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ABSTRACT Irrelevant variables are always omitted in knowledge compilation languages since their
assignments do not change the satisfiability of sentences. In order to identify new knowledge compilation
languages and reduce the scale of compiling result of d-DNNF, we augment NNF with irrelevant variables in
this paper. The NNFPNI, NNFPI, and NNFNI are proposed based on different combinations of positive literals,
negative literals, and irrelevant variables. Each sentence in NNF, NNFPI, NNFNI, or NNFPNI can be translated
to an equivalent sentence in another language in polynomial time.We also define d-DNNFNI, d-DNNFPI, and
d-DNNFPNI based on decomposability and determinism in NNF, which are subclasses of NNFPI, NNFNI,
and NNFPNI, respectively. A number of querying and transforming methods for d-DNNFPNI, d-DNNFPI, and
d-DNNFNI are designed to solve relevant reasoning problems in knowledge compilation map. Overall, d-
DNNFPI and d-DNNFNI do not reduce the tractability of d-DNNF, so we propose a compressing method for
d-DNNF based on d-DNNFPI and d-DNNFNI. The experimentally, the compiling results of the d-DNNFPI
and d-DNNFNI are better with respect to d-DNNF for most instances, and our compressing method is
significantly effective for all instances.

INDEX TERMS Knowledge compilation, negation normal form, d-DNNF, irrelevant variables.

I. INTRODUCTION
Knowledge compilation has been emerging as a popular
direction of research for improving the efficiency of com-
putational tasks. According to this direction, the reasoning
process is split into two phases: an off-line compilation
phase and an on-line reasoning phase. In the off-line phase,
the propositional theory is compiled into some target com-
pilation language. In the on-line phase, the compiled target
is used to answer a large number of queries in polytime.
This paper is primarily concerned with reducing the scale of
compiling result of target compilation language, which can
further improve the efficiency of on-line reasoning.

Over the years, many target compilation languages have
been proposed and researched for different inference tasks,
including ROBDDs [1], prime implicates [2], prime impli-
cants [3], DNNF [4], FNNF [5], AOMDD [6], DNNFT [7],
SDDs [8], ZSDDs[9], OBDD-L [10], and OBDD[∧] [11].
In order to evaluate different target compilation languages,
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Darwiche and Marquis have provided the knowledge compi-
lation map by analyzing them according to their succinctness
and the class of queries/transformations that they support in
polytime [12].

New target compilation languages are usually identified
by augmented existing languages with appropriate knowl-
edge representation properties. For example, SDDs is the
results from imposing structured decomposability and strong
determinism on decision diagram [8], and ZSDDs is identi-
fied from augmenting SDDs with the Zero-suppressed prop-
erty [9]. New target compilation languages can improve
existing knowledge compilation methods from different
aspects. Likewise, ZSDDs can be more succinct than
SDDs when representing sparse Boolean functions [9], and
ROBDD[∧] can admit more transformations than ROBDD
in polytime [11].

Given a formula F , a partial assignment P assigns the
variables mentioned by it in F to true or false. If F |P is
true or false, the variables not mentioned by P are irrele-
vant. Usually, irrelevant variables are omitted in knowledge
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compilation languages, since thy can be computed based
on known positive literals and negative literals. A natural
idea is that we can also omit positive literals (resp. negative
literals) and compute them based on known negative literals
(resp. positive literals) and irrelevant variables in knowledge
compilation languages. So, irrelevant variable can be viewed
as a new appropriate knowledge presentation property, and it
can be used to identify new target compilation languages.

Negation Normal Form, NNF, is a nested class based on
representing propositional sentences using directed acyclic
graphs. A number of target compilation languages that have
been presented in the AI, formal verification, and computer
science literature and show that they are special cases of
NNF [12]. In a sentence in NNF, each leaf nodes is labeled
with true, false, positive literal or negative literal. Obviously,
NNF also omits irrelevant variables.

