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ABSTRACT The performance of encoded opportunistic transmission schemes in wireless channels affected
by Rayleigh fading and additive white Gaussian noise (AWGN) is analyzed. In opportunistic transmission,
the information is transmitted only when the fading amplitude is above a threshold. For this, the receiver
with the knowledge of the channel state information notifies the instants the transmitter should transmit.
Opportunistic systems with convolutional error correcting codes or with trellis coded modulation are ana-
lyzed in terms of closed-form bit error rate (BER) expressions. Nevertheless, the approach presented can be
employed with any kind of error correcting codes. Hence, the performance of turbo codes is also presented in
the simulations. Monte Carlo simulations verify the accuracy of the derived expressions and provide insights
on the system performance. Performance results show that uncoded and encoded opportunistic systems are
superior to uncoded and encoded ordinary systems (non-opportunistic), respectively. In particular, the BER
curves of the opportunistic system decay exponentially when the signal-to-noise ratio (SNR) increases.
On the other hand, BER curves for ordinary transmission decay linearly, where the slope is proportional
to the diversity that depends on the error correcting code. Thus, opportunistic systems require less SNR
to guarantee the same BER of ordinary transmission. The BER gain increases as the SNR increases. It is
also observed that uncoded opportunistic systems are even superior to encoded ordinary ones. The results
are validated guaranteeing the same spectral efficiency for all the scenarios. Finally, due to the exponential
decay of the BER curves, coding gain expressions, used in ordinary systems over AWGN, can be used as
approximations for opportunistic transmission in fading channels.

INDEX TERMS Wireless communication, opportunistic transmission, error correction codes, bit error rate,
Rayleigh channels.

I. INTRODUCTION
Wireless communication research aims to improve the sys-
tem performance and to employ the channel resources in an
efficient manner. Important performance indicators of those
researches are the bit error rate (BER) and the spectral effi-
ciency [1]–[3].

A well-known technique to improve wireless systems per-
formance is error correction employing codes. Error correct-
ing codes (ECC) add redundancy to the original message
so that the receiver is able to correct errors produced by
the channel. Thus, BER is improved at a cost in spectral
efficiency. ECC are crucial for real-time applications where
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resending messages is not possible [4]–[6]. Different ECC
have been proposed in the literature. Among them appear
the convolutional codes [7]–[9] and trellis coded modu-
lation (TCM) [10]–[12]. In both techniques, the receiver
employs a trellis decoding, which allows a maximum
likelihood decoding with low complexity [11]. Typically,
convolutional codes are employed with binary modulations
as binary-phase-shift-keying (BPSK) [13]–[16]. Moreover,
TCM uses high order modulations, as multilevel quadrature-
amplitude-modulations (M -QAM), in order to compensate
for spectral efficiency losses produced by the redundancy
increasing.

Although in the literature there are more power-
ful error correction codes such as turbo codes [17],
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low-density-parity-check (LDPC) codes [18] or polar
codes [19], the majority of times, they are evaluated through
simulations [20]–[22] because it is not straightforward to
find expressions to evaluate their performance in different
scenarios. On the other hand, both convolutional codes and
TCM codes enable a mathematical modeling that allows
to find closed form-expressions to evaluate the mean BER,
so that its performance is still analyzed in different operating
scenarios [3], [23]. Additionally, this type of error correction
codes are considered in someworks related to fifth generation
(5G) mobile systems [24], [25].

There are other techniques to improve the performance
of wireless systems and among these techniques appear
transmission schemes that take advantage of the random
nature of the communications channel. Thus, this type of
transmission aims the wireless channel works in favor of
the system performance. One of these schemes is named
as opportunistic transmission or only opportunistic trans-
mission [26]. With this approach, the transmission is made
only when the fading amplitude1 is above a threshold value.
This opportunistic transmission method improves the system
performance considerably at the cost of a spectral efficiency
reduction because there is no transmissions intervals. How-
ever, due to the enhanced system performance, it is possible
to use higher order modulations to compensate for this loss.
On the other hand, these non-transmission periods are also
an interesting opportunity for cognitive networks that use the
interweave technique [27], since secondary users can trans-
mit in the non-transmission periods of primary users in the
network.

