
Received May 29, 2019, accepted June 26, 2019, date of publication July 5, 2019, date of current version July 25, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2927075

CharBot: A Simple and Effective Method
for Evading DGA Classifiers
JONATHAN PECK 1,2, CLAIRE NIE3, RAAGHAVI SIVAGURU3, CHARLES GRUMER3,
FEMI OLUMOFIN4, BIN YU 4, ANDERSON NASCIMENTO3, AND MARTINE DE COCK 1,3
1Department of Applied Mathematics, Computer Science and Statistics, Ghent University, 9000 Ghent, Belgium
2Data Mining and Modeling for Biomedicine, VIB Inflammation Research Center, 9052 Ghent, Belgium
3School of Engineering and Technology, University of Washington at Tacoma, Tacoma, WA 98402, USA
4Infoblox, Santa Clara, CA 95054, USA

Corresponding author: Jonathan Peck (Jonathan.Peck@ugent.be)

The work of J. Peck was supported by the Research Foundation Flanders (FWO).

ABSTRACT Domain generation algorithms (DGAs) are commonly leveraged by malware to create lists
of domain names, which can be used for command and control (C&C) purposes. Approaches based on
machine learning have recently been developed to automatically detect generated domain names in real-
time. In this paper, we present a novel DGA called CharBot, which is capable of producing large numbers
of unregistered domain names that are not detected by state-of-the-art classifiers for real-time detection of
the DGAs, including the recently published methods FANCI (a random forest based on human-engineered
features) and LSTM.MI (a deep learning approach). The CharBot is very simple, effective, and requires no
knowledge of the targeted DGA classifiers. We show that retraining the classifiers on CharBot samples is
not a viable defense strategy. We believe these findings show that DGA classifiers are inherently vulnerable
to adversarial attacks if they rely only on the domain name string to make a decision. Designing a robust
DGA classifier may, therefore, necessitate the use of additional information besides the domain name alone.
To the best of our knowledge, the CharBot is the simplest and most efficient black-box adversarial attack
against DGA classifiers proposed to date.

INDEX TERMS Adversarial machine learning, domain generation algorithms, supervised learning.

I. INTRODUCTION
The purpose of distributing malware is often to extract sensi-
tive information from victim machines or to use them for dis-
seminating spam. To achieve this, botmasters need to be able
to communicate with the infected machines, which is done
via command-and-control (C&C) servers. The use of a fixed
pool of C&C servers is not attractive, however, since these
servers may be taken offline or blacklisted. Therefore, mal-
ware authors design domain generation algorithms or DGAs
to automatically create many domain names that are likely
to be unregistered and hence available for the malware to
establish a communication channel [1]. A DGA makes use
of a seed, i.e., some random number that is accessible to both
the botmaster and the malware on the infected machines.

Possible seeds include the current date, trending topics on
Twitter, weather forecasts, etc. Once this seed has been fixed,

The associate editor coordinating the review of this manuscript and
approving it for publication was Irene Amerini.

the botmaster, as well as all of the infected machines, can
generate the same list of domains. The botmaster registers one
of these domains and waits for the malware to successfully
resolve a DNS query against it. From that point on, commu-
nication can take place. Should the C&C server ever be taken
offline or have its domain blacklisted, this process can simply
be restarted and a new C&C server can be established.

An extensive amount of research in the past decade has
been devoted to the development of methods for detection of
domains generated by DGAs [2]–[5]. These methods can be
roughly divided into two classes: classifiers that detect DGAs
based solely on the domain name itself; and classifiers that
use some sort of context information, such as IP addresses
of the source, traffic, and query patterns by the infected
machines. Our focus in this paper is on the first kind of
classifiers, i.e. techniques that can detect DGA domains in
real-time based on the domain name string. These systems are
particularly attractive since additional information beyond
the domain name string can be expensive to acquire. It might

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 91759

https://orcid.org/0000-0003-2929-4164
https://orcid.org/0000-0002-7723-8370
https://orcid.org/0000-0001-7917-0771

J. Peck et al.: CharBot: A Simple and Effective Method for Evading DGA Classifiers

also simply not be available due to privacy concerns. Another
significant advantage of systems that perform DGA detection
based solely on the domain name is their potential use in
real-time systems, blocking malicious domains before they
are actually resolved. Accordingly, much research has been
carried out to prevent this type of C&C communication using
systems that can detect in real-time whether a domain name
is likely generated by a DGA or not [2], [4]–[13].

Such DGA classifiers need to be sufficiently robust so
that they can still reliably detect DGA domains even when
the DGAs start generating lists from seeds that were not
seen during training. Existing work in this area is comprised
both of methods that make use of human-engineered features
as well as deep learning techniques which learn to extract
relevant features automatically. We show in this paper that
both kinds of methods are inherently vulnerable to simple
attacks and hence the use of side information may be crucial
to developing robust DGA classifiers. Specifically, we intro-
duce a new and effective DGA called CharBot. It is a sim-
plistic character-based DGA (hence the name) that generates
domain names by randomly modifying two characters in
well known benign domains collected from the Alexa top
domain names.1 We find that the domains CharBot generates
are almost always unregistered, hence available for C&C
communication.

To demonstrate CharBot’s capabilities, we attack two types
of recently proposed prototypical DGA classifiers that are
considered state-of-the-art at the time of this writing: a
random forest (RF) model called FANCI based on human-
engineered features extracted from the domain name [11] and
a deep neural network (DNN) model called LSTM.MI [5].
We also test a RF approach called B-RF based on the features
proposed in [12]. We train these models on data sets con-
sisting of benign and malicious domain names. The benign
names originate from the Alexa top domain names. For the
malicious domains, we use the OSINT Bambenek Consulting
feeds.2 We find that the domain names generated by Char-
Bot go largely undetected by all these state-of-the-art DGA
classifiers.

We attempt to harden the classifiers against CharBot by
incorporating samples from it in the training data sets and
retraining the models. Although this strategy does increase
the detection rates, they are still not high enough to be
practical. We also try retraining using samples generated by
DeepDGA—a state of the art generative model for malicious
domain names [14] — as well as the DeceptionDGA by
Spooren et al. [15], but we find that this does not adequately
help with detecting CharBot. CharBot is much simpler than
both DeepDGA and DeceptionDGA: DeepDGA is a deep
learning approach, whereas CharBot performs only simple
string manipulations; DeceptionDGA is designed to evade
classifiers based on human-engineered features. By contrast,

1https://alexa.com/topsites. Accessed: 2019-02-10.
2http://osint.bambenekconsulting.com/feeds/. Accessed: 2019-02-10.

CharBot is fully black-box: it does not require any details of
the models being attacked.

CharBot works by corrupting domain names from the
Alexa top domains, so it is natural to ask whether the domains
it generates can also be used to successfully attack DGA
classifiers that do not depend onAlexa for training. To answer
this question, we investigate whether the DGA classifiers can
be hardened by replacing the Alexa data set by an alternative
data set of benign domains during training. To this end, we use
a data set of domain names that occurred in real DNS traffic,
weakly labeled according to heuristic rules [7]. We find that
training on this different data set yields approximately the
same results as when training on Alexa. This supports the
idea that CharBot attacks are transferable across models and
data sets.

These findings expose a dangerous weakness in modern
DGA classifiers: they can be circumvented using a simple
algorithm and they cannot be easily trained to detect it well.
We speculate that this weakness is inherent in any model
that relies solely on domain name strings to perform DGA
classification. CharBot works by introducing a small number
of typographical errors in benign domain names from the
Alexa data set. As such, the statistical properties of the names
it generates will be almost identical to those of the Alexa
domains. This makes it nearly impossible for a classifier
to draw any significant distinction between Alexa names
and CharBot names. Moreover, any other set of legitimate
domains that should be accepted by a classifier with high
probability could in principle be used instead of Alexa by a
CharBot attack. Therefore, we do not believe these attacks
can be mitigated without relying on additional side infor-
mation. Such information might include the IP addresses
the domains resolve to, how many times the domains were
queried and when, etc. This has been explored in other works
already [3], [10], [16]–[18]. To our knowledge, we are the
first to expose this type of weakness in DGA classifiers that
do not use side information.Wewould, therefore, recommend
that the community focuses its research efforts on DGA
classifiers that utilize side information and not just rely on
the domain name string by itself.

