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ABSTRACT Multimodal medical image fusion (MMIF) plays critical roles in image-guided clinical
diagnostics and treatment. Pulse coupled neural network (PCNN) has been applied in image fusion for several
years. In the schemes of image fusion based on PCNN, the authors have adjusted variables manually, so that it
is difficult to get satisfying effects which limit in dealing with medical images with different modalities. This
paper presents a quality-guided adaptive optimizationmethod forMMIF, which is based on PCNN optimized
by multi-swarm fruit fly optimization algorithm (MFOA). To reduce the implementation cost and improve
the performance of theMFOA, quality assessment for multimodal medical image fusion was chosen to be the
hybrid fitness function. Guided by such quality measurement, the adaptive PCNN using the MFOA (PCNN-
MFOA) is proposed, which could automatically fit the optimal variables to the source images and enhance
the fusion effect. The experimental results visually and quantitatively show that the proposed fusion strategy
is more effective than the state-of-the-art methods and it is more effective in processing medical images with
different modalities.

INDEX TERMS Quality guided, pulse coupled neural network, multi-swarm fruit fly optimization algo-
rithm, multimodal medical image fusion.

I. INTRODUCTION
Image fusion integrates different sensory information into a
visual enhanced representational format [1]–[3]. Fusion of
multimodal medical images attracts much attention due to
its critical role in clinical diagnostics and treatment. There
are various modalities of medical images, which can be
classified into anatomical and functional. Anatomical imag-
ing modalities include x-ray computed tomography (CT),
magnetic resonance imaging (MRI). For instance, CT image
denote dense structures, but it is limited in soft tissue con-
trast. MRI can detect soft tissue. However, it cannot be
used to provide bones and implants information [4]. Func-
tional imaging modalities include single photon emission
CT (SPECT) and positron emission CT (PET), which provide
metabolic information without anatomical context like blood
flow and flood activity with low spatial resolution. Single
modality medical images may not enough to provide clinical
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needs to radiologists [5]. Multimodal medical image fusion
(MMIF) provides a promising solution approach by integrat-
ing information of different modality images into a visual
enhanced fused images, it aids radiologists in significant
clinical diagnosis [6], [7].

Up to now, many medical image fusion approaches have
been presented. The most fusion methods are based on mul-
tiscale transform (MST) framework. The MST approaches
can be divided into three steps. Firstly, source images
are transformed to MST domain. Then, the MST coef-
ficients are merged by designed fusion rulers. Finally,
the fused image is obtained by the inverse transform.
Classical MST-based fusion methods commonly include
gradient pyramid [8], discrete wavelet transform [9],
and contourlet transform [10], non-subsampled contourlet
transform (NSCT) [11], non-subsampled shearlet trans-
form (NSST) [12], and so on. To pursue encouraging fusion
results, pulse coupled neural network (PCNN) are intro-
duced under MST-based framework [13]–[16]. Such as,
Huang et al. [14] used NSCT and PCNN for the fusion of
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SPECT and CT images to improve the quality of fused
brain images. However, authors did not consider other
types of medical images. Jin et al. [15] proposed sim-
plified PCNN based on non-subsampled shearlet trans-
form (NSST-SPCNN) for multimodal sensor medical image
fusion. Image pixel value is employed to stimulate the PCNN
for processing high frequency coefficients. The coefficients
with larger absolute values are fused into new low frequency
coefficients. These methods were exploited on the basis of
complementary strategies and thus achieve fairly high per-
formance. However, in most cases, the PCNN parameters are
set to constant based on adjusted manually through a great
quantity of training, which hinders the performance of medi-
cal image fusion [16]. In simplified PCNN model, there are a
few important parameters need to be set. A natural question
is how to select the best parameters to conduct fusion. This is
not an easy task, since defined parameters may produce the
best quality on one pair input images, but it may be appro-
priate to the new input images not any longer. So, in most
cases, researchers must try a great many times to find a
suitable set of parameters based on different input images by
empirical or experimental results. To a great extent, it may
limit the robustness of algorithm performance. The adaptive
optimization process of finding suitable parameters is similar
to the optimization process of the intelligent optimization
algorithm. MFOA is a global optimization approach, aiming
to find the optimal solution search space by iteration. This
motivates us to exploit a quality-guided adaptive optimization
to automatically determine the optimal parameters for fusing
multimodal medical images.

This paper proposes a quality-guided adaptive optimiza-
tion method based on PCNN-MFOA. The main contributions
of this paper are as follows.