Deterministic, Decomposable Negation Normal Form,
d-DNNF [13], is a representative subclass of NNF and
a tractable logical form, which permits some generally
intractable logical queries to be computed in polynomial
time in the form size [12], [13]. d-DNNF has been success-
fully employed in many applications, including probabilis-
tic reasoning [14]–[16], diagnosis [17], and Max-SAT [18].
c2d is a publicly available compiler that converts CNF to
d-DNNF [19]. Afterwards, an efficient d-DNNF compiler
DSHARP is proposed based on sharpSAT [20]. Recently,
some new technologies for compiling a CNF to decision-
DNNF (a strict subset of d-DNNF) are proposed [21].

Knowledge compilation pushes much of the computational
overhead into off-line compilation, which is amortized over
all on-line queries. Therefore, the efficiency of on-line rea-
soning is a crucial factor for knowledge compilation, which
is directly decided by the scale of compiling result of target
compilation language. d-DNNF is one of the most important
target compilation languages and has a number of important
applications in reasoning field, which motivates us to further
improve the performance of knowledge compilation methods
based on d-DNNF. We focus on improving the efficiency of
on-line reasoning by reducing the scale of compiling result
for d-DNNF in this paper.

Irrelevant variables can be used to equivalently replace
positive literals or negative literals in target compilation lan-
guages. For most real-world problems, the number of irrele-
vant variables is far less with respect to positive literals and
negative literals in their models. However, irrelevant variables
are omitted in NNF. So, we intend to augment NNF with
irrelevant variables and to identify new knowledge compi-
lation languages in this paper. In this way, we can further
reduce the scale of compiling result of d-DNNF by replac-
ing their positive literals or negative literals with irrelevant
variables.

In this paper, we augment NNF with irrelevant variables,
and NNFPNI, NNFPI and NNFNI are proposed.
• In an NNFPNI sentence, each leaf node of each sentence

is labeled by true, false, some positive literal, some negative
literal, or some irrelevant variable.

• In anNNFPI sentence, each leaf node of each sentence is
labeled by true, false, some positive literal, or some irrelevant
variables.
• In anNNFNI sentence, each leaf node of each sentence is

labeled by true, false, some negative literal, or some irrelevant
variables.

Each sentence in NNF, NNFPI or NNFNI can be translated
to an equivalent sentence inNNFPNI in polynomial time, vice-
versa. We also design a number of querying and transforming
methods for d-DNNFPNI, d-DNNFPI and d-DNNFNI to solve
reasoning problems in knowledge compilation map [12].
Additionally, we propose a compressing method for d-DNNF
based on d-DNNFPI and d-DNNFNI. In order to evaluate
the above new languages, we select a number of instances,
which are encoded from real world problems and widely
used in domain of knowledge compilation [8]–[11], [21].
Experimental results show that our compressing method can
sharply reduce the scale of sentences in d-DNNF for a number
of benchmarks.

II. BASIC DEFINITIONS
Definition 1 [13]: Let PS be a denumerable set of proposi-
tional variables. A sentence in NNFPS is a rooted, directed
acyclic graph (DAG) where each leaf node is labeled with
true, false,X or¬X ,X ∈PS; and each internal node is labeled
with ∧ or ∨ and can have arbitrarily many children. The size
of a sentence 6 in NNFPS, denoted |6|, is the number of its
DAG edges. Its height is the maximum number of edges from
the root to some leaf in the DAG.

A number of properties can be stated on NNF graphs [13]:
• Decomposability. An NNF satisfies this property if

for each conjunction C in the NNF, the conjuncts of C do
not share variables. That is, if C1,. . . ,Cn are the children of
and-node C , then Vars(Ci)∩ Vars(Cj) = ∅ for i 6= j.
• Determinism. An NNF satisfies this property if for

each disjunction C in the NNF, each two disjuncts of C are
logically contradictory. That is, if C1,. . . ,Cn are the children
of or-node C , then Ci ∧Cj| = false for i 6= j.
• Smoothness. An NNF satisfies this property if for each

disjunction C in the NNF, each disjunct of C mentions the
same variables. That is, if C1,. . . ,Cn are the children of
or-node C , then Vars(Ci) = Vars(Cj) for i 6= j.
Definition 2 [13]: d-DNNF is the subset of NNF satisfying

decomposability and determinism; and sd-DNNF is the sub-
set satisfying decomposability, determinism and smoothness.

