
traps. But for ABC and StudGA, they do not get stumped
by the problem. The reason for the good performance on
function f11 may due to the reasons as follows.
In ABC algorithm [15], the employed bees randomly

search for new food sources generated by a differential mech-
anismwhich helps to diversify the food sources. The onlooker
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FIGURE 6. 3D figure of Rastrign function (f11).

bees search for the best food source with a probability defined
by using (16) which is a mutation mechanism to diversity the
food source. For scout bees, new food sources are generated
when the trial counter exceeds the limit value, which helps the
algorithm to jump out local optima. In StudGA [42], different
parents are randomly selected to mate with the stud, new
children are created by the crossover mechanism. Non-elite
population members are continuously replaced by new chil-
dren. In the mutation process, the elites are protected not to be
mutated. These mechanisms help StudGA perform excellent
in the evaluation of function f11, and they are deserved for
reference in other optimization techniques.

V. CONCLUSION
This paper proposes a Multi-scale Quantum Harmonic Oscil-
lator Algorithm with Centroid Motion (CM-MQHOA) to
improve the convergence performance and enhance the explo-
ration and exploitation ability. Effectiveness and efficiency
of the proposed algorithm are estimated by evaluating sev-
eral well-defined CEC benchmark problems from differ-
ent aspects. The tracing of convergence path reveals the
significant improvement of convergence performance in CM-
MQHOA compared with the original MQHOA. The effec-
tiveness evaluation indicates the reliability and the consistent
repeatability of optimization performance for CM-MQHOA.
The detailed computational results indicate the efficiency
and accuracy of the proposed approach. The fitness-iteration
evaluation reveals the efficiency of CM-MQHOA to converge
to the global optima. The experimental results are compared
with several state-of-the-art optimization algorithms such as
StudGA, SPSO2011, CLPSO, QPSO and ABC. The com-
parative results indicate the competitiveness of the proposed
technique and suggest a viable and attractive addition to the
portfolio of computational intelligence techniques.

In the near future, many more state-of-the-art algorithms
will be considered to further compare with the performance
of the proposed technique, hybridizing of the proposed
algorithm and several excellent algorithms such as ABC
and SPSO2011 will be considered to improve the conver-
gence performance. Meanwhile, application of the proposed
algorithm to deal with multi-objective problems is in our
research schedule.
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