The rest of this paper is structured as follows. Section II
gives an overview of related work in the field of adversarial
machine learning. Section III details the CharBot algorithm.
Section IV describes the data sets we used for the exper-
iments. Section V outlines our experiments and discusses
their results, as well as several ways we could defend against
CharBot attacks. Section VII concludes the work and lists
some possibilities for future research.

II. RELATED WORK
Machine learning approaches that leverage the domain name
string for DGA detection can be categorized into two groups:
so-called ‘‘featureful’’ methods that rely on human defined
lexical features extracted from the domain names, such as
domain name length, vowel-character ratio, bigrams, etc.
[2], [11], [16] and ‘‘featureless’’ methods in which the

91760 VOLUME 7, 2019

J. Peck et al.: CharBot: A Simple and Effective Method for Evading DGA Classifiers

automatic discovery of good features is part of the overall
machine learning model training process, as a form of rep-
resentation learning [4]–[7], [9], [19]. Popular kinds of clas-
sifiers used in the featureful approach for DGA detection are
logistic regression and tree ensemble methods, while the fea-
tureless approach relies on the use of deep neural networks,
namely Long Short-Term Memory (LSTM) networks and
Convolutional Neural Networks (CNN). Most papers about
the featureless approach include a featureful approach as a
baseline method [4]–[8], [12], [13], [19], and the featureless
approach is typically reported to yield better, more accurate
results.

A natural response of malware authors to machine learn-
ing classifiers for DGA detection is to try to purposely
craft domain names that will be mislabeled as benign by
the classifiers. This kind of evasion attack is studied as
part of the broader field of adversarial machine learning
(AML) [20]. In this setting, an intelligent adversary aims
to exploit weaknesses in a machine learning model in order
to obtain desired (illegitimate) outcomes. A prototypical
example is that of spam classification, where the adversary
attempts to craft spam e-mails that evade detectors while still
achieving the desired results. Seminal contributions in this
area include the work of Dalvi et al. [21] as well as the
papers by Lowd and Meek [22], [23], who study classical
machine learning algorithms such as linear classifiers, naive
Bayes, support vector machines and maximum entropy fil-
ters. More recent works primarily study AML for deep neural
networks [24]–[26].

A recent innovation in the area of deep learning and
generative modeling, is the Generative Adversarial Net-
work or GAN, first proposed by Goodfellow et al. [27]. In the
GAN framework, a generative model is trained by pitting
it against an adversary. The adversary is a discriminative
model whose goal is to discern whether a given sample came
from the data generating distribution or from the generative
model. The generator is trained to maximize the loss of the
discriminator, so the GAN training procedure corresponds
to a two-player minimax game. Ideally, when the training
converges, the generator should recover the data generating
distribution and the discriminator should not be able to do
any better than random guessing.

GANs have found several uses in cybersecurity by now.
Anderson et al. [14] proposed DeepDGA, which is a gener-
ative model for DGA domains trained using a GAN. They
find that adding samples from DeepDGA to the training
data of deep learning based DGA classifiers improves their
performance against unseen malware families, aiding gen-
eralization of the models when insufficient training data is
available. In the field of password security, Hitaj et al. [28]
have proposed PassGAN, another generative model trained
in the GAN framework. PassGAN learns to capture the dis-
tribution of human passwords and is able to surpass state of
the art tools for password guessing. Hu and Tan [29] recently
proposed MalGAN, a GAN with which they are able to con-
struct malware samples that can bypass black-box machine

learningmethods. Their attack is particularly striking because
they are able to reduce malware detection rates to almost
zero without requiring direct access to the detectors they aim
to evade. Moreover, they found that explicitly retraining the
detectors on MalGAN samples is ineffective: MalGAN can
easily be adapted to take this retraining into account, bypass-
ing the retrained models again with almost 100% success.
With CharBot, we achieve similar (and, in several cases, bet-
ter) results with a much simpler approach that can actually be
incorporated within a piece of malware, in contrast to deep-
learning based methods which are usually too large or too
computationally intensive.

Several authors have recently looked into the auto-
matic generation of URLs for phishing. To this end,
Bahnsen et al. [30] create a text consisting of known phishing
URLs from PhishTank3 and use it to train an LSTM for
text generation, i.e. given a small seed sentence, predict the
next characters iteratively. They report that this technique
generates examples that are not detected by their own LSTM
based phishing URL classifier [31]. Anand et al. [32] trained
a GAN – containing a character based LSTM as part of
its architecture – to generate synthetic phishing URLs to
augment the training data for feature-based phishing URL
detection classifiers. The problem they address is the class
imbalance in typical training data sets, which contain many
more examples of benign URLs than of phishing URLs.
Instead of adding all generated phishing URLs as positive
examples to their training data, they first map the gener-
ated URLs to their corresponding feature vectors, and select
‘‘representative samples’’ based on Euclidean distance in
this feature space. In a similar vein to Anand et al., Burns
and Heath [33] train a GAN on OpenPhish,4 PhishTank and
DNS-BH5 data sources to develop synthetic phishing
domains. They compare a random forest classifier trained on
Alexa andUmbrella6 data sets tomodels that were augmented
with samples generated by the GAN. They find that the
augmented models appear to have consistently higher test set
accuracy than the original classifier.

URLs intended for phishing are quite different in nature
than DGA domains for C&C purposes. Indeed, to be success-
ful, phishing URLs need to deceive humans, which requires
them to be as indistinguishable as possible from benign URLs
to the human observer. DGA domain names used for C&C
purposes are not intended at all to be read by human users.
DGA domain names are successful if they can evade DGA
classifiers and have not been previously registered, i.e. they
should be available for the botmaster to register. To the best
of our knowledge, so far Anderson et al. are the only ones
who have looked into generative modeling of DGA domain
names [14]. Although their results are significant, we show
in this work that classifiers which have been adversarially

3https://www.phishtank.com/. Accessed: 2019-02-08.
4https://openphish.com/. Accessed: 2019-02-08.
5http://www.malwaredomains.com/. Accessed: 2019-02-08.
6http://s3-us-west-1.amazonaws.com/umbrella-static/index.html.

Accessed: 2019-02-08.

VOLUME 7, 2019 91761

J. Peck et al.: CharBot: A Simple and Effective Method for Evading DGA Classifiers

trained using DeepDGA remain vulnerable to simple attacks
such as the CharBot algorithm we propose in section III.

The CharBot algorithm is a black-box targeted evasion
attack that works against tree ensembles and neural networks.
‘‘Black-box’’ refers to the fact that our CharBot DGA does
not require details of the classifiers in order to work: it can
attack any model trained on any data set and succeed with
high probability. It is a targeted attack because we want the
classifiers to output a specific class in response to our DGA
samples, namely benign. Untargeted attacks, on the other
hand, merely aim to change the classification to any class
other than the original; for example, an untargeted attack
would also count a change from benign to malicious as a
success, whereas in our scenario that would be unacceptable.
Finally, CharBot is an evasion attack because it occurs at
test time, when the model is already trained and deployed.
This is in contrast to poisoning attacks which occur at train-
ing time and work by corrupting samples in the training
data set in order to deliberately introduce weaknesses into
the model [20]. The CharBot attack itself is inspired by
typosquatting, a well-known technique used by phishers and
social engineers [34]. Typosquatting involves taking a legiti-
mate domain and introducing a few typographical errors that
are unlikely to be noticed by human users (e.g., changing
google.com into g0ogle.com). Whereas a priori one would
think that typosquatting exploits an inherently human vulner-
ability, we make the surprising discovery that state-of-the-art
DGA classifiers are actually vulnerable to such techniques
as well.