In [28], opportunistic transmission is employed in wireless
sensor networks scenarios. In this case, the strategy is that
each sensor, with a constrained average transmission power,
should save power when its channel is poor (low fading
amplitude) and act when opportunities arise. The system
performance is evaluated via the sum rate capacity consid-
ering uncoded scenarios. The results show that as the SNR
increases, the number of active sensors can be reduced due
to the opportunistic transmission employed. However, a BER
analysis is not performed in this work. Another work employ-
ing opportunistic transmission is presented in [29]. Specifi-
cally, the receiver uses an antenna array and the opportunism
is applied when the combiner takes only signals affected by
high fading amplitudes, or equivalently, fading amplitudes
above a threshold value. The system performance is evalu-
ated in terms of the mean BER. Closed-form approximate
expressions are derived in order to calculate this performance
indicator. Results show that the system diversity increases
significantly for each receiving antenna that is placed in the
array at the receiver. In addition, in [30], the authors consider
a K -user bursty Rayleigh fading interference channel, where
each user transmits data intermittently with a certain proba-
bility under the local channel state information assumption.

1In wireless systems, fading refers to a specific kind of attenuation which
is highly frequency and time dependent.

For this, it is considered an opportunistic transmission based
on desired channel gain, that is, similar to the approach pre-
sented in [26]. In particular, the authors evaluate the achiev-
able rate under different interference conditions. Results
show that opportunistic transmission achieves a higher bit rate
than random transmissions as well as the conventional non-
opportunistic transmission.

By the above, it is clear that transmitting when the fad-
ing amplitude is above a threshold has been employed in
different scenarios. Nevertheless, to our best knowledge,
the performance of this transmission scheme has not been
evaluated in encoded systems. On the other hand, other
opportunistic approaches have been considered in the lit-
erature. For example, in [31], considering that it is eas-
ier for sensors to track large scale shadowing variations
than small scale fading variations, the authors derive closed
form expressions to evaluate the BER. The results show
that opportunistic transmission, based on shadowing, can
achieve very good performance improvements compared to
typical transmissions. Thus, depending on the number of
sensors in the network, the system has a gain in terms of
SNR, but the diversity does not change. Moreover, in [32],
the authors use opportunistic transmission for encoded coop-
erative networks, where the cooperation mode is activated
based on outage events. In this work, 8-PSK modulation
is employed to obtain some numerical results, where it is
observed that the proposed scheme gains certain degrees of
diversity compared to ordinary transmissions. Thus, the BER
curves change their inclination but maintain a linear decay-
ment when plotted as a function of the signal-to-noise
ratio (SNR).

Considering that error correction codes are fundamental
for adequate operation of wireless systems, in this work,
an encoded opportunistic transmission scheme is evaluated in
terms of the mean BER. Specifically, in the analyzed system,
the encoded symbols are transmitted when the fading ampli-
tude is above a threshold value. Because in specific scenarios,
simulations can be time consuming, difficult to validate and
does not present an explicit interdependence over all the
system parameters, closed-form upper bound expressions to
evaluate the mean BER are derived in this work considering
convolutional and TCM codes. Nevertheless, the proposed
transmission scheme can be employed with any kind of error
correcting codes. To prove this, turbo codes [33] are also used
in some simulations presented in this work. The above codes
are considered because of their good performance and low
implementation complexity, which make them to be used in
many wireless standards. Consequently, the term opportunis-
tic transmission is used quite profusely in the literature, but
with quite different meanings. Thus, we affirm that in the
literature there is no research on opportunistic transmission,
as defined. Much less, combining opportunistic transmission
with error correcting codes.

For the analysis, the channel considers presence of
Rayleigh fading and additive white Gaussian noise (AWGN).
Additionally, the presence of a time domain interleaving that
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TABLE 1. List of Symbols.

ensures independent fading on each symbol of the same
encoded block is assumed. For more insightful analysis,
the spectral efficiency and the coding gain are also analyzed.
Simulations using the Monte Carlo method are carried out in
order to verify the tightness of the derived expressions.

