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ABSTRACT In this paper, a set of dissolved gas analysis (DGA) new feature combinations is selected
as input from the mixed DGA feature quantity, and an improved krill herd (IKH) algorithm optimized
support vector machine (SVM) transformer fault diagnosis model is established to solve the problem that
the single characteristic gas or characteristic gas ratio, which are utilized as the DGA feature quantity
cannot fully reflect the transformer fault classification. The following work has been done in this paper:
1) IEC TC 10 fault data and other 117 sets of fault data in China are preprocessed in order to reduce the
influence on the diagnosis results causing by the edge data in the fuzzy area; 2) the SVM parameters and
11 features are encoded by a binary code technique; 3) a preferred DGA feature set for fault diagnosis of
power transformers is selected by genetic algorithm (GA) and SVM, and; 4) IKH is utilized to optimize the
parameters of SVM. Combining with cross-validation principle, a transformer fault diagnosis model based
on IKH algorithm to optimize SVM is established. The fault diagnosis results based on the new fault sample
show that the proposed DGA feature set to increase the accuracy by 26.78% and 10.83% over the DGA
full data and IEC ratios. Moreover, the accuracy of IKHSVM is better than the GASVM, back-propagation
neural network (BPNN), and particle swarm optimization optimized support vector machine (PSOSVM),
the accuracy rates are 85.71%, 75%, 64.29%, and 71.43%, which proves the validity of the proposed fault
diagnosis model.

INDEX TERMS Power transformers, fault diagnosis, support vector machine, improved krill herd algorithm,
DGA feature.

I. INTRODUCTION

The oil-immersed transformer is a vital component of the
power grid, so it is of great significance to timely detect
the potential troubles to improve the stability and security
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of the power system. The highly reliable data lead to the
extensive use of the Dissolved Gas Analysis (DGA) technol-
ogy in the field of transformer fault diagnosis. The content
of dissolved gases in the oil has a significant correspondence
with the fault type and the fault severity of transformer. In this
case, the dissolved gases include CHy, CoHg, CoHy4, CoHp,
CO, CO; and H; are commonly selected as feature gases [1].
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According to the research [2], the type of transformer fault
is relative to the content ratio of feature gases as well.
Some experts proposed that Rogers Ratio [3], IEC Ratio [4]
and Doermenbur Ratio [5] could be used as the feature quan-
tity to reflect transformer anomalies. However, Rogers Ratio
can just reflect the thermal decomposition temperature range
only [6], and IEC Ratio has problems such as incomplete
coding and excessive coding boundaries that will cause the
judgment errors. Thus, a single gas or the content ratio of
feature gases cannot show the relationship between the trans-
former fault and gases completely, and the limitation may
affect the accuracy of the diagnosis result [7]-[9].

Aiming at making up for the shortcomings of the existing
DGA feature selection, in this paper, a set of optimal DGA
feature combinations from the set of characteristic gas and
characteristic gas ratios will be screened out. There have
been several methods for feature selection of data, such as
genetic algorithm [10], binary particle swarm algorithm [11],
neural network [12], imperialist competitive algorithm [13],
and tabu search [14]. Binary particle swarm algorithm is a
population-based optimizer similar to GA. BPSO algorithm
has the strong global search ability, but it cannot converge
to the global optimal position of particles [15]. Moreover,
with the iteration of the algorithm, the randomness of BPSO
becomes stronger, but it lacks the local search ability in
the later period [16], [17]. In the iterative process of the
imperialist competitive algorithm, the number of empire is
continuously reduced, resulting in a decrease in population
diversity, which is unfavorable for solving high-dimensional
multi-mode optimization problems, and the algorithm is easy
to fall into the local optimal solution [18]. GA can handle
large-scale complex data well due to its adaptability, and is
especially suitable for solving multi-objective optimization
problems [18], [19]. Therefore, genetic algorithm is used for
feature selection in this paper.