Similarly to our work here, Spooren et al. [15] developed
DeceptionDGA, a novel DGAwhich incorporates knowledge
of the features used by a DGA classifier in order to attack
it. They report significant reductions in predictive accuracy
for the FANCI model as well as the Endgame LSTM by
Woodbridge et al. [4]. The DeceptionDGA algorithm is more
complicated than CharBot, requiring knowledge of the under-
lying model in order to deploy it. Despite this difference in
complexity, the detection rates we observe for CharBot in our
experiments are comparable to those of DeceptionDGA.

We also wish to acknowledge the concurrent work of [35]
who describe MaskDGA, a black-box technique for evading
DGA classifiers that is similar to CharBot. MaskDGAmakes
use of a surrogate model as well as a list of DGA domains.
It uses these data to craft character-level perturbations of the
malicious domains such that they are no longer recognized by
the surrogate model. Similarly to our own results, the authors
find that such techniques are highly effective at reducing
the accuracy of state-of-the-art DGA classifiers. They also
make the recommendation that DGA classifiers should rely
on additional side-information whenever this is possible in
order to mitigate adversarial attacks.

III. CHARBOT
CharBot is a character-based DGA intended to show how
successful a simplistic DGA based on small perturbations
can be at evading detection by state-of-the-art classifiers.

Without loss of generality, throughout this paper we con-
sider domains consisting of a second-level domain (SLD)
and a top-level domain (TLD), separated by a dot, as in
e.g. wikipedia.org. CharBot requires the following inputs:
• A list of legitimate domain names. In our case, ten
thousand Alexa domains with a second-level domain
(SLD) length of six or greater are used.

• A list of top-level domains (TLDs).
• A date to be used as a seed for pseudorandomization.

With these inputs, CharBot (1) selects a domain from the
provided list, (2) selects two characters from the SLD, and
(3) selects two replacement characters. The replacement char-
acters are chosen from an equal distribution of DNS-valid
characters — the alphanumeric characters and the dash —
and the algorithm ensures the characters selected from the
SLD are different from the replacement characters. Finally,
CharBot (4) appends a TLD to the new domain by selecting
one of the following: com, at, uk, pl, be, biz, co, jp, cz, de,
eu, fr, info, it, ru, lv, me, name, net, nz, org, us. Pseudocode is
given in algorithm 1.

Algorithm 1 CharBot
Data: a list of SLDs D, a list of TLDs T , a seed s
Result: a DGA domain

1 Initialize the pseudorandom generator with the seed s.
2 Randomly select a SLD d from D.
3 Randomly select two indices i and j so that
1 ≤ i, j ≤ |d |.

4 Randomly select two replacement characters c1 and c2
from the set of DNS-valid characters.

5 Set d[i]← c1 and d[j]← c2.
6 Randomly select a TLD t from T .
7 return d .t

A DGA is successful if it can generate many unique
domains that have not yet been registered and which are not
flagged by DGA classifiers as malicious. CharBot draws its
replacement characters from a uniform distribution. There-
fore, the more characters we replace, the more the generated
domains resemble random strings. This increases the detec-
tion rate by DGA classifiers, so we aim to keep the number
of replacement characters minimal. We tested several choices
for the number of characters to be replaced. We found that
two characters strike an appropriate balance between the rate
of detection by DGA classifiers and the probability that a
domain is already registered: with two characters, domains
are flagged slightly more often but almost all domains are
unregistered (see table 1); when replacing only a single char-
acter, detection rates go down but more domains turn out to
be registered already.

Adversarial attacks such as CharBot are always accompa-
nied by an adversarial cost function c(x, x̃) which describes
the cost associated with perturbing an ‘‘ideal’’ sample x
into a sample x̃ that the adversary can actually use. For
image classification, it is common to use `p distances for this

91762 VOLUME 7, 2019

J. Peck et al.: CharBot: A Simple and Effective Method for Evading DGA Classifiers

purpose [24], [26], [36]. However, in our context, the cost of
perturbing a correctly classified benign domain x into a mali-
cious domain x̃ that is classified as benign must be measured
differently, as we are working in a discrete input space (text)
instead of a continuous one (images). Specifically, it makes
sense to define our cost function as follows:

c(x, x̃) =

{
dL(x, x̃) if x̃ is unregistered,
∞ otherwise.

Here, dL denotes the Levenshtein distance or edit dis-
tance [37]. The cost function c(x, x̃) increases with the num-
ber of edits (insertions, deletions, and substitutions) required
to transform x into x̃, as each edit makes the attack more
detectable by DGA classifiers. However, there is an infinitely
large cost associated with generating a domain that is already
registered, since such domains cannot be used by the attacker
at all and may cause the malware to malfunction. CharBot
was designed to minimize this cost function efficiently and
as simply as possible.

We note that obvious extensions of the CharBot algorithm
are possible. For example, we could additionally implement
insertions of new characters and deletions of existing char-
acters. The number of characters might also be chosen adap-
tively based on some heuristic instead of fixed in advance.
However, we chose to limit ourselves to only substituting a
fixed number of characters since this simple strategy already
gives us very good results. Moreover, simpler attacks are
likely to be preferred by attackers and therefore constitute a
greater security concern.

The only obstacle to the deployment of CharBot in
real malware might be its size. We implemented CharBot
in 17,983 bytes of Python code. The Alexa data set it requires
takes up 145,008 additional bytes, although the public avail-
ability of this data set means it could be downloaded on
the fly. Therefore, we would need at most 162,991 bytes
for a full implementation of CharBot with Alexa included.
By comparison, the DeepDGA algorithm [14] requires to
embed in the malware a trained machine learning model that
takes up at least 6,539,192 bytes. This is about 40× larger
than CharBot. We therefore feel that file size is no obstacle to
deploying CharBot in real malware.

IV. DATA SETS
We use three different kinds of data in our experiments:

A. ALEXA
The top 1 million unique domain names from Alexa.7 Alexa
ranks websites based on their popularity in terms of the
number of page views and number of unique visitors. It only
retains the websites’ SLD and TLD, aggregating across
any subdomains. For example, according to Alexa, the five
highest ranked domain names in terms of popularity on
2019-02-06 are google.com, youtube.com, facebook.com,
baidu.com and wikipedia.org. It is generally assumed that

7https://www.alexa.com, Accessed 2019-02-08.

the top 1 million domain names in the Alexa ranking are
‘‘benign’’ domain names in the sense that they were not
created by a DGA. Of course, this does not mean that the
domain is ‘‘benign’’ in the sense of not being used for
malicious activity. Indeed, there is reason to believe that a
significant number of Alexa top ranked domains are used for
malicious purposes [38], but this is not the problem we are
considering here. In our setting, we only consider a domain
to be ‘‘malicious’’ if it was generated by a DGA.

B. BAMBENEK
1 million unique DGA domain names from the Bambenek
Consulting feeds8 for 3 different days, namely Jun 24,
Jul 22, Jul 23, 2017. These feeds contain DGA domain names
from specific malware families that were observed in real
traffic on those days. Such domain names can be collected
by reverse engineering a known malware family, generating
lists of domain names with the reverse engineered malware,
and checking which of these domain names also occur in real
traffic.

C. QNAME
1 million unique domain names originating from a real-
time stream of passive DNS data that consists of roughly
10-12 billion DNS queries per day collected from subscribers
including ISPs (Internet Service Providers), schools, and
businesses. We annotated this stream based on a set of heuris-
tic filtering rules following [7]. Specifically, we labeled as
benign all domains that have been resolved at least twice,
never resulted in an NXDomain response and span more
than 30 days. Here, span is defined as the number of days
between the first and last successfully resolved query for a
given domain. We randomly sampled 1 million such domains
that appeared in DNS traffic between September 2015 and
August 2018. This data set is weakly labeled since the heuris-
tic filtering rules do not guarantee that the domains are actu-
ally benign or malicious; however, we believe it to be a useful
approximation.