The remainder of this paper is organized as follows. The
notation and the list of symbols is presented in Section II. The
channel and systemmodels are described in Section III. Some
preliminary results related to opportunistic transmission are
presented in Section IV. The system performance is analyzed
in Section V. Numerical results and discussions are carried
out in Section VI. Finally, the conclusions are presented in
Section VII.

II. NOTATION AND LIST OF SYMBOLS
In what follows, lowercase letters, x, and bold lowercase
letters, x, denote scalars and vectors, respectively, and x` is
the `-th element of x. Moreover, the connotation of each
symbol employed along this paper is shown in Table 1.

III. CHANNEL AND SYSTEM DESCRIPTION
In this section, the channel model and the encoded oppor-
tunistic system are described.

FIGURE 1. Encoded opportunistic transmitter block diagram.

A. CHANNEL DESCRIPTION
Aflat-slow fading channel is considered. Let α be the random
fading amplitude modeled as a Rayleigh random variable.
Hence, its probability density function (PDF) is given by [40]

f (α) =
α

σ 2 exp
(
−
α2

2σ 2

)
, α ≥ 0, (1)

where 2σ 2 is the fading mean power. In addition, the received
signals are also perturbed by AWGN. Consequently, the noise
samples are modeled as zero-mean Gaussian random vari-
ables with variance

σ 2
n =

N0

4Ts
, (2)

where N0 is the unilateral noise power spectral density and Ts
is the symbol duration.

B. TRANSMITTER AND RECEIVER DESCRIPTION
Fig. 1 shows the transmitter structure, where a sequence of
binary digits with equal probability is generated. The bit
sequence is denoted as b = (b1, b2, ...bk ). Afterwards, these
bits are encoded. The sequence of complex encoded symbols
is denoted by c = (c1, c2, ...cL). These symbols belong
to a constellation with normalized mean power. Then, this
sequence passes through an ideal time interleaver, i.e., an
interleaver with infinitely interleaving depth. This ensures
that, after deinterleaving on the receiver side, the fading pro-
cess is uncorrelated from symbol to symbol, which ensures
some degrees of diversity [41]. The sequence of symbols
at the interleaver output is denoted by x = (x1, x2, ...xL).
Finally, these symbols are stored into a buffer until the trans-
mission is enabled. For this purpose, the receiver compares
the instantaneous fading amplitude with a threshold value T .
If the fading amplitude is above T , the receiver sends an
enabler transmission command to the transmitter through a
feedback link.2 If the transmission is enabled, the symbols
pass through a base-band pulse format filter, g(t), that satis-
fies the Nyquist criterion. Then, the carrier is inserted. By the
above, the sequence of encoded, interleaved and modulated
transmitted symbols can be written as

s(t) = A<


L∑
`=1

x` g(t − `Ts) exp(i 2π fct)

 , (3)

where t denotes time, A is the amplitude of the transmitted
signal, L is the transmitted sequence length, x` is the `-th

2The feedback link is considered as error-free.
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FIGURE 2. Encoded opportunistic receiver block diagram.

encoded and interleaved symbol, g(t) is the Nyquist pulse
format with unitary energy and fc is the carrier frequency.
The received signal can be written as

r(t) = α(t)s(t)+ n(t), (4)

where α(t) and n(t) are independent stochastic processes.
Specifically, α(t) and n(t) are the fading amplitude and the
noise as a function of time.

Fig. 2 shows the receiver structure, where the complex
samples after the demodulation and deinterleaving processes
are denoted by z = (z1, z2, ...zL). Then, for convolutional and
TCM codes, a Viterbi decoder performs maximum likelihood
sequence estimation (MLSE) over these samples. MLSE cri-
terion chooses the κ-th encoded sequence that minimizes the
next cost function [43]:

Mκ =

L∑
`=1

∣∣z` − α` cκ,`∣∣2 , (5)

where cκ,` denotes the `-th symbol belonging to the κ-th
possible encoded sequence. On the other hand, an iterative
structure using a modified version of the classic maximum
a-posteriory algorithm (MAP) [33] is invoked, in order to
perform the decoding process when turbo codes are employed
in the transmitter. Finally, at the decoder output, the sequence
of estimated bits is b̂ = (b̂1, b̂2, ...b̂k ).
A detailed explanation of convolutional, TCM and turbo

encoders and decoders goes beyond the scope of this paper.
The reader can refer to [41] and [42] for more information
about their implementation in fading channels. However,
it is important to indicate that for the opportunistic scheme,
the decoder at the receiver requires channel state informa-
tion (CSI), which is considered perfect in the following.