In recent years, the diagnosis method using the dissolved
gas analysis technology in oil and the fuzzy theory [20],
artificial neural network [21] and support vector machine [22]
has significantly improved the accuracy of fault diagnosis.
The fuzzy theory is simple in structure and fast in diagnosis,
but its learning ability is insufficient [23]; the artificial neu-
ral network has strong self-learning and parallel processing
ability, but it is easy to fall into local optimum [24], [25].
Compared with other methods, SVM can solve ‘“dimen-
sionality disaster”, “over-fitting”” and local minimum point
problems [26], [27], but the performance of SVM mainly
depends on its kernel function and its parameters [28], [29],
so it needs to adopt an intelligent optimization algorithm to
find the appropriate parameters to improve the generalization
and robustness of the SVM [30]. Krill Herd (KH) [31], [32]
idealizes the communication and foraging behavior of krill
group. KH algorithm has excellent local and global optimiza-
tion performance and has only one variable parameter—so
it is efficient and straightforward. Further, KH algorithm is
helpful in getting better convergence speed [33]-[35]. How-
ever, the standard KH algorithm cannot jump out of the local
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FIGURE 1. The binary encoding of chromosomes.

TABLE 1. Dissolved gas in oil.

Number DGA Feature Number DGA Feature
1 H, 7 CO,
2 CH, 8 TH
3 C,H, 9 CH4/H,
4 C,H, 10 C,H4/C,H;
5 C,Hg 11 C,H,/C,H,
6 CO

optimum in the later stage, which leads to poor solution
accuracy. Therefore, IKH algorithm is utilized to optimize the
parameters of SVM in this paper.

In this paper, the genetic algorithm is used to binary code
the SVM parameters and DGA feature quantities. The GA
combined with SVM is used to optimize the input features
of the fault diagnosis model. The SVM parameters can be
optimized by IKH algorithm and it is possible to build the
transformer fault diagnosis model based on IKH algorithm
optimized SVM by the cross-validation principle. The fault
data of 150 sets of IEC TC 10 and of 117 sets in China are
screened. The validity and superiority of the proposed method
are verified by the diagnosis results based on the processed
113 sets of fault samples of IEC TC10, and using the fault
data in China to test the accuracy of the method again.

Il. OPTIMIZATONG OF TRANSFORMER FAULT FEATURE
RATIO BASED ON GA AND SUPPORT VECTOR MACHINE
A. GAS FEATURE DISSOLVED IN OIL

Considering the advantages of characteristic gas and DGA
ratio, CHy, C2Hg, CoHy4, CoHp, CO, CO3, H», total hydro-
carbon (TH) and the gas content ratios of three gas groups
(CH4/H,, CoH4/CyHg, and CoH»/CoHy) are treated as the
gas feature dissolved in oil. The specific numbers are shown
in Table 1.

In order to reduce the impact of data error on diagnostic
accuracy, 150 sets of IEC TC 10 fault data and 117 sets
of fault data in China were screened. According to the grid
equipment condition maintenance rules and field experience,
the characteristic gases produced by overheating faults are
mainly CH4 and CHg, and the sum of the two generally
accounts for more than 80% of the total hydrocarbon [36],
[37]. As the temperature at the fault point increases, the pro-
portion of CoHg will increase. Usually, CoH> is not produced
in the event of overheating [38]. In the case of overheating
faults generally below 500°, the CoH; content will not exceed
2% of the total hydrocarbon, while in severe overheating,
the maximum CyH; content will not exceed 6%. When the
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TABLE 2. Attention value of dissolved gas in oil.

Characteristic gas Specification Attention value (uL/L)

330kV or more <1
C2H2
Other <5
H, - <150
TH - <150

overheating fault involves solid insulating materials, in addi-
tion to producing the above gases, a large amount of CO
and CO, are produces as well [39]. High-energy discharge
faults produce gas rapidly and large amounts of gas are
produced. The fault characteristic gases are mainly CoH; and
H;, followed by a large number of CoHg and CHy. CoH>
generally accounts for 20-70% of total hydrocarbons, Hy
accounts for 30-90%, and in most cases, CoHg content is
higher than CH,4. Low-energy discharge faults generally have
low total hydrocarbon content because of the low fault energy.
And the main component is H», followed by CH4. When the
discharge energy density is increased, Co;H, may be produced
as well, but the proportion of C,H> in the total hydrocarbons
is ordinarily less than 2%. This is also the major indicator
of the difference between the two types of discharge faults
[40]. Theoretically, the gas content should be less than the
attention value under normal conditions [41]. According to
the regulations, the attention values of the characteristic gas
components are shown in Table 2.