The Alexa and Qname data sets serve as our negative
(benign) examples, whereas Bambenek serves as our set of
positive (malicious) examples. Alexa and Qname have pre-
cisely 537 domains in common, which is a negligible number
compared to the total sizes of the data sets, therefore making
Qname a good data set to test transferability of CharBot.

We refer to the combination of Alexa and Bambenek data
as AlexaBamb and similarly forQnameBamb. These data sets
consist of 2 million samples each, 1 million per class.

V. EXPERIMENTS
We perform experiments on two DGA classifiers that are
considered state of the art at the time of this writing:
FANCI [11] and LSTM.MI [5], as well as a third model
we call B-RF based on the work by [12]. All classifiers are
trained to label a domain name as either benign (negative) or

8http://osint.bambenekconsulting.com/feeds/, Accessed 2019-02-08

VOLUME 7, 2019 91763

J. Peck et al.: CharBot: A Simple and Effective Method for Evading DGA Classifiers

TABLE 1. Adversarial data sets.

malicious (positive). We find that the best results overall are
achieved with the deep learning based LSTM.MI approach,
followed by the random forest-based B-RF approach, and
finally the random forest-based FANCI method. The differ-
ence in predictive accuracy between the various approaches
is substantial. The results hold across the AlexaBamb and
QnameBamb data sets (see table 4, and a more detailed
discussion in section V-D).

To arrive at the results, we train on the AlexaBamb data
set as well as on the QnameBamb data set with a 80%/20%
train/test split for each, reporting the true positive rate (TPR),
the partial area under the ROC curve (AUC) and the fraction
of samples from CharBot, DeepDGA and DeceptionDGA
which the models were able to detect (see table 4 and table 5).
All of these metrics are reported at FPRs of 0.1% and 1%.9

The AUC@0.1%FPR is the integral of the ROC curve from
FPR = 0 to FPR = 0.001 on the test data, and similarly for
the AUC@1%FPR. We repeat all experiments on the original
models as well as the models after adversarial retraining.

To perform the adversarial retraining, we utilized the data
sets shown in table 1. Specifically, we used CharBot and
DeepDGA with different seeds to generate training and test-
ing data sets. The training data sets were used to augment the
original training data of the classifiers; the testing data sets
were used to verify their performance. For DeceptionDGA,
Spooren et al. [15] supplied a list of 150,000 domains gen-
erated by their algorithm from which we sampled our train-
ing and testing data. Note that, based on a random sample
of 500 domains,10 CharBot has the highest fraction of unreg-
istered domains (100%), followed by DeepDGA (99.8%) and
DeceptionDGA (98.8%).

The experiments on the QnameBamb data set are intended
to investigate the transferability of CharBot. All CharBot
domain names used in the experiments (see table 1) are
created by CharBot by corrupting domain names from the
Alexa data set. This might leave DGA classifiers that are
trained on AlexaBamb extra vulnerable to CharBot attacks.
A natural question to ask is whether CharBot can also suc-
cessfully bypass DGA classifiers that were trained on a data

9A low false positive rate is very important in deployed DGA detection
systems because blocking legitimate traffic is highly undesirable. The thresh-
old of 0.1% FPR was chosen because this rate is often used by real-world
models in practice, whereas 1% is the largest FPR that could still be useful.

10We limited ourselves to a random sample of 500 domains to avoid
getting blocked by ISPs.

set different fromAlexa, one CharBot has no access to. To test
this, we trained LSTM.MI, FANCI, and B-RF on the Qname-
Bamb data and reported the same statistics as for AlexaBamb.

Below we give a brief description of the LSTM.MI,
FANCI, and B-RF classifiers, followed by detailed results
(section V-D) and a discussion of possible countermeasures
for defending against small perturbations attacks such as
CharBot (section VI).

A. LSTM.MI
Woodbridge et al. [4] were the first to propose deep learning
for DGA domain name detection. Their DGA classifier is a
neural network consisting of an embedding layer, an LSTM
layer, and a single node output layer with sigmoid activa-
tion. In this paper, we use the LSTM.MI model that was
proposed recently by Tran et al. [5]. Its architecture is very
similar to that of Woodbridge et al. [4]; the main distinction
is that the LSTM.MI model is trained with a cost-sensitive
learning algorithm that takes class imbalances into account.
This allows the LSTM.MI approach to achieve slightly better
results than the original LSTM approach (see [5], [12]). The
code for training the LSTM.MI model is publicly available.11

B. FANCI
The FANCI classifier recently proposed by
Schüppen et al. [11] is a random forest (RF) classifier
designed to classify NXDomains as benign (bNXD) or mali-
cious (mAGD). NXDomains, or Non-Existent Domains, are
domains that can not be resolved. DGAs generate hun-
dreds or even thousands of domains every day, only very
few of which are actually registered by the botmaster. That
means that almost all queries for DGA generated domains by
infected machines will result in an NXDomain response by
the local DNS server, so it is reasonable to attempt to detect
DGA activity by analyzing NXDomains.

To this end, the FANCI classifier leverages 21 manually
defined features, extracted from the domain name string. The
21 features can be divided into structural, linguistic, and
statistical categories (see table 2). The FANCI RF model
is comprised of 9 decision trees, of which 7 use the Gini
coefficient as the measure of impurity and the other 2 use

11https://github.com/bkcs-hust/lstm-mi. Accessed: 2019-02-08.

91764 VOLUME 7, 2019

J. Peck et al.: CharBot: A Simple and Effective Method for Evading DGA Classifiers

TABLE 2. Features used by FANCI and B-RF. (*) For these features,
FANCI uses dot free public-suffix-free domain. (**) For these features,
FANCI uses public-suffix-free domain.

TABLE 3. FANCI features not expected to have any effect in our
experiments.

entropy. Each tree takes between 2 to 18 features. The source
code of the FANCI classifier is available on GitHub.12

The domain names used in our experiments contain only
SLDs and TLDs (see section IV). As such, it is expected that
a number of features used in the FANCI model would not
make a distinction between malicious and benign examples.
Table 3 lists the FANCI features that are not expected to have
any effect.

12https://github.com/fanci-dga-detection/fanci. Accessed: 2019-02-08.

C. B-RF
B-RF [12] is a random based DGA detection classifier that
is trained on 26 manually engineered features as indicated
in table 2. There is some overlap between the features used
by FANCI and those used by B-RF. For instance, both make
use of the domain name length, digit and vowel ratio, ratio of
repeated characters, etc. Some features are used by FANCI
but not by B-RF, such as whether the domains have valid
TLDs or whether they contain digits. Other features like
2-gram median and 3-gram median are only used by B-RF.

B-RF consists of 100 trees and each tree is trained using a
subset with a maximum of 20 features. Entropy is used as the
criterion to decide the split attribute while growing the trees
in the random forest.

FIGURE 1. ROC curves for the classifiers trained on the AlexaBamb
data set.

D. RESULTS
The predictive performancemetrics are summarized in table 4
for false positive rates13 of 0.1% and 1%. Figure 1 shows
ROC curves for the different models on the AlexaBamb data.
We plot the ROC curve only for FPRs between 0 and 0.01,
as higher FPRs are meaningless in practice. We conclude
from these results that the deep learning approach does better
than the RF approaches, which is in line with what has been
reported before in the literature [4]–[7], [13]. Among the RF
models, B-RF outperforms FANCI significantly. We found
that this improvement was not due to the number of trees,
as decreasing the number of trees used by B-RF from 100 to 9
(as in FANCI) still yielded superior performance for B-RF.
We therefore believe this difference in performance is caused
by the different feature sets.