1) We introduce a quality evaluation metric for MMIF
(QMMIF ) [17] as the quality-guided fitness function.
In the process of search iteration, the design of the
fitness function is the key. The fitness function needs
to be used to evaluate the merits of the current posi-
tion. The image objective evaluation index can mea-
sure the quality of the image and can be used as the
basis for the fitness function selection. In addition,
the QMMIF is experimentally proved to have more
accurately than existing evaluation strategies in eval-
uating the MMIF image [17]. To the best of our knowl-
edge, this is the first time that theQMMIF model is used
as quality-guided adaptive optimization in the field of
medical image fusion.

2) We first time propose an adaptive PCNN using the
MFOA (PCNN-MFOA) model in the field of mul-
timodal medical image fusion. The PCNN-MFOA
model can overcome the difficulty of setting parameter-
adaptive in the conventional PCNN models. The
dynamic optimization of parameters is adjusted
through the evaluation results, and the optimal vari-
ables can be automatically matched with the source
image to obtain the optimal parameter combination.

3) We propose a new quality-guided adaptive optimiza-
tion method for MMIF by applying the PCNN-MFOA
mentioned earlier. Experiments are implemented
to verify the effectiveness of proposed method
on different imaging modalities of medical image.
Representative MMIF algorithms are used as compar-
ison experiments. Experimental results visually and
quantitatively show that the proposed fusion strategy
is more effective than state-of-the-art methods in pro-
cessing medical images with different modalities.

The rest of this paper is organized as follows. In Section II,
the theories of PCNN and MFOA are briefly introduced.
Section III presents quality-guided PCNN-MFOAmodel and
detailed fusion scheme. Experimental results and analysis are
presented in Section IV. Finally, Section V gives conclusion.

II. RELATED WORKS
A. PULSE COUPLED NEURAL NETWORK
The schematic diagram of the simplified PCNN model is
shown in FIGURE 1. There are three modules: the dendritic
(feeding inputEu,v and linking input Iu,v(n)), the linkingmod-
ulation Mu,v(n) and the pulse generator Fu,v(n) [18], which
are denoted by:

Eu,v(n) = Su,v (1)

Iu,v(n) = e−αL Iu,v(n)+ VL
∑
k,l

Wu,v,k,lFu,v(n− 1) (2)

Mu,v(n) = Eu,v(n)
[
1+ βIu,v(n)

]
(3)

Tu,v(n) = e−αθTu,v(n− 1)+ VθFu,v(n− 1) (4)

Fu,v(n) =

{
1, Mu,v(n) > Tu,v(n)
0, Mu,v(n) ≤ Tu,v(n)

(5)

FIGURE 1. Schematic diagram of simplified PCNN.

where W is the synaptic weight matrices, u, v represent the
pixel locations, k , l represent the dislocation in a symmetric
neighbourhood surrounding a pixel. Su,v(n) is the external
stimulus. In this paper, gray value of the pixel instead of
external stimulus of PCNN. VL and αL represent normalizing
constants. β is the linking parameter, which the weight of
linking field. αθ and Vθ denote attenuation coefficient and
threshold magnitude coefficient, respectively.
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B. MULTI-SWARM FRUIT FLY OPTIMIZATION ALGORITHM
Pan et al. [19] presented fruit fly optimization algo-
rithm (FOA), aiming to hunt for global optimization auto-
matically. It is as a simulation of intelligent foraging action
of fruit flies hunting for food. The FOA metric affords us
a useful design principle, and the program code is sim-
ple and easy to understand. However, this method tends to
cause limiting in searching space. Furthermore, it is hard
to get out of the local extremes [20]. Hence, the multi-
swarm fruit fly optimization algorithm (MFOA) was pre-
sented by Yuan et al. [21]. It is a FOA-based approach,
which employs multi-swarm action to significantly improve
the performance. In the MFOA approach, the sub swarms
divide by a huge swarmmove independently searching space.
Meantime, to searching global optimization at once, local
search is done by cooperative sub-swarms, which is so far
the complementation of MFOA close to the best values. The
nonlinear equations with boundary conditions optimization
question is depicted as follows:

max f (Y ) = f (y1, y2, · · · , yn) , yj ∈
[
aj, bj

]
(6)

where j ∈ {1, 2, 3, · · · n}, n is the number of decision variable.
The detail of the MFOA is epitomized as following steps.