IV. OPPORTUNISTIC TRANSMISSION PRELIMINARIES
The opportunistic transmission scheme is presented in this
section. A preliminary analysis is performed in order to pro-
vide BER expressions for uncoded systems. These expres-
sions are also used in the following section.

The main idea behind opportunistic transmission is that
users transmit only when the channel is in good condition,
i.e., a user transmit when the fading amplitude is above a
threshold T . Fig. 3 compares ordinary (non-opportunistic)
and opportunistic transmissions. Base-band symbols are con-
sidered for better understanding. In the figure, observe that
ordinary transmission is performed despite the fading ampli-
tude. On the other hand, opportunistic transmission is made

only when the fading is above T . As consequence, there are
non-transmission periods. Let p be the probability that the
instantaneous fading amplitude is below T , i.e., p is the non-
transmission probability. From (1), p can be obtained as a
function of the threshold value as

p =
∫ T

0

α

σ 2 exp
(
−
α2

2σ 2

)
dα

= 1− exp
(
−

T 2

2σ 2

)
. (6)

Consequently, the transmission probability, denoted as q, is

q = 1−p

= exp
(
−

T 2

2σ 2

)
. (7)

The Rayleigh fading conditioned on α > T is denoted
as αc. From the results of [40, Section 4.4], the PDF of αc is

f (αc) =
αc

σ 2 exp
(
−
α2c + T 2

2σ 2

)
, αc > T . (8)

One way to counteract the non-transmission periods is by
increasing the transmission rate, but this also increases the
bandwidth required. Nevertheless, the transmission rate can
be increased by increasing the modulation scheme. If the new
modulation is selected appropriately, then the original band-
width is not modified and the transmission rate of the ordi-
nary system is maintained. For better understanding observe
Fig. 3, where as example we can consider that the non-
transmission probability is p = 1/2. Hence, an opportunistic
system that modulates twice as many bits in each symbol as
the ordinary system can be used in order to compensate for
the transmission rate loss.

By the above, we can think that increasing the modulation
will affect the system performance.3 The question to answer
in this case is: Will the opportunistic system, transmitting the
same rate as an ordinary system, behave better or worse than
that ordinary system?. In order to answer it, in the numeri-
cal results shown in Section VI, it is compared the perfor-
mance of ordinary and opportunistic systems with the same
transmission rate, translated in terms of the same spectral
efficiency.

A. MEAN BIT ERROR RATE
In uncoded scenarios, the mean bit error rate (BER) of a user
employing opportunistic transmission can be obtained as

Pb =
∫
∞

T
P(b|αc)f (αc)dαc, (9)

where P(b|αc) denotes the BER conditioned on the instanta-
neous fading amplitude.

In the following, BER expressions for BPSK andM -QAM
modulations are derived.

3A greater modulation order implies higher transmission rate but the
system is more susceptible to the channel effects.
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FIGURE 3. Opportunistic transmission.

1) BPSK MODULATION
In this scenario, the BER conditioned on the instantaneous
fading amplitude is [43]

P(b|αc) =
1
2
erfc

(√
α2c
Eb
N0

)
, (10)

where erfc(x) is the complementary error function, defined
as [40]

erfc(x) =
2
√
π

∫
∞

x
exp(−y2)dy, (11)

and Eb is the received energy per bit.
Before calculate the mean BER for BPSK modulation,

we define the mean SNR per received symbol, γc, as

γc = 2σ 2 Eb
N0

log2M , (12)

where 2σ 2 is the Rayleigh fading mean power and M is
the modulation order. For BPSK, M = 2. In this case
γc = 2σ 2Eb/N0 represents the mean SNR per received bit.
By employing (7)-(12), Appendix A shows that the mean