We were unable to establish a classification threshold
that achieves 0.1% FPR for FANCI. Therefore, in reporting
FANCI results, we only consider FPR = 1%. We believe
this is due to the fact that [11] used proprietary data
to filter classification outcomes which increased accuracy.
Our use of a different post-filtering data set may be the

13One can argue that even a FPR of 0.1% is still too high to be useful
in practice. While this can certainly be true depending on the application,
note that lower FPRs can only make our results better as the models will
necessarily have lower TPR and lower detection rates for CharBot.

VOLUME 7, 2019 91765

J. Peck et al.: CharBot: A Simple and Effective Method for Evading DGA Classifiers

TABLE 4. Performance metrics of LSTM.MI, FANCI and B-RF on the different data sets.

TABLE 5. Detection rates of the different DGAs.

reason for the difference (note that the authors of the FANCI
paper use accuracy whereas we use AUC). For AlexaBamb
and its augmented datasets, we obtained between 90.7%

and 91.4% accuracy. For QnameBamb and its augmented
datasets, we obtained between 92.5% and 93.16% accuracy.
This is not too far from the 93.7% that was reported in [15]

91766 VOLUME 7, 2019

J. Peck et al.: CharBot: A Simple and Effective Method for Evading DGA Classifiers

FIGURE 2. Kernel density estimation of the feature distributions of Alexa and adversarial domain names.

where the authors also attempted to replicate the FANCI
results.

All models fail to adequately detect CharBot and Decep-
tionDGA domains even when explicitly trained on them.
The LSTM.MI model succeeds in detecting DeepDGA close
to 99% of the time with adversarial training, but the other
models generally fail at detectingDeepDGA aswell. Training
on Qname instead of Alexa makes a significant difference,
both in predictive performance as well as detection rate:
the models have lower predictive accuracy when trained on
Qname, but they are better able to detect CharBot domains.
At the 0.1% FPR, however, these detection rates are nowhere
near high enough to be useful in practice. FANCI is unable
to properly detect CharBot at 1% FPR, whereas LSTM.MI
and B-RF sometimes manage to obtain over 80% detection
rate here. This is not a very useful result, however, since 1%
FPR is considered too high to be practical. Therefore, at a
low FPR, the domains generated by CharBot can be said to
be transferable across different models and data sets in the
sense that CharBot can fool models that have vastly different
architectures and are not trained on Alexa. Combined with its
simplicity, speed and small size, this makes CharBot an ideal
DGA for use in malware in the wild.

The success of CharBot may be explained as follows.
The algorithm works by taking the Alexa list of benign
domains — which most DGA classifiers would overwhelm-
ingly classify as such — and introduces a small number of
typographical errors. The statistical properties of the domains
generated by CharBot are therefore likely almost identical to
those of Alexa, causing a low detection rate. The transfer-
ability may be explained by noting that even though Alexa
and Qname are different data sets, they still capture the same
underlying distribution: namely, that of benign domains.

This closeness in distribution is most likely shared among
all sufficiently large corpora of benign domains, allowing
CharBot to fool anyDGAclassifier that only takes the domain
name string into account. We test this hypothesis by perform-
ing kernel density estimation on the feature distributions of
the Alexa domains and the adversarial domains. The results
are plotted in figure 2. The Entropy and Gini index features
are standard impurity measures for decision trees. The other
features are:

• 2gram Median. This feature takes the median frequency
from the list of 2gram frequencies for the given SLD.
Bigram frequencies are collected from the Python pack-
age called wordfreq. 14

• 3gram Median. 3gram median is similar to 2gram
median except that it returns the median frequency from
the list of trigram frequencies for the given SLD.

• Symbol ratio. This feature defines the ratio of non-
alphabetical characters in the SLD,which includes digits
and special characters.

• Consecutive Consonant Ratio. This feature defines the
ratio of consecutive consonants in the SLD.

From the plots, we observe that the feature distributions of
CharBot domains are much closer to those of Alexa than the
distributions of DeepDGA are. However, DeceptionDGA is
more similar to Alexa than CharBot is, although the differ-
ence is very small in some cases. Nevertheless, CharBot gets
quite close to Alexa, which explains why it is so successful
in fooling DGA classifiers. It also shows that defending
against CharBot may be very difficult, potentially requiring
a very high FPR. Figure 2 also provides insights into what

14https://pypi.org/project/wordfreq/1.1/. Accessed: 2019-02-14.

VOLUME 7, 2019 91767

J. Peck et al.: CharBot: A Simple and Effective Method for Evading DGA Classifiers

parts of CharBot may be improved to yield an even more
effective DGA:
• The entropy curve of CharBot can be made more similar
to that of Alexa domains by using a different replace-
ment character distribution. Currently, we are using
the uniform distribution, which has the highest possi-
ble entropy. Switching to a lower entropy distribution
may improve the performance of CharBot, although this
would need to be carefully balanced against the proba-
bility of a generated domain already being registered.

• The random replacement of two characters caused the
2-gram distributions of CharBot to differ from those of
the Alexa domains. We can overcome this weakness
by replacing neighboring characters with 2-grams that
occur frequently in Alexa. A similar line of reasoning
applies to 3-grams.

• The symbol ratio distributions can be made more similar
by drawing c1 and c2 from the same letters or digit sets
of the original domain. For example, replace a digit with
another random digit and not with a letter.

TABLE 6. Statistics of the domain name lengths for each data set.

Investigating the lengths of the domain names that were
generated vs. those that are present in the Alexa and Qname
data sets (see table 6), we find that CharBot names are close in
length to Alexa names (which is to be expected), but Qname,
Bambenek and DeepDGA domains are significantly longer
on average, whereas DeceptionDGA are significantly shorter.
This difference in lengths may contribute to the detection
rates: when training on Alexa, CharBot domains are similar
in length whereas DeepDGA domains are longer like the
Bambenek domains. By contrast, when training on Qname,
domains are longer on average, which aids detection of
CharBot (although the difference is not very large).

VI. COUNTERMEASURES
We consider a few options for defending against attacks such
as CharBot:

A. COMPARING INCOMING DOMAINS TO ALEXA
The simplest defense against CharBot would be to take the
domain in question and compare it to the full Alexa list.
If the domain is equal to one found in the Alexa list save
for one or two replaced characters, the domain is flagged as
malicious. However, the Alexa data set contains one million
samples, so this approach of computing the Hamming dis-
tance of input domains on the flymay not be practical.We can

make this computation even harder by modifying CharBot
to perform deletions and insertions, forcing the use of the
edit distance [37] rather than the Hamming one. Practical
implementations can reduce lookup time by pre-computing
noisy versions of the Alexa list into a compact data structure
such as a Bloom filter [39]. However, this approach is marred
by a combinatorial explosion of possible corrupted domain
names based on the Alexa data set: if we let n be the size of the
CharBot data set, ` be the average length of a domain name,
k be the number of edits CharBot introduces and m be the
size of the replacement alphabet, then the number of possible
domains CharBot can generate is given approximately by

n
(

`

k

)
(m− 1)k .

For n = 10, 000, ` = 16, m = 40 and k = 2 this yields
1,825,200,000 possible domains. Besides, this defense can
also easily be defeated by simply using a different legitimate
data set instead of Alexa for generating domain names.

B. INCREASING THE CAPACITY OF THE MODELS
Using more complicated classification models may allow
them to find a meaningful separation between Alexa and
CharBot domains. However, this would require careful fea-
ture engineering for featureful models and increase the com-
putational burden of bothmodel training and inference. Given
that practical DGA classifiers need to be regularly retrained
to keep up with new malware and they need to process many
domains in real-time, this may not be feasible. Nevertheless,
this may be an option worth exploring in future work.