Firstly, fruit fly swarm location is initialized, which is
denoted by Init Y_axis. The max iteration times are set kmax ,
population scale of fruit flies is Popsize, and sub swarms
number is T . The individual fruit fly can use the smell to
feed back its distance and direction to the food. The detailed
implementation on each swarm is as follows:

Yi,t = Y_axist + R(k)× Random (7)

where i ∈ {1, 2, 3, · · ·Popsize} denotes each fruit flies
population, t ∈ {1, 2, 3, · · · T } denotes each sub swarm.
φ ∈ [2, 6],R(k) is denoted by

R(k) =
(
bj − aj

2

)
×

(
kmax − k
kmax

)φ
(8)

Secondly, in order to find fitness function value of the
individual location of fruit fly, fitness function value (Smelli)
is substituted and denoted by decision variable value (Yi).
Best fitness function value among each sub-swarm is denoted
by max (smell). They are listed as follows:

Smelli = Function(Yi)

[bestSmellt bestIndext ] = max(Smell) (9)

When the fitness of each sub swarm is better than the prior
iteration fitness, the optimum fitness is updated, meantime,
each sub swarm will fly to that location on one’s own with
sense of sight, which are listed as follows:

Smellbestt = bestSmellt
Y_axist = Y (bestIndext ) (10)

Next, the global fitness and best position are updated,
which are denoted by Smellbest and Y_axis, respectively.

If the Smellbestt> Smellbest, the Smellbest = Smellbestt ,
Y_axis = Y_axist . Cooperative local search is conducted by

Y−new =
1
T

T∑
t=1

X−axist (11)

whenFunction(Ynew) > Smellbest , the global fitness and best
position are updated and denoted by

Smellbest = Function(Y_new)

Y_axis = Y_new (12)

Finally, if k ≥ kmax , then, iteration stops.

III. MULTIMODAL MEDICAL IMAGES FUSION STRATEGY
A. THE QUALITY-GUIDED FITNESS FUNCTION
In order to solve the optimal parameters of the PCNN,
the intelligent optimization algorithm MFOA was used to
optimize the parameters of the PCNN. In the process of search
iteration, the fitness function needs to be used to evaluate
the merits of the current position. Therefore, the design of
the fitness function is the key. A natural problem is how
to select the appropriate evaluation criteria to construct the
fitness function. The fitness function is an important factor
affecting the search performance of the MFOA. The image
objective evaluation index can measure the quality of the
image and can be used as the basis for the fitness function
selection. Many image quality assessment approaches have
been presented [22]–[24], however these existing evaluation
criterias are not designed forMMIF, which limit in evaluating
multimodal fused images, and little has been done to com-
pare them with subjective data that contains a wide variety
of image modalities and fusion algorithms. In our previous
work [17], a MMIF image database is built, 20 radiologists
participated in the subjective test, the proposed quality eval-
uation metric for MMIF (QMMIF ) can maintain good consis-
tency with the subjective experimental results, and can more
accurately evaluate theMMIF image. In this paper, the fitness
function is constructed by the QMMIF evaluation criterion,
which advances fruit flies to fly from the original location to
the best location with higher effectiveness. Guided the quality
assessment, adaptive PCNNmodel using the MFOA (PCNN-
MFOA) are constructed, which is determined according to the
fitness function. The dynamic optimization of the parameters
is adjusted through the evaluation results, and the optimal
variables can be automaticallymatchedwith the source image
to obtain the optimal parameter combination. Hence, a eval-
uation criterion for MMIF fitness function is computed and
denoted by

Smellbest = QMMIF (13)

B. PCNN-MFOA
In simplified PCNN model, several parameters are very
important in affecting the performance of PCNN model.
Attenuation time constant αL determines the attenuation
speeds of the L-channel. Decay time constant αθ regulates
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FIGURE 2. Schematic diagram of PCNN-MFOA fusion strategy.

FIGURE 3. Schematic of the grayscale and color image fusion strategy.

the decline rate of the threshold value, and the threshold
decreases slower and themore times the PCNN employs if the
value is smaller. The threshold amplitude coefficient Vθ regu-
lates the neuron firing cycle, once a neuron fires, its amplitude
exceeds the threshold and will be promoted. The link strength
coefficient β adjusts the extent to which neighboring neu-
rons affect central neurons. The large β causes widespread

pulse synchronization. Iteration number n can not only reduce
the computational complexity, but also increase the comput-
ing speed of the PCNN.