III. DEFINITIONS OF NEW COMPILATION LANGUAGES
Definition 3 (Irrelevant Variables): Given a sentence 6 in
NNF, for each disjunction C in 6, if there exists a dis-
junct D of C with Vars(D) 6= Vars(C), the variables in
Vars(C) - Vars(D) are irrelevant variables with respect to D
(denoted as irrelevant variables for convenience).

Usually, an assignment consists of positive literals, neg-
ative literals and irrelevant variables, where irrelevant vari-
ables are default. We can also make the positive literals or
negative literals to be default.
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Example 1: Given a CNF formula F = {¬A ∨ B ∨ C ,
¬A ∨ C , B ∨ ¬C , D} and s = {¬A, ¬C , D} the satisfiable
assignment of F . According to s, we know that B is an
irrelevant variable with respect to s. BI represents that B
is an irrelevant variable. If we make the positive literals to
be default, we can get an assignment s1 = {¬A, BI , ¬C},
in which D is default. If we make the negative literals to be
default, we can get an assignment s2 = {BI ,D}, in which¬A
and ¬C are default.
Definition 4 (NNFPNI): Let PS be a denumerable set of

propositional variables. A sentence in NNFPNI is a rooted,
directed acyclic graph (DAG) where each leaf node is labeled
with true, false, X , ¬X or XI , X ∈ PS, XI means that X is
irrelevant; and each internal node is labeled with ∧ or ∨ and
can have arbitrarily many children.
Definition 5 (NNFPI): Let PS be a denumerable set of

propositional variables. A sentence in NNFPI is a rooted,
directed acyclic graph (DAG) where each leaf node is labeled
with true, false, X or XI , X ∈ PS, XI means that X is
irrelevant; and each internal node is labeled with ∧ or ∨ and
can have arbitrarily many children.
Definition 6 (NNFNI): Let PS be a denumerable set of

propositional variables. A sentence in NNFNI is a rooted,
directed acyclic graph (DAG) where each leaf node is labeled
with true, false, ¬X or XI , X ∈ PS, XI means that X is
irrelevant; and each internal node is labeled with ∧ or ∨ and
can have arbitrarily many children.

Just like NNF, the size of a sentence 6 in NNFPNI, NNFPI
or NNFNI, denoted |6|, is the number of its DAG edges. Its
height is themaximum number of edges from the root to some
leaf in the DAG.

For NNFPNI, NNFPI and NNFNI, all irrelevant variables are
identified. So, for each disjunction C in NNFPNI, each dis-
junct of C in NNFPNI mentions the same variables. Specially,
NNFPNI satisfies smoothness.
Theorem 1: Every sentence in NNF, NNFPI or NNFNI can

be translated to an equivalent sentence in NNFPNI in polyno-
mial time. Every sentence in NNFPNI can be translated to an
equivalent sentence in NNF, NNFPI, or NNFNI in polynomial
time.

Proof: We can easily make a sentence in NNFPI (resp.
NNFNI and NNF) smooth using the following operation:
For each disjunction ∧iαi, replace the disjunct αi with αi∧
∧A∈N¬A(resp. A and AI ), where N are the atoms appear-
ing in ∧iαi but not in αi. Above smoothing processing can
be done in polynomial time. Every sentence in NNFPNI
can be translated to an equivalent sentence in NNF, NNFPI
or NNFNI by replacing the negative literals, positive liter-
als or irrelevant variables with the true node. Above pro-
cessing can be done in linear time. So, Theorem 1 is
established.

After replacing the negative literals or positive literals with
the true node, there may exist some reducible edges under
some and nodes. We use following reducing strategies to
remove those reducible edges.

1) Removing all edges from and nodes to true node;

FIGURE 1. A sentence in d-DNNF. The size of this sentence is 14.

FIGURE 2. A sentence in d-DNNFPNI, which is equivalent to the sentence
in Fig. 1. CI and AI are two leaf nodes labeled with irrelevant variables.
The size of this sentence is 18.