BER for BPSK modulation is given by

Pb =
σ 2

q

[
erf

(
T
√
1+ γc
2σ 2

)
− 1

](
1+

1
γc

)− 1
2

+σ 2 erfc

(
T
√
γc

2σ 2

)
, (13)

where erf(x) denotes the error function and it is obtained as
erf(x) = 1− erfc(x).
Appendix B shows that for large x, (11) can be approxi-

mated by

erfc(x) ≈
1

x
√
π
exp

(
−x2

)
. (14)

With the above result, in the high SNR regime, (13) can be
approximated by

Pb ≈
1
2
erfc

(
T
√
γc

2σ 2

)(
1

2σ 2 + γc

)−1
. (15)

By comparing (10) with (15), note that the mean SNR
appears within the erfc(·) function in both expressions.
As consequence of that, they have a similar behavior. It means
that BER curves for opportunistic transmission, when plotted
as a function of the mean SNR, have a exponential decay-
ment.4 This suggests that opportunistic transmission strongly
mitigates the fading effects. This is verified in the numerical
results performed in Section VI.

2) M-QAM MODULATION
Considering Gray encoding, the BER conditioned on
the instantaneous fading amplitude for square M -QAM

4The exponential decayment comes from the erfc(·) function behavior.
Note that its approximation, given by (14), has an exponential form.
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modulations is [43]

P(b|αc) =
2(
√
M − 1)

√
M log2M

erfc

√α2c
ζ

Eb
N0

log2M

 , (16)

where ζ = 2(M−1)/3. From (7)-(9), (12) and (16), the mean
BER for opportunistic transmission with M -QAM modula-
tions is given by

Pb =
2(
√
M − 1)

√
M log2M

{
2σ 2

q

(
1+

ζ

γc

)− 1
2

×

[
erf

(
T
√
1+ γc/ζ

2σ 2

)
− 1

]
+ erfc

(
T

√
γc

2σ 2ζ

) .
(17)

Employing (14), (17) can be approximated by

Pb ≈
(
√
M − 1)

√
M log2M

(
2σ 2

1+ γc/ζ

)
erfc

(
T

√
γc

2σ 2ζ

)
. (18)

B. SPECTRAL EFFICIENCY
The spectral efficiency is defined as the bit rate, Rb, that
can be transmitted over a given bandwidth, B. With the
opportunistic scheme, transmissions occur with probability q.
Consequently, the bit rate is equal to Rb = q log2M/Ts bits/s.
As the bandwidth is equal to B = 1/Ts Hz, the mean spectral
efficiency is equal to

ξ =
Rb
B
= q log2M bits/s/Hz. (19)

As particular case, if q = 1, then (19) becomes the spectral
efficiency of an ordinary system, i.e., a system that transmits
all the time regardless the fading amplitude.

By the above, the non-transmission periods represent loss
of spectral efficiency. Nevertheless, it is possible to com-
pensate for this loss by increasing the modulation order.
Specifically, the modulation order can be expanded from M
to M

1
q , similar to what is done with TCM codes.

V. PERFORMANCE ANALYSIS
Expressions to evaluate the mean BER for encoded oppor-
tunistic transmission are obtained in this section. Convolu-
tional and TCM codes are considered.

A. CONVOLUTIONAL CODES SCENARIO
In convolutional codes, codewords are generated employing
linear operations into a finite state machine. In general, a con-
volutional code is represented as (n, k,m), where n is the
number of encoded bits, k is the number of message bits and
m is the total number of memories employed by the encoder.
Generally, n and k are small integers satisfying that k < n.
Moreover, as larger ism, better is the system performance and
higher is the decoding complexity [11]. The ratio between the
number of message bits and the number of encoded bits is
known as encoder rate rc = k/n. A convolutional encoder

can be represented by a generator matrix, which produces a
state diagram or a trellis [13].