Considering the above reasons, these five important param-
eters (αL,β, Vθ,αθ,n) need to be determined. The sub-swarms
number of the fruit flies represents the number of parameters,
so the sub-swarms number is 5, the size of population is
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Algorithm 1 Procedures of PCNN-MFOA

Input: kmax , Popsize, T , n, image IA, image IB

For t = 1:T
For j =1: n

Initialization Y_axist
End for

End for
For k = 1: kmax
For i = 1: Popsize
For t = 1:T
Yit = Y_axist +R(k)× Random

End for
Fi = fused (image IA, image IB, Yi)
Smell i = Function(Yi) = QMMIF (Fi)

End for
[bestSmellt bestIndext] = max(Smell)
Smellbest t = bestSmell t
Y_axist = Y (bestIndext )
If Smellbestt> Smellbest
Smellbest = Smellbestt
Y_axis = Y _axist

End If

Y−new = 1
T

T∑
t=1

Y−axist

F = fused (image IA, image IB,Y _new)
Smell _new = Function(Y _new)
If Function(Y _new) > Smellbest
Smellbest = Function(Y _new)
Y_axis = Y_new

End If
End for
Output: Smellbest, Y _ axis ((αL , β,Vθ , αθ , n)
Output, Y_axis

(
αL , β,Vθ , αθ , n

)

set to 20, and the terminal condition exceeding the maximal
iterations number will be not executed. The detailed of the
proposed PCNN-MFOA are shown as Algorithm 1.

C. FUSION STRATEGY BASED ON PCNN-MFOA
Schematic diagram of the fusion strategy based on
PCNN-MFOA is shown in FIGURE 2. Uniformly, medical
image IA and medical image IB denote two source images
with different modalities, let IF denote the fused image. The
detailed fusion scheme is summarized as following steps.

Firstly, image IA and image IB are conducted based on
PCNN-MFOA, the optimal parameters are calculated accord-
ing to Algorithm 1.

(αL , β,Vθ , αθ , n) = PCNN −MFOA
(
IA
)

(αL , β,Vθ , αθ , n) = PCNN −MFOA
(
IB
)

(14)

where PCNN-MFOA(·) denotes the PCNN-MFOA functions,
which was described in section III. B.

FIGURE 4. Source multimodal medical images.

Secondly, the IA (u,v) and IB (u,v) are used as the stimulus
of the PCNN for processing IA and IB, respectively.

T I
A
= PCNN

(
IA(u, v)

)
T I

B
= PCNN

(
IB(u, v)

)
(15)
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FIGURE 5. Four experimental results for CT and MR image fusion with eight methods (a) CSR. (b) NSCT-PCNN-SF. (c) GFF. (d) LP-SR. (e) ULAP-MF. (f) NF.
(g) NSST-PAPCNN. (h) Proposed.

FIGURE 6. Four experimental results for MR-T1 and MR-T2 image fusion with eight methods (a) CSR. (b) NSCT-PCNN-SF. (c) GFF. (d) LP-SR. (e) ULAP-MF.
(f) NF. (g) NSST-PAPCNN. (h) Proposed.

where PCNN(·) denotes the best parameters (αL,β, Vθ,αθ,n)
by Eqs. (1)-(5). The firing times matrix T I

A
and T I

B

denote the total fired times motivated by IA (u,v) and

IB (u,v), respectively. When the iteration number n =
kmax , kmax is the max iteration times, then iteration
stops.
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FIGURE 7. Four experimental results for MR and PET image fusion with eight methods. (a) CSR. (b) NSCT-PCNN-SF. (c) ULAP-MF. (d) NF.
(e) NSST-PAPCNN. (f) LLF-II. (g)PSF. (h) Proposed.

Finally, IF is computed and denoted as follows:

IF =


max

(
IA(u, v), IB(u, v)

)
T I

A
= T I

B

IA(u, v) T I
A
> T I

B

IB(u, v) T I
A
< T I

B

(16)

D. EXTENSION TO ANATOMICAL AND
FUNCTIONAL IMAGE FUSION
In this subsection, the proposed method is extended to fuse
anatomical images and functional images. In medical imag-
ing modalities, functional images (e.g., PET and SPECT)
are pseudocolor images. The color space transform can
divide color image into luminance or brightness component,
especially, the YUV color space transform method have
proved a very effective way for anatomical and functional
image fusion [13], [16], [25]. This paper apply YUV color
space transform to separate a color image into one lumi-
nance component (Y) and two chrominance components
(U and V). Schematic diagram of the anatomical and func-
tional image fusion strategy is shown in FIGURE 3. Specifi-
cally, the fusion scheme is outlined as following:

Firstly, the RGB image is transformed into YUV color
space with three channels of Y, U, and V. The RGB to YUV
color space conversion can be denoted by YU

V

 =
 0.299 0.587 0.114
−0.169 −0.331 0.5
0.5 −0.419 −0.081

RG
B

 (17)

Then, fused Y channel (new Y channel) is obtained
by the grayscale image and the Y channel fusion

based on the proposed fusion strategy, which described
in section III. C.