2) If the number of child nodes of an and node V is 0,
labeling V with true;
3) If the number of child nodes of an and node V is 1,

replacing V with its child node.
The definitions of decomposability and determinism in

NNF are also applicable for NNFPNI, NNFPI and NNFNI.
It should be noted that the determinism in NNFPI or NNFNI
should be considered with the omitted negative literals or
positive literals.
Definition 7: d-DNNFPNI (reps. d-DNNFPI and

d-DNNFNI) is the subset of NNFPNI (reps. NNFPI and
NNFNI) satisfying decomposability and determinism.
d-DNNFPNI also satisfies smoothness.
Based on Theorem 1, we can reasonably infer that

d-DNNF, d-DNNFPI, d-DNNFNI and d-DNNFPNI have the
same tractability with respect to some generally intractable
logical queries and transformations in the form size.

Figures 2-4 are three sentences in d-DNNFPNI, d-DNNFPI
and d-DNNFNI respectively, which are equivalent to the sen-
tence in Figure 1.
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FIGURE 3. A sentence in d-DNNFPI, which is equivalent to the sentence
in Fig. 1. The size of this sentence is 11.

FIGURE 4. A sentence in d-DNNFNI, which is equivalent to the sentence
in Fig. 1. The size of this sentence is 9.

IV. REASONING ONd-DNNFPNI, d-DNNFPI AND d-DNNFNI
d-DNNF permits many logical queries to be computed in
polynomial time in the form size. In knowledge compilation
map, these queries include consistency check, validity check,
clausal entailment check, implicant check, model counting
and model enumeration [12]. And d-DNNF also supports
conditioning transformation in polynomial time in the form
size [12]. Given a sentence 6, the definitions of queries and
transformation mentioned in this paper are shown as follows.
• Consistency (validity) check: Mapping 6 to true if 6 is

consistent (valid), to false otherwise.
• Clausal entailment check: For any clause C , mapping 6

and C to true if 6| = C holds, and to false otherwise.
• Implicant check: For any term T , mapping 6 and T to

true if T | = 6 holds, and to false otherwise.
•Model counting:Mapping6 to a nonnegative integer that

represents the number of models of 6.
•Model enumeration: Outputting all models of 6.
• Conditioning: For any consistent term T , mapping6 and

T to 6|T .

Sentences in d-DNNFPNI, d-DNNFPI and d-DNNFNI
contain irrelevant variables. Sentences in d-DNNFPI and
d-DNNFNI do not mention negative literals or positive lit-
erals. The above properties caused that original reasoning
methods on d-DNNF are not applicable for d-DNNFPNI,
d-DNNFPI and d-DNNFNI. So in this section, we intend to
provide the methods of online reasoning for d-DNNFPNI,
d-DNNFPI and d-DNNFNI.
Reasoning on d-DNNFPNI, d-DNNFPI and d-DNNFNI can

be implemented by translating them to d-DNNF, then call-
ing corresponding reasoning methods for d-DNNF. But the
translating processes needs a lot of time, though they can
be done in polynomial time. So we design some new query
and transformation methods for d-DNNFPNI, d-DNNFPI and
d-DNNFNI in this section. These new methods can take
advantage of irrelevant variables, or be irrelevant to positive
literals and negative literals.
Theorem 2: Given a consistent term T , an irrelevant vari-

able XI is consistent with instantiation T iff X ∈ Vars(T ).
Given a consistent term T , conditioning replaces every leaf

node in 6 with true (false) if it is consistent (inconsistent)
with instantiation T . The consistency of irrelevant variables
with respect to any instantiation can be decided by Theo-
rem 2. So conditioning on d-DNNFPNI can be done in linear
time. But for d-DNNFPI (resp. d-DNNFNI), the negative lit-
erals (resp. positive literals) are default, so the conditioning
on d-DNNFPI (resp. d-DNNFNI) sentences should be done
on the corresponding d-DNNFPNI sentences. According to
Theorem 1, every sentence d-DNNFPI or d-DNNFNI can
be translated to an equivalent sentence in d-DNNFPNI in
polynomial time. Therefore, conditioning on d-DNNFPI or
d-DNNFNI based on d-DNNFPNI can be done in polynomial
time.