However, among the original fault data, some data fall
into a fuzzy area, and the characteristic gas concentration
satisfies a plurality of fault conditions at the same time, which
may cause the classification boundary to be unclear, thereby
leading to the lower accuracy of fault diagnosis. Therefore,
37 sets of IEC TC 10 and 12 sets of the data from China in
the fuzzy area are deleted. The remaining fault samples will
be used for the diagnosis of the model proposed in this paper.

B. SVM MODEL FOR TRANSFORMER FAULT DIAGNOSIS
The standard SVM is a typical two-class classifier, and the
transformer fault diagnosis is a linear and inseparable multi-
classification problem, so nonlinear and multi-class transfor-
mation of SVM is needed [15].

The SVM nonlinear model is shown in equation (1).

l
. 1
min ®(w, §) = - lol? + C ;&
.. {yz- [Tt +3] 2 1-&

1
£>0, i=1,2,...,1 )

where &; is a relaxation variable and parameter C is a penalty
factor.
Its Lagrangian function is shown as follows:

L(, 3§, B) = B@, 6)
l 1
=Yoo+l - 148 =Y s @
i=1 i=1
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The decision function is:

I
f ) = signl)_aiyiK (x,xi) + 2] 3)
i=1

Commonly used kernel functions include radial basis func-
tions (RBF), polynomial functions, etc. [16]. The RBF func-
tion only needs to determine one parameter, so it is beneficial
to the optimization of the parameters. Therefore, RBF is used

as the kernel function of the SVM:

K (xi, xj) = exp(—y |x; —XJ‘HZ), y>0 4)

Typical combinations are one against all (OAA), one
against one (OAQO), minimum output coding (MOC), etc.
[17]. OAO has the best effect in transformer fault diagnosis,
so this paper uses OAO method to expand the two-class SVM
into multi-class SVM.

C. OPTIMIZATION OF TRANSFORMER FAULT

FEATURE BASED ON GA

1) CHROMOSOME CODING

Due to the encoding and decoding operations of binary cod-
ing are simple, the genetic operations such as crossover and
mutation are easy to implement, the chromosome of GA is
generated by binary coding. Each chromosome consists of
SVM penalty factor c, kernel parameter and DGA features.
Each chromosome is made up of three genes. The first two
genes are composed of binary codes with length of 10, rep-
resenting SVM penalty factor ¢ and nuclear parameters o
respectively. The third gene represents the selection of DGA
feature quantities, with a length of 11, representing 11 kinds
of DGA feature quantities. Among them, the coding of DGA
feature quantities corresponds to the ordinal order of the fea-
ture quantities in Table 1, 1 indicates that the corresponding
DGA feature quantities have been selected, and O indicates
that the corresponding DGA feature quantities have not been
selected.

2) FITNESS CALCULATION

After encoding the chromosome, the k-fold cross-classifica-
tion accuracy of the transformer failure training sample is
taken as the individual fitness f:

ml

k .
1 m}
fMy, My, M3) = 'El —L % 100% 5)
=

where M1, M, and M3 represent the combined coding of ¢, o
and DGA features of support vector machine, respectively.
m; represents the number of samples in the i-th verifica-
tion set when using the SVM algorithm; mi T denotes the
number of correct classifications in the verification set when
using SVM algorithm; k represents the number of folds for
cross-validation and is set to 5.

In order to obtain the f of the chromosome, the M, M and
M3 segments need to be decoded in segments. The decimal
numbers obtained after decoding the M; segment and the
M, segment are ¢ and of the SVM; the selected gas ratios
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Satisfy termination
conditions

Output optimized
characteristic quantities

FIGURE 2. Flowchart of DGA feature selection.

according to the coding value of each bit in M3 segment O or 1,
form a new training sample.