Next, the new YUV are obtained by combining fused Y
channel, the original U channel, and the original V
channel.

Finally, the fused color image is contructed by inverse
YUV transform. YUV to RGB space is computered by the
following inverse operations:RG

B

 =
 1 0 1.14
1 −0.39 0.58
1 2.03 0

 YU
V

 . (18)

IV. EXPERIMENTAL RESULTS
A. EXPERIMENTAL SETTINGS
In this subsection, four groups of medical images with size
256 × 256 are performed as shown in FIGURE 4. They are
CT and MRI, MRI-T1 and MRI-T2, MRI and PET, MRI and
SPECT. For each group, four sets of images are employed
in the experiments, and the two source images should be
preregistered.

To evaluate the effectiveness of the PCNN-MFOA
strategy, the following fusion algorithms are used as
comparison experiments, including convolutional sparse
representation (CSR) [26], NSCT and PCNN with modi-
fied spatial frequency (NSCT-PCNN-SF) [13], guided filter-
ing (GFF) [27], laplace transform and sparse representation
(LP-SR) [28], union laplacian pyramid with multiple features
(ULP-MF) [29], neuro-fuzzy (NF) [30], parameter-adaptive
PCNN in NSST (NSST-PAPCNN) [16], local laplacian
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FIGURE 8. Four experimental results for MR and SPECT image fusion with eight methods. (a) CSR. (b) NSCT-PCNN-SF. (c) ULAP-MF. (d) NF.
(e) NSST-PAPCNN. (f) LLF-II. (g)PSF. (h) Proposed.

TABLE 1. Objective assessment of the proposed methods with different fitness function.

filtering and information of interest (LLF-II) [31], parallel
saliency features (PSF) [32], where GFF, LP-SR are gen-
erally used to fuse anatomical- anatomical image, LLF-II,
PSF are specifically for anatomical-functional image, CSR,
NSCT-PCNN-SF, ULP-MF, NF, NSST-PAPCNN are used
not only to fuse anatomical-anatomical image, but also to
fuse anatomical-functional image. Among the nine compared
methods, all the parameters are default values in imple-
mentation. The choice of fitness function is determined by
experiments. In implementation, the fitness function is con-
structed by the standard deviation (SD) [28], the normal-
ized mutual information (MI) [33], Xydeas et al.’s gradient
based metric QG [34], Yang et al.’s metric (QY ) [35], and
QMMIF [17], respectively, in MMIF image database [17].
We find the results of QMMIF in objective evaluation metrics
are best. As shown in the TABLE 1, each value is the average
result of all the source images, and the highest values are
labeled in bold, which denote the best performance. In the
experiment, we calculate the total running time of fusing
all 16 pairs of source images, and then divide it by 16 to
get the average running time, and repeated 10 times. The
average running time is 136.56 seconds, iteration times are

20, and the optimized iteration time is 6.83 seconds. An expe-
rienced radiologist participated in subjective visual quality
evaluation in terms of the proposed method. For each image
set, the radiologist was asked to give results to each fused
image within a continuous range, which can obtain more
accurate subjective evaluation. He believed that the images
fused by our proposed method preserve more edge, details
and texture information, and have higher contrast and sharp-
ness than source images, which is useful in diagnoses for
doctors.

B. VISUAL QUALITY ANALYSIS
FIGURE 5 shows four experimental results for CT and
MR image fusion with eight methods. It can be seen
that images fused by CSR, GFF, LP-SR, ULAP-MF, NF,
NSST-PAPCNN methods lose bone information. Among
the CSR, GFF, ULAP-MF, NSST-PAPCNN methods,
bone information are invisible [see the bone regions in
FIGURE 5(a), (c), (e) and (g)]. The LP-SR and NF methods
obtain part of skeleton information [see the bone regions in
FIGURE 5(d), (f)]. NSCT-PCNN-SF method conserve better
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TABLE 2. Objective assessment for CT and MRI.

TABLE 3. Objective assessment for MRI-T1 and MRI-T2.

effect on this issue, but still lead to some edge skeleton
structures blurring, and some details lose and the contrast
of the focal lesions decrease [see the bone regions and
focal regions in FIGURE 5(b)]. Our method achieves better
results on bone information preservation and detail extraction
[see FIGURE 5(h)].