C. WHITE-BOX ADVERSARIAL TRAINING
Our adversarial training procedure in this paper has consisted
of generating a list of adversarial domains once and then
augmenting the training data with them. However, adversarial
training is usually done iteratively: at every iteration of train-
ing, the current batch of training samples is augmented with
adversarially generated set specifically for the model at that
particular stage [24], [25]. This requires a white-box attack
which is able to take the model parameters into account.
Adversarial attacks have mostly been considered in the image
domain, although there is some work on text classifica-
tion [40], [41]. Making use of this recent body of work
on white-box adversarial training for text classification may
allow us to improve the detection rate of CharBot.

D. USING SIDE INFORMATION
Perhaps the most realistic defense against attacks like Char-
Bot would be to use additional information besides the
domain name string alone. For instance, the IP addresses the
domainmaps to, how often the domainwas queried andwhen,
etc. There have been several works investigating the use of
such information in DGA classification [3], [10], [16]–[18].
A fruitful avenue for future work could be to test whether
these classifiers are more resilient to CharBot.

91768 VOLUME 7, 2019

J. Peck et al.: CharBot: A Simple and Effective Method for Evading DGA Classifiers

VII. CONCLUSION
We have proposed CharBot, a simple and efficient DGA.
We have shown CharBot to be effective at both generat-
ing large amounts of unregistered domain names as well
as fooling three DGA classifiers: FANCI, LSTM.MI and
B-RF. We also compared CharBot to DeepDGA and Decep-
tionDGA, two state-of-the-art domain generation algorithms.
The domain names generated by CharBot were more likely to
be unregistered than those generated by DeepDGA or Decep-
tionDGA. Moreover, adversarial retraining using CharBot,
DeepDGA or DeceptionDGA did not result in adequate
detection of CharBot domains names.

Our DGA is the very first example of a black-box adver-
sarial machine learning attack against DGA classifiers that is
not based on Generative Adversarial Networks. We show that
simply introducing small perturbations to a set of legitimate
domains is good enough and such advanced techniques are
unnecessary. We believe this highlights a dangerous weak-
ness of modern DGA classifiers, namely their vulnerability
to extremely simple attacks that make no use of sophisti-
cated machine learning techniques. CharBot is an algorithm
that could be realistically used in malware in the wild to
circumvent state of the art DGA classifiers, making it a real
threat.We speculate that this vulnerability is actually inherent
to any classifier that relies only on the domain name string to
perform DGA classification. The CharBot DGA is similar to
dictionary DGAs: both have a list of strings embedded as part
of the DGA code. In the case of dictionary DGAs this list is
a dictionary of words that are combined in various ways to
generate a domain name, while in the case of CharBot the
list contains benign domain names that are altered slightly
to generate a new domain name for malicious purposes.
In both cases, the generated domain names exhibit proper-
ties that are very close to natural language, which makes
them extremely difficult to distinguish from benign domain
names.

Machine learning models that attempt to do DGA classifi-
cation based only on the domain name itself, such as the ones
considered in this paper, might not be sufficient to detect a
DGA like CharBot. The result highlights the need for ML
models that exploit additional context features such as the
IP-addresses that the domains are mapped to, or temporal
access patterns (e.g. how often the domain was requested, and
when) [3], [16]–[18], as was done successfully for dictionary
DGAs [10].

For future work, we focus on defending DGA classi-
fiers against simple attacks such as CharBot. The avenues
we are investigating to achieve this include performing
white-box adversarial training as well as augmenting the
model inputs with side information that is more difficult to
manipulate.

REPRODUCIBILITY
To foster reproducibility of our results, we are open to sharing
all of our code as well as data sets of CharBot samples upon
request.

ACKNOWLEDGEMENT
The authors would like to thank the support of NVIDIA
Corporation with the donation of the Titan Xp GPU used for
this research. They thank Bobby Filar for making the code of
the original DeepDGA algorithm available to then [14] and
Jan Spooren for providing then with domain names generated
by DeceptionDGA [15].

REFERENCES
[1] D. Plohmann, K. Yakdan, M. Klatt, J. Bader, and E. Gerhards-Padilla,

‘‘A comprehensive measurement study of domain generating malware,’’
in Proc. USENIX Security Symp., 2016, pp. 263–278. [Online]. Available:
https://www.usenix.org/system/files/conference/usenixsecurity16/
sec16_paper_plohmann.pdf

[2] M. Antonakakis, R. Perdisci, Y. Nadji, N. Vasiloglou, II,
S. Abu-Nimeh, W. Lee, and D. Dagon, ‘‘From throw-away traffic to
bots: Detecting the rise of DGA-based malware,’’ in Proc. USENIX
Security Symp., vol. 12, 2012, pp. 491–506. [Online]. Available:
https://www.usenix.org/system/files/conference/usenixsecurity12/sec12-
final127.pdf

[3] S. Yadav, A. K. K. Reddy, A. L. N. Reddy, and S. Ranjan,
‘‘Detecting algorithmically generated domain-flux attacks with
DNS traffic analysis,’’ IEEE/ACM Trans. Netw., vol. 20, no. 5,
pp. 1663–1677, Oct. 2012. [Online]. Available: https://ieeexplore.ieee.
org/abstract/document/6151233

[4] J. Woodbridge, H. S. Anderson, A. Ahuja, and D. Grant, ‘‘Pre-
dicting domain generation algorithms with long short-term memory
networks,’’ 2016, arXiv:1611.00791. [Online]. Available: https://arxiv.
org/abs/1611.00791

[5] D. Tran, H. Mac, V. Tong, H. A. Tran, and L. G. Nguyen, ‘‘A LSTM based
framework for handling multiclass imbalance in DGA botnet detection,’’
Neurocomputing, vol. 275, pp. 2401–2413, Jan. 2018. [Online]. Available:
https://www.sciencedirect.com/science/article/pii/S0925231217317320

[6] P. Lison and V. Mavroeidis, ‘‘Automatic detection of malware-generated
domains with recurrent neural models,’’ 2017, arXiv:1709.07102.
[Online]. Available: https://arxiv.org/abs/1709.07102

[7] B. Yu, D. L. Gray, J. Pan, M. D. Cock, and A. C. A. Nascimento, ‘‘Inline
DGA detection with deep networks,’’ in Proc. IEEE Int. Conf. Data Min-
ing Workshops (ICDMW), Nov. 2017, pp. 683–692. [Online]. Available:
https://ieeexplore.ieee.org/document/8215728

[8] C. Choudhary, R. Sivaguru, M. Pereira, B. Yu, A. C. Nascimento, and
M. De Cock, ‘‘Algorithmically generated domain detection and mal-
ware family classification,’’ in Proc. 6th Int. Symp. Secur. Comput.
Commun. (SSCC), in Communications in Computer and Information
Science. Singapore: Springer, 2018, pp. 640–655. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-981-13-5826-5_50

[9] J. J. Koh and B. Rhodes, ‘‘Inline detection of domain generation
algorithms with context-sensitive word embeddings,’’ in Proc. IEEE
Int. Conf. Big Data, Dec. 2018, pp. 2966–2971. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8622066

[10] M. Pereira, S. Coleman, B. Yu, M. De Cock, and A. Nascimento, ‘‘Dic-
tionary extraction and detection of algorithmically generated domain
names in passive DNS traffic,’’ in Proc. 21st Int. Symp. Res. Attacks,
Intrusions, Defenses (RAID), 2018, pp. 295–314. [Online]. Available:
https://link.springer.com/chapter/10.1007/978-3-030-00470-5_14

[11] S. Schüppen, D. Teubert, P. Herrmann, and U. Meyer, ‘‘FANCI : Feature-
based automated nxdomain classification and intelligence,’’ in Proc.
USENIX Secur. Symp., 2018, pp. 1165–1181. [Online]. Available: https://
www.usenix.org/conference/usenixsecurity18/presentation/schuppen