1) MEAN BIT ERROR RATE
Convolutional codes performance in AWGN channel is deter-
mined by rc and by the Hamming free distance, which is
defined as [13]

dfree,H , min
{
d(c, c′) : b 6= b′

}
, (20)

where c and c′ are encoded sequences obtained from the
information sequences b and b′, respectively. In addition,
d(c, c′) denotes the Hamming distance between c and c′. The
greater dfree,H, the greater the minimum separation between
encoded sequences. Consequently, the greater is the correc-
tion capability in the decoding process.

For linear codes, it is possible to assume that the all-zero
sequence is transmitted. In this case, the BER is related to the
probability that the detector chooses another sequence differ-
ent of the all-zero sequence. Under this assumption, the mean
BER upper bound for convolutional codes in AWGN channel
is obtained as [44]

Pb <
1
k

∞∑
d = dfree,H

BdRd , (21)

with Bd = AdNd , where Ad is the number of paths with
Hamming distance d from the all-zero sequence and Nd is
the number of information bits in error in that path.Moreover,
Rd is given by [13]

Rd = Pdf

d−1∑
`=0

(
d − 1+ `

`

)
(1− Pf)` , (22)

where Pf is the mean BER in fading channels. Considering
that the encoded bits are modulated employing BPSK modu-
lation, Pf is calculated as [43]

Pf =
1
2

(
1−

√
rcγc

1+ rcγc

)
, (23)

where γc is given by (12). Finally, it is important to indi-
cate that (21) is calculated considering all possible encoded
sequences, which are compared with the all-zero sequence.

For rcγc � 1, Pf ≈ (4 rcγc)−1 and thus, Pf � 1.
As consequence, Rd ≈ Pdf

(2d−1
d

)
. In addition, the first term

in the summation of (21) is dominant. Therefore, an upper
bound for (21) is calculated as

Pb ≈
1
k
Bdfree,H

(
2dfree,H − 1
dfree,H

)(
1

4rcγc

)dfree,H
. (24)

From (24), Pb ∝ γ
−dfree,H
c . Hence, a system employing

convolutional codes in a fading channel has diversity dfree,H.
Now, the mean BER for convolutional encode opportunis-

tic transmission is calculated. For this scenario, the mean
BER upper bound can be easily obtained from the results
of Section IV and the result of (21). As this expression is a
function of the BER in fading channels, Pf, can be replaced
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by (13) but considering also the encoding rate. Hence, the new
Pf to be employed in (22), named as Pf,o, is given by

Pf,o =
σ 2

q

[
erf

(
T
√
1+ rcγc
2σ 2

)
− 1

](
1+

1
rcγc

)− 1
2

+σ 2 erfc

(
T
√
rcγc
2σ 2

)
. (25)

Consequently, the mean BER upper bound for convolutional
encoded opportunistic transmission is obtained replacing (25)
in (22) and then, this result in (21). Considering the results
of (15) and (24), this mean BER upper bound can be approx-
imated by

Pb ≈
1
k
Bdfree,H

(
2dfree,H − 1
dfree,H

)[
1
2
erfc

(
T
√
rcγc
2σ 2

)]dfree,H
×

(
1

2σ 2 + rcγc

)−dfree,H
. (26)

In the above expression, the factor in brackets is the one that
decreases more rapidly as γc increases. Therefore, this factor
defines the BER curve behavior. Thus, from (14) and (26),
the BER for convolutional encoded opportunistic transmis-
sion has an exponential decayment as γc increases.

2) CODING GAIN
The coding gain is defined as the ratio between the SNR
required by uncoded and encoded systems in order to reach
the same BER in the asymptotic region. For convolutional
codes in AWGN channel, the coding gain is given approxi-
mately by the product of the coding rate and the Hamming
free distance [13], that is

G ≈ rcdfree,H. (27)

Even though this expression is valid for AWGN channels,
the numerical results of Section VI show that (27) can also
be used for scenarios with opportunistic transmission. This is
due to the exponential decayment of the BER curves when
they are plotted as a function of the SNR.