Unlike d-DNNF, irrelevant variables may appear in the leaf
nodes of a sentence in d-DNNFPNI, d-DNNFPI or d-DNNFNI.
IfDi is labeled with an irrelevant variable, the sentence rooted
at Di is satisfiable. So we give the reasoning method of
consistency for d-DNNFPNI, d-DNNFPI and d-DNNFNI in
Definition 8.
Definition 8: For a d-DNNFPNI (resp. d-DNNFPI or

d-DNNFNI) sentence 6 rooted at 1, Consistency(1) is
defined as follows:
• Consistency(1) = false, if 1 is labeled with false;
• Consistency(1) = true, if 1 is labeled with a literal,

an irrelevant variable or true;
• Consistency(1) = ∨i Consistency(1), if 1 is labeled

with or, where 1i are the children of 1;
• Consistency(1) = ∧i Consistency(1), if 1 is labeled

with and, where 1i are the children of 1.
Model counting on a d-DNNF sentence should be com-

puted based on its equivalent sd-DNNF sentence. But for
d-DNNFPNI, d-DNNFPI and d-DNNFNI, model counting can
be directly computed.
Definition 9: For a d-DNNFPNI (resp. d-DNNFPI or

d-DNNFNI) sentence 6 rooted at1, ICount(1) is defined as
follows:
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• ICount (1) = 0, if 1 is labeled with false;
• ICount (1) = 1, if 1 is labeled with a literal or true;
• ICount (1) = 2, if 1 is labeled with an irrelevant

variable;
• ICount (1) =

∑
i ICount(1), if 1 is labeled with or,

where 1i are the children of 1;
• ICount (1) =

∏
i ICount(1), if 1 is labeled with and,

where 1i are the children of 1.
Validity check of a d-DNNF sentence is realized based

on counting models. For d-DNNFPNI, d-DNNFPI and
d-DNNFNI, validity check is also completed based on count-
ing models. The direct computing method is that: Given
a sentence 6 = (V , E , M ) in d-DNNFPNI, d-DNNFPI or
d-DNNFNI, in which V , E and M collect the vertices, edges
and variables in 6 respectively, 6 is valid if the number of
models of 6 is equal to 2|M |, and 6 is not valid otherwise.
In the process of counting models of6, if the variable sets of
all or node in 6 are known, we can also make the following
decision for each or node Oi: If ICount(Oi) 6= 2|Vars(Oi)|,6
is not valid. Both of the above two methods can be done in
polynomial time.

Model enumeration of a d-DNNF sentence is computed
based on its equivalent sd-DNNF sentence. Model enumer-
ation of a sentence in d-DNNFPI or d-DNNFNI should also
be computed on its equivalent d-DNNFPNI sentence.
Definition 10: For a d-DNNFPNI sentence 6 rooted at 1,

IEnum(1) is defined as follows:
• IEnum(1) = {p = true}, if 1 is labeled with a positive

literal p;
• IEnum(1) = {p = false}, if1 is labeled with a negative

literal ¬p;
• IEnum(1) = {p = true, p = false }, if1 is labeled with

an irrelevant variable pI ;
• IEnum(1) = {{}}, if 1 is labeled with true;
• IEnum(1) = {}, if 1 is labeled with false;
• IEnum(1) = ∪i IEnum(1), if 1 is labeled with or,

where 1i are the children of 1;
• IEnum(1) = {∪iβi : βi ∈IEnum(1)}, if 1 is labeled

with and, where 1i are the children of 1.
Definition 10: gives a reasoning method of model enumer-

ation on a d-DNNFPNI sentence.
For a d-DNNFPNI sentence 6 rooted at 1 and a clause C ,

clausal entailment checking6| = S can be realized based on
deciding the consistency of 6| ¬S.
Definition 11: For a d-DNNFPNI sentence 6 rooted at 1,

S is a clause. EntailClause(1, S) is defined as follows:
• EntailClause(1, S) = false, if 1 is labeled with false or

labeled with a literal which appears in S;
• EntailClause(1, S) = true, if1 is labeled with other leaf

node;
• EntailClause(1, S) = ∨i EntailClause(1, S), if 1 is

labeled with or, where 1i are the children of 1;
• EntailClause(1, S) = ∧i EntailClause(1, S), if 1 is

labeled with and, where 1i are the children of 1.
The computing result of 6| = S is ¬EntailClause(1, S).