[12] R. Sivaguru, C. Choudhary, B. Yu, V. Tymchenko, A. Nascimento,
and M. De Cock, ‘‘An evaluation of DGA classifiers,’’ in Proc.
IEEE Int. Conf. Big Data, 2018, pp. 5051–5060. [Online]. Available:
https://ieeexplore.ieee.org/abstract/document/8621875

[13] B. Yu, J. Pan, J. Hu, A. Nascimento, and M. De Cock, ‘‘Character
level based detection of DGA domain names,’’ in Proc. IEEE World
Congr. Comput. Intell., Jul. 2018, pp. 4168–4175. [Online]. Available:
http://faculty.washington.edu/mdecock/papers/byu2018a.pdf

[14] H. S. Anderson, J. Woodbridge, and B. Filar, ‘‘DeepDGA:
Adversarially-tuned domain generation and detection,’’ in Proc. ACM
Workshop Artif. Intell. Secur., 2016, pp. 13–21. [Online]. Available:
https://dl.acm.org/citation.cfm?id=2996767

VOLUME 7, 2019 91769

J. Peck et al.: CharBot: A Simple and Effective Method for Evading DGA Classifiers

[15] J. Spooren, D. Preuveneers, L. Desmet, P. Janssen, and
W. Joosen, ‘‘Detection of algorithmically generated domain names
used by botnets: A dual arms race,’’ in Proc. 34th ACM/SIGAPP
Symp. Appl. Comput., 2019, pp. 1902–1910. [Online]. Available:
https://lirias.kuleuven.be/2361222?limo=0

[16] S. Schiavoni, F. Maggi, L. Cavallaro, and S. Zanero, ‘‘Phoenix: DGA-
based botnet tracking and intelligence,’’ in Proc. Int. Conf. Detec-
tion Intrusions Malware, Vulnerability Assessment, 2014, pp. 192–211.
[Online]. Available: https://link.springer.com/chapter/10.1007/978-3-319-
08509-8_11

[17] J. Kwon, J. Lee, H. Lee, and A. Perrig, ‘‘PsyBoG: A scalable botnet
detection method for large-scale DNS traffic,’’ Comput. Netw., vol. 97,
pp. 48–73, Mar. 2016. [Online]. Available: https://www.sciencedirect.
com/science/article/abs/pii/S1389128615004843

[18] P. Lison and V. Mavroeidis, ‘‘Neural reputation models learned
from passive DNS data,’’ in Proc. IEEE Int. Conf. Big Data,
2017, pp. 3662–3671. [Online]. Available: https://ieeexplore.ieee.
org/abstract/document/8258361

[19] J. Saxe and K. Berlin, ‘‘eXpose: A character-level convolutional neu-
ral network with embeddings for detecting malicious URLs, file
paths and registry keys,’’ 2017, arXiv:1702.08568. [Online]. Available:
https://arxiv.org/abs/1702.08568

[20] Y. Vorobeychik andM. Kantarcioglu,Adversarial Machine Learning (Syn-
thesis Lectures on Artificial Intelligence and Machine Learning), vol. 12,
no. 3. San Rafael, CA, USA: Morgan & Claypool, 2018, pp. 1–169.

[21] N. Dalvi, P. Domingos, S. Sanghai, and D. Verma, ‘‘Adversarial
classification,’’ in Proc. 10th ACM SIGKDD Int. Conf. Knowl. Discovery
Data Mining. 2004, pp. 99–108. [Online]. Available: http://s33043.
gridserver.com/files/teaching/stanford/2008/readings/
AdversarialClassification%20DalviEtAl%20KDD04.pdf

[22] D. Lowd and C. Meek, ‘‘Adversarial learning,’’ in Proc. 11th ACM
SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2005, pp. 641–647.
[Online]. Available: https://www.researchgate.net/profile/Daniel_Lowd/
publication/221654486_Adversarial_learning/links/
00b7d522999ea43eb4000000.pdf

[23] D. Lowd and C. Meek, ‘‘Good word attacks on statistical spam fil-
ters,’’ in Proc. CEAS, 2005. [Online]. Available: http://www.utdallas.
edu/~muratk/courses/dmsec_files/125.pdf

[24] I. J. Goodfellow, J. Shlens, and C. Szegedy, ‘‘Explaining and harness-
ing adversarial examples,’’ 2014, arXiv:1412.6572. [Online]. Available:
https://arxiv.org/abs/1412.6572

[25] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
‘‘Towards deep learning models resistant to adversarial attacks,’’ 2017,
arXiv:1706.06083. [Online]. Available: https://arxiv.org/abs/1706.06083

[26] A. Raghunathan, J. Steinhardt, and P. S. Liang, ‘‘Semidefinite relax-
ations for certifying robustness to adversarial examples,’’ in Proc.
Adv. Neural Inf. Process. Syst., 2018, pp. 10877–10887. [Online].
Available: https://papers.nips.cc/paper/8285-semidefinite-relaxations-for-
certifying-robustness-to-adversarial-examples.pdf

[27] I. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley,
S. Ozair, A. Courville, and Y. Bengio, ‘‘Generative adversarial nets,’’
in Proc. Adv. Neural Inf. Process. Syst., 2014, pp. 2672–2680. [Online].
Available: http://papers.nips.cc/paper/5423-generative-adversarial-nets

[28] B. Hitaj, P. Gasti, G. Ateniese, and F. Perez-Cruz, ‘‘PassGAN: A deep
learning approach for password guessing,’’ 2017, arXiv:1709.00440.
[Online]. Available: https://arxiv.org/abs/1709.00440

[29] W. Hu and Y. Tan, ‘‘Generating adversarial malware examples for black-
box attacks based on GAN,’’ 2017, arXiv:1702.05983. [Online]. Available:
https://arxiv.org/abs/1702.05983

[30] A. C. Bahnsen, I. Torroledo, L. D. Camacho, and S. Villegas, ‘‘DeepPhish:
Simulating malicious AI,’’ in Proc. IEEE APWG Symp. Electron.
Crime Res., 2018, pp. 15–17. [Online]. Available: https://albahnsen.
com/wp-content/uploads/2018/05/deepphish-simulating-malicious-
ai_submitted.pdf

[31] A. C. Bahnsen, E. C. Bohorquez, S. Villegas, J. Vargas, and F. A. González,
‘‘Classifying phishing URLs using recurrent neural networks,’’ in Proc.
IEEE APWG Symp. Electron. Crime Res., Apr. 2017, pp. 1–8. [Online].
Available: https://ieeexplore.ieee.org/abstract/document/7945048

[32] A. Anand, K. Gorde, J. R. A. Moniz, N. Park, T. Chakraborty, and
B.-T. Chu, ‘‘Phishing URL detection with oversampling based on
text generative adversarial networks,’’ in Proc. IEEE Int. Conf. Big
Data, Dec. 2018, pp. 1167–1176. [Online]. Available: https://ieeexplore.
ieee.org/abstract/document/8622547

[33] J. Burns and E. Heath, ‘‘Using generative adversarial networks to harden
phishing classifiers,’’ in Proc. FloCon, New Orleans, LA, USA, 2019.
[Online]. Available: https://flocon2019.sched.com/event/GXW1/using-
generative-adversarial-networks-to-harden-phishing-class

[34] J. Szurdi, B. Kocso, G. Cseh, J. Spring, M. Felegyhazi, and C. Kanich,
‘‘The long ‘taile’ of typosquatting domain names,’’ in Proc. 23rd USENIX
Secur. Symp. (USENIX Security), 2014, pp. 191–206. [Online]. Available:
https://www.usenix.org/system/files/conference/usenixsecurity14/sec14-
paper-szurdi.pdf

[35] L. Sidi, A. Nadler, and A. Shabtai, ‘‘MaskDGA: A black-box
evasion technique against DGA classifiers and adversarial defenses,’’
2019, arXiv:1902.08909. [Online]. Available: https://arxiv.org/abs/
1902.08909