3) SPECTRAL EFFICIENCY
For this scenario, the bit rate is Rb = 1/Tb bits/s, where
it is considered that the bit duration is equal to the symbol
duration, i.e., Tb = Ts. The minimum Nyquist bandwidth
is given by B = 1/(rcTb) Hz. As a consequence, the mean
spectral efficiency is

ξ =
Rb
B
= rc bits/s/Hz. (28)

Hence, convolutional codes expand the bandwidth.Moreover,
convolutional encoded opportunistic transmission provides a
bit rate equal to Rb = q/Tb bits/s. The minimum Nyquist
bandwidth is given by B = 1/(rcTb) Hz. Therefore, the mean
spectral efficiency for this scenario is given by

ξ =
Rb
B
= qrc bits/s/Hz. (29)

B. TRELLIS CODED MODULATION SCENARIO
TCM allows noise immunity without altering the employed
bandwidth. With this aim, the modulation order is expanding
from 2k to M ′ = 2n. A TCM encoder is comprised of a
convolutional encoder with rate rc = k/n followed by a
modulator whose constellation contains M ′ = 2n symbols.

1) MEAN BIT ERROR RATE
The TCM performance is measured in terms of the minimum
squared Euclidean distance (MSED). TheMSED between the
sequences c and c′ is calculated employing

d2free,E = min
c 6=c′ ∈C

∑
j∈η

∣∣∣cj − c′j∣∣∣2 , (30)

where C is the set of all encoded sequences and η is the set
of positions where the encoded symbol sequences c and ĉ are
different.

In order to derive an upper bound for the mean BER of
a system employing TCM in fading channels, the pairwise
error probability concept [45] can be employed. Thus, this
mean BER upper bound is obtained as

Pb ≤
∑
c∈C

∑
c′∈C

β(c, c′)P(c)P(c→ c′), (31)

where β(c, c′) is the number of bits in error appearing when
the sequence c is transmitted and the sequence c′ 6= c is
chosen by the decoder, P(c) is the a priori probability of
transmitting c and P(c→ c′) is the pairwise error probability,
that is, the probability that the decoder chooses c′ when
indeed c was transmitted. Note that (31) is calculated for
all c, c′ ∈ C.

The pairwise error probability conditioned on the instanta-
neous fading amplitudes is given by [34]

P(c→ c′|αj) ≤ exp
[
−
1
4
γc d2(c, c′)

]
, (32)

where

d2(c, c′) ,
∑
j∈η

α2j

∣∣∣cj − c′j∣∣∣2 (33)

represents the square of the Euclidean distance between the
symbol sequences c and c′, η is the set of all j for which cj 6= c′j
and αj is the fading amplitude on the j-th time interval whose
PDF is given by (1). Considering ideal time interleaving,
the random variables αj are independent and identically dis-
tributed (i.i.d) for all j. Thus, the upper bound for the pairwise
error probability can be obtained by averaging (32). Hence,
we have that

P(c→ c′) ≤
∫
∞

0
. . .

∫
∞

0
P(c→ c′|αj)

∏
j∈η

f (αj)dαj. (34)

Solving (34), the upper bound of the pairwise error probabil-
ity is given by

P(c→ c′) ≤

∏
j∈η

1
4
γc

∣∣∣cj − c′j∣∣∣2
−1 . (35)
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Finally, substituting (35) in (31), we get the upper bound of
the mean BER for TCM codes, that can be written as

Pb ≤
∑
c∈C

∑
c′∈C

β(c, c′)P(c)

∏
j∈η

1
4
γc

∣∣∣cj − c′j∣∣∣2
−1 . (36)

In order to derive an upper bound for the mean BER of
TCM encoded opportunistic transmission we rewrite (34) as

P(c→ c′) ≤
∫
∞

T
. . .

∫
∞

T
P(c→ c′|αc,j)

∏
j∈η

f (αc,j)dαc,j

≤

∫
∞

T
. . .