3) GENETIC MANIPULATION

Genetic operations include selection operations, cross opera-
tions, and mutation operations.

o The selection operation can increase the average fit-
ness value of the group. In this paper, the “‘steady-state
selection” is utilized to preserve individuals with higher
fitness in the father.

o Cross operations are used to generate new individuals.
The “‘single point crossover” is utilized in this paper.

o The mutation operation is used to assist the generation of
new individuals, which determines the local search abil-
ity of the genetic algorithm. The “‘basic bit variation” is
utilized in this paper.

4) ALGORITHM FLOW
The preferred flowchart of DGA feature based on GA and
SVM is shown in Figure 2.

IIl. TRANSFORMER FAULT DIAGNOSIS MODEL BASED
ON IMPROVED KRILL HERD (IKH) ALGORITHM
In the KH algorithm, each krill individual represents a poten-
tial solution in the solution space, and the food is the optimal
global solution for the KH algorithm [19].

As what is shown in equation (11), the location update of
krill individuals is determined by the combination of induced
exercise, foraging movement, and random diffusion.
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FIGURE 3. Flowchart of the improved krill herd algorithm.

Active and reactive currents /,; and I,; of Z can be calcu-
lated as:

Zr =Ry + Sk + Ty (6)

where Z; represents the total movement of the krill; Ry
represents the guided movement; S represents the foraging
movement (i.e., the movement of each guided by the food);
Ty represents the physical random spread of each.

A. INDUCED MOVEMENT
Induced motion is divided into target guidance, local influ-
ence, and guiding inertia:

R = R"™ay + w, R (7

where R™® indicates the maximum induction velocity; w,
indicates the induction weight; « indicates the direction of
induction.

B. FORAGING MOVEMENT

The foraging movement is divided into foraging experience
and food guidelines. The speed of foraging is defined as
follows:

Sk = Vi + xR )

where V is the maximum speed of foraging; ¢ is the weight
of foraging; By is the direction of foraging.

C. RANDOM DIFFUSION
The random diffusion speed is defined as follows:

Tk = T™ (1 — t/tmax)d &)

where 7" represents the maximum random diffusion speed,
and 8 represents the direction of random diffusion. The speed
of krill individual is determined by the speed of induced
movement, the speed of foraging movement and the speed
of random diffusion.

dxy

= _R S, T 10
7 k + Sk + Tx (10)
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FIGURE 4. Flowchart of IKHSVM transformer fault diagnosis model.
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FIGURE 6. Evolution process of IKH.

The location update of Krill individual during the Af
period is expressed as follows:

dxp
Xt + A1) = xi (1) + Atﬂ (11)
NV
At=C ) (Ui—L) (12)

i=1

where C; represents the step size scaling factor; NV represents
the variable dimension; U; represents the upper bound of the
variable; L; represents the lower bound of the variable.

When using the standard KH algorithm to solve the global
optimization problem, as the number of iterations increases,
most of the krill moves to the same direction, which tends
to make the problem solution fall into local optimum. The
perturbation operator 8 is introduced in [19] to avoid KH
algorithm falling into local optimum, so as to improve the
performance of krill swarm optimization algorithm.
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TABLE 3. Transformer fault samples classification.

Fault type LE-D HE-D LM-T H-T N-C

Sample quantities 22 43 9 14 25

Perturbation operator g is determined by equation (13)
B = n X fitness (13)

In the formula, n € [0, 1], gradually decreases from
1 to 0 as the number of iterations increases. The fitness
represents the fitness of individual krill, and the greater the
fitness is, the worse the solution to the problem represented
by the individual position will be.

Redefine random diffusion based on the perturbation
operator §:

T = T™ (1 = t/tmax + B)S (14)

In the early stage of the algorithm iteration, since the §
value of the disturbance operator is relatively large, the dis-
turbance is large; The perturbation operator B gradually
decreases with the increase of the number of iterations, thus
reducing the random diffusion range of the krill population,
which is beneficial to the krill’s more detailed search in its
own neighborhood, so the algorithm has stronger local opti-
mization ability. In the later stage of the KH algorithm iter-
ation, the krill individuals move closer to the global optimal
individuals and are prone to fall into local optimum values.
After introducing the perturbation operator 8, the larger the
fitness value, the larger the perturbation of krill individuals,
which enables the krill to carry out a larger range of random
diffusion motion, thus expanding the optimization range of
the algorithm and avoiding the KH algorithm falling into
local optimum. The flow chart of the improved KH is shown
in Figure 3.