[36] S.-M. Moosavi-Dezfooli, A. Fawzi, and P. Frossard, ‘‘DeepFool:
A simple and accurate method to fool deep neural networks,’’ in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., 2016, pp. 2574–2582.
[Online]. Available: https://www.cv-foundation.org/openaccess/content_
cvpr_2016/papers/Moosavi-Dezfooli_DeepFool_A_Simple_CVPR
_2016_paper.pdf

[37] V. I. Levenshtein, ‘‘Binary codes capable of correcting deletions,
insertions, and reversals,’’ Sov. Phys.-Dokl., vol. 10, no. 8,
pp. 707–710, 1966. [Online]. Available: https://nymity.ch/sybilhunting/
pdf/Levenshtein1966a.pdf

[38] P. Royal, ‘‘Quantifying maliciousness in alexa top-ranked
domains,’’ in Proc. BlackHat, Seattle, WA, USA, 2012. [Online].
Available: https://media.blackhat.com/ad-12/Royal/bh-ad-12-quanitfying-
royal-slide.pdf

[39] B. H. Bloom, ‘‘Space/time trade-offs in hash coding with allowable
errors,’’ Commun. ACM, vol. 13, no. 7, pp. 422–426, Jul. 1970. [Online].
Available: http://crystal.uta.edu/ mcguigan/cse6350/papers/Bloom.pdf

[40] Z. Gong, W. Wang, B. Li, D. Song, and W.-S. Ku, ‘‘Adversarial texts
with gradient methods,’’ 2018, arXiv:1801.07175. [Online]. Available:
https://arxiv.org/abs/1801.07175

[41] J. Ebrahimi, A. Rao, D. Lowd, and D. Dou, ‘‘HotFlip: White-box adver-
sarial examples for text classification,’’ in Proc. 56th Annu. Meeting
Assoc. Comput. Linguistics, vol. 2, 2018, pp. 31–36. [Online]. Available:
http://www.aclweb.org/anthology/P18-2006

JONATHAN PECK received the B.Sc. degree
in computer science and the M.Sc. degree in
mathematical informatics from Ghent University,
Belgium, in 2015 and 2017, respectively. He is
currently pursuing the joint Ph.D. degree with the
Department of Applied Mathematics, Computer
Science and Statistics and the VIB Inflammation
Research Center, Ghent, Belgium. His research is
sponsored by a fellowship of the Research Foun-
dation Flanders (FWO) and focuses improving the

robustness of machine learning models to adversarial manipulations.

CLAIRE NIE received the B.Eng. degree in chem-
ical engineering from McGill University, Canada,
in 2012. She is currently pursuing the M.S. degree
in computer science and systems with the Uni-
versity of Washington Tacoma, USA. She was
a Financial Auditor of Technology Companies,
Silicon Valley. During her graduate studies, she
carried out research on training random forest clas-
sifiers for the detection of algorithmically gener-
ated domain names.

91770 VOLUME 7, 2019

J. Peck et al.: CharBot: A Simple and Effective Method for Evading DGA Classifiers

RAAGHAVI SIVAGURU received the B.Tech.
degree in information technology from Anna Uni-
versity, India, in 2014. She is currently pursuing
the M.S. degree in computer science and systems
with the University of Washington Tacoma, USA.
Her research interests include improving the pre-
dictive performance of DGA detection classifiers
and conducting an evaluation of hardening tech-
niques that use side information to defend against
adversaries.

CHARLES GRUMER received the B.A. degree
in psychology from the University of Washing-
ton Seattle, in 2015. He is currently pursuing
the M.S. degree in computer science and systems
with a specialty in data science, the University
of Washington Tacoma. He is slated to graduate
at the end of 2019, pending the completion and
successful defense of his thesis, which focuses
on white box adversarial example generation for
DGA classifiers. He is also a Data Science Intern
with Infoblox.

FEMI OLUMOFIN received the Ph.D. degree in
computer science from the University of Water-
loo, Canada. He is currently a Senior Member of
the data science and analytics team with Infoblox
in the San Francisco Bay Area. He has made
contributions to research and development in the
areas of privacy enhancing technologies, secu-
rity, applied cryptography, big data analytics, and
machine learning.

BIN YU received the Ph.D. degree in electronic
engineering from Tsinghua University, China.
He was a Postdoctoral Fellow with the Pattern
Recognition and Image Processing Lab, Michigan
State University, USA, and an Associate Professor
with Beijing Jiaotong University, China. He was
with many high tech companies in Silicon Valley
at a senior leadership positions and a led projects
of machine learning and artificial intelligence for
internet search, medical imaging, computer vision,

and e-commerce. He is currently a Chief Data Scientist, pioneered big data
analytics with Infoblox, Santa Clara, USA, to detect malicious DNS traffic,
using deep learning, and artificial intelligence techniques to keep pace with
fast changing malware evolution. He has a rich experience in both academia
and industry for more than 25 years and has published more than 50 peer-
reviewed papers and patents in artificial intelligence, deep learning, machine
learning, image processing, and cybersecurity. He served as a SeniorMember
for the IEEE Computer Society.

ANDERSON NASCIMENTO received the B.S.
degree in electrical engineering from the Univer-
sity of Brasilia, Brazil, in 1998, and the M.S. and
Ph.D. degrees in information and communication
engineering from the University of Tokyo, Japan,
in 2001 and 2004, respectively. He was a Perma-
nent Member with the Nippon Telegraph and Tele-
com cryptography Research Group, Japan, and a
Faculty Member with the University of Brasilia,
Brazil. He is currently the EndowedAssociate Pro-

fessor of information security and information technology with the School of
Engineering and Technology, University of Washington Tacoma, USA. His
research interests include cryptography, information security, privacy, and
machine learning applications in these areas.

MARTINE DE COCK received the M.S. and Ph.D.
degrees in computer science from Ghent Univer-
sity, Belgium, in 1998 and 2002, respectively.
She was a Research Assistant and a Postdoctoral
Fellow with the Scientific Research - Flanders,
a Visiting Scholar with the BISC Group, Uni-
versity of California, Berkeley, USA, a Visiting
Scholar with the Knowledge Systems Laboratory,
Stanford University, USA, and an Associate Pro-
fessor with the Department of Applied Mathemat-

ics, Computer Science and Statistics, Ghent University. She is currently
a Professor with the School of Engineering and Technology, University
of Washington Tacoma, USA, and a Guest Professor with Ghent Univer-
sity. She has over 150 peer-reviewed publications in international journals
and conferences on artificial intelligence, data mining, machine learning,
information retrieval, web intelligence, and logic programming. Her current
research interests include privacy-preserving machine learning, cybersecu-
rity, and data analytics to improve the quality of healthcare. She is also a
Program Committee Member of numerous international conferences. She
co-organized the KDDCup2013. She has served as an Associate Editor for
the IEEE TRANSACTIONS ON FUZZY SYSTEMS.

VOLUME 7, 2019 91771

	INTRODUCTION
	RELATED WORK
	CHARBOT
	DATA SETS
	ALEXA
	BAMBENEK
	QNAME

	EXPERIMENTS
	LSTM.MI
	FANCI
	B-RF
	RESULTS

	COUNTERMEASURES
	COMPARING INCOMING DOMAINS TO ALEXA
	INCREASING THE CAPACITY OF THE MODELS
	WHITE-BOX ADVERSARIAL TRAINING
	USING SIDE INFORMATION

	CONCLUSION
	REFERENCES
	Biographies
	JONATHAN PECK
	CLAIRE NIE
	RAAGHAVI SIVAGURU
	CHARLES GRUMER
	FEMI OLUMOFIN
	BIN YU
	ANDERSON NASCIMENTO
	MARTINE DE COCK