FIGURE 6 shows four experimental results for MR-T1
and MR-T2 image fusion. The CSR, GFF, ULAP-MF, NF,
NSST-PAPCNN methods are not successful in extracting
the detail structure from the MR-T2 image. The CSR, GFF
methods lead to the details of MR-T2 image almost invisible
[see FIGURE 6(a), (c)], the ULAP-MF, NF, NSST-PAPCNN

methods obtain part MR-T2 details, but some details are still
serious loss [see the focal regions and cerebrospinal fluid
region in FIGURE 6(e), (f) and (g)]. The NSCT-PCNN-SF
and LP-SR methods perform well, some regions cause inten-
sity and contrast decrease, leading to a significant structure
blur in gray and white matter region [FIGURE 6(b), (d)].
The proposed method achieve well in all these four
examples.

FIGURE 7 shows four experimental results for MR and
PET image fusion with eight methods. The LLF-II method
introduces serious noise like artifacts in fused image [see
FIGURE 7(f)]. The PSF method leads to whole image blur
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TABLE 4. Objective assessment for MRI and PET.

TABLE 5. Objective assessment for MRI and SPECT.

[see FIGURE 7(g)]. The NSCT-PCNN-SF method suffers
from important anatomical information of MR source image
lost [see FIGURE 7(b)]. The CSR, ULAP-MF methods
cause severe color distortion [cerebral metabolism regions in
see FIGURE 7(a), (c)]. The NF, NSST-PAPCNN methods
perform better on this issue, but fails in preserving color
fidelity. In addition, unclosure or incontinuity effects exist
more or less in the fused images, which lead to some impor-
tant functional information of PET image lost [see cerebral
metabolism regions in FIGURE 7(d), (e)]. Compared with
the above methods, our method achieves the best visual
performance [see FIGURE 7(h)].

FIGURE 8 shows four experimental results for MR and
SPECT image fusion with eight methods. It can be clearly
seen that the image fused by LLF-II suffers from serious noise
like artifacts [see FIGURE 8(f)]. The PSF method fails in
preserving image sharpness [see the serious visual blur in
whole image regions in FIGURE 8(g)]. The main defect of
CSR, NSCT-PCNN-SF, ULAP-MF method is not successful
in preserving intensity and contrast, leading to important
anatomical information in MR source image lost [see the
gray and white matter regions in FIGURE 8(a), (b), (c).]
In addition, color information blur or even lost exists more
or less in the fused images [see hypermetabolism regions in
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FIGURE 8(a), (b), (c)]. The NF, NSST-PAPCNN methods
obtain better fusion results, but fails in obtaining important
functional information of SPECT source image, because it
over enhances the anatomical details in theMR source images
[see abnormal metabolites regions in FIGURE 8 (d), (e)]. The
proposed strategy preserves edge, details, texture informa-
tion, and metabolic information [see FIGURE 8 (h)].

C. OBJECTIVE QUALITY ASSESSMENT
Objective quality assessment plays an important role in image
fusion filed. Recently, many fusion metrics have been pro-
posed, one question to how to select the best criteria to
measure the fused image quality. This is not an easy task,
since perfect reference images (ground truth) are usually
unavailable in the real world medical imaging. So far, a few
of approaches have been presented for the quality measure-
ment of the fused images. In this work, four fusion quality
metrics are adopted, which are SD [28], MI [33], QG [34],
QY [35]. SD measures the contrast in the fused image. MI
measures the amount of information transferred to the fused
image from the source images. QG evaluates the success of
edge information or gradient information from source images
is injected in to the fused image from the source images.
QY utilizes the structure similarity to measure the structural
information between the fused image and each source image.
In general, the larger the values of SD,MI,QG, andQY denote
better fusion quality. TABLE 2-5 summarizes the objective
assessment performance of our method and existing methods
employing the above four metrics, where the highest score
values are marked boldfaced in each row, which denote the
best results. From the TABLE 2-5, it is clear that our method
achieves the significant superiority.

V. CONCLUSION
In this paper, we have presented a quality-guided adaptive
optimization method for fusing multimodal medical images.
Guided by quality measurement, PCNN-MFOA is proposed,
which could automatically determine the optimal parame-
ters for source images, and deal with medical images with
different modalities. Extensive experimental results demon-
strate that the proposed fusion strategy has much higher
performance than the state-of-the-art methods. Furthermore,
the proposed method is very helpful for the radiologists in
clinical application.
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