The parameters of SVM are optimized by IKH algorithm
to construct a transformer diagnostic model based on IKH
optimized SVM. The flowchart of IKHSVM fault diagnosis
model is shown in Figure 4.
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FIGURE 8. Diagnostic iterative diagram.

The flow of the transformer fault diagnosis model is as

follows:

o Normalize preprocessing of DGA ratios to eliminate the
effect of numerical values between different ratios.

o Establish IKHSVM fault diagnosis model by com-
bining the IKH algorithm and Cross Validation (CV)
principle.

« Diagnose the test sample and training sample by using
the IKHSVM fault diagnosis model and the result can be
obtained.

IV. RESULT ANALYSIS

A. FAULT SAMPLE SELECTION DATA SOURCE AND
PARAMETER SETTING

The 113 groups of IEC TC 10 fault data have been divided
into two parts, of which 85 samples are training samples,
and the other 28 samples are test samples. Table 3 shows the
classification of 113 fault samples.

When GA is used to optimize both SVM parameters and
DGA feature quantities, GA has a maximum number of
iterations of 50 and an initially generated particle swarm
of 10. The SVM parameters are set as follows: the range of
the penalty factor ¢ and the kernel parameter o are set to
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TABLE 4. Three Sets of feature data.

DGA feature quantity coding ~ CV accuracy Feature quantities

00101001111 88.67% 6
00110100011 88.67% 5
01110000111 88.67% 6

[0,200] and [0, 100] respectively, the number of DGA feature
quantities is 11.

In the IKHSVM fault diagnosis model, the krill population
size is set to 100, the maximum induction speed R™* =
0.02, the maximum foraging speed Vs = 0.01, the maximum
random diffusion speed = 0.01, the maximum number of
iterations K = T™** 100, and the number of CV is 9.
The SVM parameters are set as follows: the range of the
penalty factor ¢ and the kernel parameter o are set to [0, 200]
and [0, 100] respectively.

B. DGA FEATURE QUANTITY OPTIMIZATION RESULT
ANALYSIS

Three sets of DGA feature combinations are selected from
30 repeated calculations. The cross-validation accuracy and
test sample accuracy can be seen in Table 4.
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FIGURE 9. Fault diagnosis results.

The SVM is used to diagnose the test sample - the set
of features with the highest accuracy is selected from the
three sets of feature combinations and defined as the new
DGA feature combination, as shown in Figure 5. The yellow
regions are the selected features.

In order to compare the impact of different feature quanti-
ties on the fault diagnosis rate, the input features of IKHSVM
are divided into three categories: (1) DGA full data, including
H,, CH4, CoHy, CoHy, CoHg, CO, CO; and total Hydro-
carbon; (2) The three-ratio feature quantity consists of three
gas ratios of CH4/H», CoH4/C2Hg, and CoH2/CoHy; (3) The
preferred DGA feature combinations selected in this paper.
Using the feature sets from three categories respectively as
the input of SVM and using the five fault types as outputs.
The IKHSVM fitness curve when the optimal DGA feature
combination is input can be seen in Figure 6.

Table 4 gives the statistical results of the average accuracy
of the IKHSVM testing samples based on the three feature
sets. It can be seen from Table 5 that the fault diagnosis
accuracy rates of the DGA full data and the three-ratio feature
quantity test samples are 58.93% and 74.27% respectively,
and the accuracy of the three-ratio feature quantity is better
than the DGA full data. The diagnostic accuracy rate of the
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TABLE 5. Average accuracy with different feature quantities.