Because the negative (resp. positive) literals are default in

d-DNNFPI (resp. d-DNNFNI) sentences, the values of some
leaf nodes labeled with negative (resp. positive) literals can-
not be changed to false if these literals are default. So,
the reasoningmethod inDefinition 11 is not appropriate for d-
DNNFPI (resp. d-DNNFNI), and clausal entailment checking
on d-DNNFPI (resp. d-DNNFNI) sentences should be done
based on the corresponding d-DNNFPNI sentences. However,
if S is a clause in which all literals are positive (resp. nega-
tive), the reasoning method in Definition 11 is also appropri-
ate for d-DNNFPI (resp. d-DNNFNI).
For a d-DNNFPNI sentence 6 rooted at 1 and a term T ,

implicant checking T | = 6 can realized based on decid-
ing the validity of 6|T . For d-DNNFPI (resp. d-DNNFNI)
sentences, the negative literals (resp. positive literals) are
default, so the conditioning on d-DNNFPI (resp. d-DNNFNI)
sentences should be done based on the corresponding d-
DNNFPNI sentences. Then implicant checking on d-DNNFPI
(resp. d-DNNFNI) sentences should also be done based on the
corresponding d-DNNFPNI sentences.

V. COMPRESSING d-DNNF WITH d-DNNF PI AND
d-DNNF NI
For some special problems in real world, such as blocks
world planning problems and graph coloring problems, each
satisfiable assignment for the SAT encodings of these prob-
lems must assign all variables, which means that there are no
irrelevant variables in any satisfiable assignment. For these
problems, we can only save positive literals or negative liter-
als in each satisfiable assignment.

For other problems, there may exist a few irrelevant vari-
ables in their solutions. So, we can only save positive literals
and irrelevant variables, or negative literals and irrelevant
variables in each satisfiable assignment for these problems.
That way, we can compile the formulae to d-DNNFPI or d-
DNNFNI, instead of d-DNNF.

Existing compiling algorithm of d-DNNF only compiles a
formula to a sentence in d-DNNF. Since d-DNNF, d-DNNFPI
and d-DNNFNI are three equivalent languages, compress-
ing d-DNNF with d-DNNFPI and d-DNNFNI is a natural
idea. Compiling a formula to a sentence in d-DNNFPI or d-
DNNFNI does not reduce the online reasoning complexity
with respect to d-DNNF. So we intend to compress d-DNNF
with d-DNNFPI and d-DNNFNI in this paper.
Each sentence in d-DNNF can be converted to equivalence

sentence in d-DNNFPI or d-DNNFNI in polynomial time.
Given a sentence in d-DNNF, we can translate it to an equiv-
alent sentence in d-DNNFPNI, and select a more compact
representation from sentences in d-DNNFPI and d-DNNFNI.
Above process can be completed in polynomial time based
on Theorem 1.

VI. EXPERIMENTS
Compiling time and the size of results are two fundamen-
tal criterions for evaluating knowledge compilation meth-
ods [8]–[11], [21]. The sentences in d-DNNFPNI, d-DNNFPI
and d-DNNFNI can be translated from sd-DNNF sentences
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TABLE 1. The comparison of compiling results for d-DNNF, sd-DNNF, d-DNNFPNI, d-DNNFPI and d-DNNFNI.

in polytime, we do not design special compilers for new
languages. So, we compare the sizes of sentences in differ-
ent languages (d-DNNF, sd-DNNF, d-DNNFPNI, d-DNNFPI
and d-DNNFNI) for same problems in this section. c2d is a
classical and effective d-DNNF compiler, which can compile
CNF formulae to equivalent d-DNNF sentences or sd-DNNF
sentences. So we use c2d to compile problems in benchmarks
to sentences in d-DNNF and sd-DNNF, then sentences in
d-DNNFPNI, d-DNNFPI and d-DNNFNI can be translated
in polynomial time by Theorem 1. We also test the effect
of compressing d-DNNF with d-DNNFPI and d-DNNFNI.
The sizes of compiling results for different problems are
greatly different, even these problems are in the same
kind. So we use average improvement of compressing
effect to evaluate our compressing method for each kind of
instances.