Accuracy (%)

Feature
Testing
DGA full data 58.93
Three-ratio feature 74.27
New DGA feature set 85.71

new DGA feature set is 26.78% higher than the DGA full
data, and 10.83% higher than the three-ratio feature quantity,
indicating that the new DGA feature set can significantly
improve the accuracy of transformer fault diagnosis. At the
same time, there is not much difference between the accuracy
of the new DGA feature set, the test samples and training
samples of the three-ratio feature quantity. It indicates that
the new DGA feature set is stable for fault diagnosis and can
reduce the interference caused by different data.

C. COMPARISON OF DIAGNOSTIC METHOD

In order to show more clearly the relationship between
the test sample and the accuracy of penalty factor ¢ and
nuclear parameter o, the search range of ¢ and o is set to
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TABLE 6. Average accuracy of new DGA feature.

Accuracy (%)

Diagnosis Method -
Testing
BPNN 64.29
GASVM 75
PSOSVM 71.43
IKHSVM 85.71
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FIGURE 10. Fault diagnosis results.

500 and 250 equal parts respectively, totaling 125,000 sam-
pling points (parameter combination), and each sampling
point is used as the input of SVM to obtain the diagnosis
results. Figure 7 shows the diagnostic results at each sampling
point. In Figure 7, the deeper the yellow color is, the better
the optimization effect of SVM parameters and the higher
the accuracy of fault diagnosis will be; the deeper the blue
color is, the lower the accuracy of diagnosis and the lower
the accuracy of fault diagnosis will be.

Based on the same combination of new DGA features,
transformer fault diagnosis is carried out using IKHSVM,
GASVM, BPNN and PSOSVM. The ABCD in Figure 8 show
the diagnostic iteration diagrams of the above four methods
respectively. It can be seen that the best fitness of IKHSVM
is better than the other three methods.

The ABCD charts of Figure 9 show the classification
accuracy of IKHSVM, GASVM, BPNN and PSOSVM. The
accuracy of the four methods is 85.71% (24/28), 75% (21/28),
64.29% (18/28) and 71.43% (20/28), respectively.

Table 6 shows the results of transformer fault diagnosis.
It can be seen from Table 6 that the average testing accuracy
of IKHSVM reaches 85.71% when the new feature set is
input, which is higher than that of BPNN, GASVM and
PSOSVM as 64.29%, 75% and 71.43% respectively. Com-
pared with GASVM and PSOSVM, the average test accuracy
of IKHSVM is higher which reflects that IKH algorithm has
good local and global optimization performance. It effec-
tively improves the accuracy of transformer fault diagnosis.

The remaining 105 groups of China fault data have been
divided into two parts, of which 79 samples are train-
ing samples, and the other 26 samples are test samples.

102810

Figure 10 shows the accuracy of the IKHSVM model based
the above fault data is 88.46% (23/26). It can be seen the result
is similar to that obtained by IEC TC 10 and it verifies the
reliability and validity of the IKHSVM model again.

V. CONCLUSION

In this paper, GA and SVM are used to optimize a set of
new DGA features to establish an IKHSVM transformer fault
diagnosis model for fault diagnosis. Fault data is prepro-
cessed to reduce the influence of fuzzy boundary on diagnosis
results. The conclusions are as follows:

o Using GA algorithm and SVM, a new DGA feature set
of transformer fault diagnosis is selected from 11 kinds
of DGA feature quantities. The average test accuracy of
the new DGA feature set is 26.78% and 10.83% higher
than that of the DGA full data and the three-ratio feature
quantity respectively. The new feature set proposed in
this paper can accurately reflect the faults of the trans-
former, which is better than other feature quantities.

o By using the new DGA set as input, the accuracy
of the IKHSVM model of transformer fault diagno-
sis reaches 85.71% which is higher than the standard
BPNN, GASVM model and PSOSVM model. In this
case, IKH algorithm is more suitable for parameter
optimization of support vector machines. It proves the
effectiveness of the proposed method.

o In the study, some shortcomings still existence, such
as the insufficient data samples. In the next research,
we should not only consider the existing small sample
data, but should consider more about how to be versatile
and scalable in the context of ubiquitous power Internet
of things and big data.
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