Experiments are conducted on a Windows desktop with
a quad-core 3.30 GHz processor. Individual runs of c2d
were limited to a 30-minute time-out. The benchmarks
we used are: uniform random 3-SAT (uf), random 3-SAT
Instances (RTI), backbone-minimal sub-instances (BMS),
random-3-SAT instances with controlled backbone size
(CBS), structured problems encoded as CNF (blocksworld,
bw; and flat graph coloring, flat), and conformant planning
problems converted to CNF (emptyroom, empr; grid; and
sortnet, stnt).

In Table 1, bw and flat are two kinds of benchmarks,
in which all solutions do not contain irrelevant variables.
So the sizes of compiling results in d-DNNF, sd-DNNF and
d-DNNFPNI are equal for above two kinds of benchmarks.
Compared to sd-DNNF, the sizes of compiling results in d-
DNNFPNI are a little less for all benchmarks except bw and
flat.

For bw, flat, grid, empr and stnt, the sizes of compiling
results in d-DNNFPI are least. For above kinds of bench-
marks, they are encoded from corresponding actual problems,
so there are some special structures in them. And there are
more negative literals in the solutions of above benchmarks.
So the sizes of compiling results in d-DNNFPI are signifi-
cantly lee than the sizes of compiling results in other lan-
guages.

TABLE 2. The compression results for d-DNNF.

ForCBS, RTI, uf and BMS, the sizes of compiling results in
d-DNNFPI are approximately equal to the sizes of compiling
results in d-DNNFNI. The reason is that their structures do
not influence the proportion of positive literals and negative
literals in their solutions as they are generated randomly.
Since there are many irrelevant variables in the solutions
of some BMS benchmarks, the size of compiling results in
d-DNNF is least.

Compressing results are listed in Table 2. Our compressing
method is effective for all kinds of benchmarks. Specially, our
compressing method averagely reduces the size of compiling
result in d-DNNF to 1/5.918 of original size for each sentence
in bw. Sentence with less size means online reasoning is more
efficient. Overall, d-DNNFNI and d-DNNFPI have the same
tractability as d-DNNF. So, we can completely replace the
sentences in d-DNNF with the compressing result.

VII. CONCLUSION
Irrelevant variables are usually omitted in knowledge compi-
lation languages, since they can be computed based on known
positive literals and negative literals. We proposed three
new knowledge compilation languages: NNFPNI, NNFPI and
NNFNI, which are defined based on irrelevant variables
in this paper. We proved that NNF, NNFPNI, NNFPI and
NNFNI can be translated to each other in polynomial time.
We also defined three new knowledge compilation languages:
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d-DNNFPNI, d-DNNFPI and d-DNNFNI, which are three
meaningful subclasses of NNFPNI, NNFPI and NNFNI.

We designed new reasoning methods for d-DNNFPNI,
d-DNNFPI and d-DNNFNI, mainly aiming at consistency
check, validity check, clausal entailment check, implicant
check, model counting, model enumeration, and conditioning
transformation. Overall, d-DNNFPI and d-DNNFNI have the
same tractability with d-DNNF. So, we compressed d-DNNF
with d-DNNFPI and d-DNNFNI. Experimental results show
that the sizes of compiling results in d-DNNFPI or d-DNNFNI
are less than the sizes of compiling results in d-DNNF, and
our compressing method is effective for all kinds of bench-
marks.

In the future, we will apply d-DNNFPNI, d-DNNFPI and
d-DNNFNI to relevant reasoning applications, design effi-
cient knowledge compilers for d-DNNFPNI, d-DNNFPI and
d-DNNFNI, and augment other knowledge compilation lan-
guages with irrelevant variables.
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