∫
∞

T
exp

−1
4
γc
∑
j∈η

α2c,j

∣∣∣cj − c′j∣∣∣2


×

∏
j∈η

f (αc,j)dαc,j, (37)

where f (αc,j) is given by (8) andwe have employed the results
of (32) and (33). Because αc,j are i.i.d. random variables
∀j, (37) has a closed-form given by

P(c→ c′) ≤
∏
j∈η

1
qj

exp
[
−

T 2

σ 2

(
1+ 1

4 γc

∣∣∣cj − c′j∣∣∣2)]
1+ 1

4 γc

∣∣∣cj − c′j∣∣∣2 .(38)

Substituting (38) in (31), we get the upper bound for the
mean BER of TCM encoded opportunistic transmission, that
is written as

Pb ≤
∑
c∈C

∑
c′∈C

β(c, c′)P(c)

×

∏
j∈η

1
qj

exp
[
−

T 2

σ 2

(
1+ 1

4γc

∣∣∣cj − c′j∣∣∣2)]
1+ 1

4γc

∣∣∣cj − c′j∣∣∣2 .

(39)

Note that (39) depends on the Euclidean distance between
the symbols of two different encoded sequences. The M -ary
trellis of the code can be used to calculate these distances.

2) CODING GAIN
The coding gain is given approximately by the ratio between
the squared Euclidean free distance (d2free,E) of the expanded
constellation and the minimum square distance of the original
constellation [34], that is

G ≈
d2free,E
d2min

. (40)

3) SPECTRAL EFFICIENCY
The bit rate employing TCM codes is Rb = 1

Ts
log2M

bits/s, where M = 2k . The minimum Nyquist bandwidth is
B = 1/Ts Hz. As a consequence the mean spectral efficiency
is

ξ =
Rb
B
= log2M bits/s/Hz. (41)

FIGURE 4. TCM encoder structure.

Therefore, TCM does not expand the bandwidth. For better
understanding observe Fig. 4.

Finally, TCM encoded opportunistic transmission provides
a bit rate equal to Rb =

q
Ts
log2M bits/s and the minimum

Nyquist bandwidth is given byB = 1/Ts Hz. Hence, themean
spectral efficiency is given by

ξ =
Rb
B
= q log2M bits/s/Hz, (42)

which expands the bandwidth, except if the modulation order
employed is equal to M

1
q .

C. TURBO CODES SCENARIO
In the transmitter, turbo codes are generated employing a
parallel concatenation of two recursive systematic convo-
lutional (RSC) codes, with an interleaver between the two
encoders. At the receiver, the iterativeMAP is used in order to
perform the decoding process. In particular, MAP algorithm
provides not only the estimated bit sequence, but also the
probabilities for each bit that it has been decoded correctly.
This is essential for the iterative decoding of turbo codes [35].

Finding expressions to evaluate the BER of systems
employing turbo codes can become quite intricate. For this
reason, several works have evaluated their BER based on
simulations [36]–[39]. Moreover, in the literature, it is known
that the number of iterations performed in the MAP detec-
tor directly affects the system performance. In this sense,
the performance of opportunistic transmission with turbo
codes is evaluated as a function of the number of iterations
via simulations in Section VI.

VI. NUMERICAL RESULTS
In this section, we assess the performance of the pro-
posed scheme in some representative scenarios. Simulations
employing the Monte Carlo method are carried out in order
to verify the accuracy of the derived expressions.

The simulations have been performed employing the error
correcting codes detailed on Table 2. In addition, the fading
mean power has been normalized, i.e., 2σ 2

= 1.
Fig. 5 shows the mean BER as a function of Eb/N0 for

uncoded and encoded ordinary systems (non-opportunistic)
and for uncoded and encoded opportunistic systems with
BPSK modulation. Encoded scenarios use the code C1
of Table 2. The Hamming free distance for this code is
dfree,H = 5. For opportunistic transmission scenarios,
the transmission probability is set to q = 1/2. Note
the accuracy between theoretical and simulation results.
In particular, BER curves for ordinary transmissions are
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TABLE 2. Employed Error Correcting Codes.

FIGURE 5. Mean BER as a function of Eb/N0 for different scenarios
considering BPSK modulation. Encoded scenarios employ convolutional
encoding via the code C1. Opportunistic transmission is applied with
q = 1/2.

obtained employing T = 0, or equivalently, q = 1. More-
over, some curves are accurate only in the low BER region
because they are upper bounds. Note that the BER curve for
the uncoded non-opportunistic scenario has a linear decay-
ment as Eb/N0 increases. In particular, in the literature it is
known that the diversity is equal to 1 for this scenario [43].
On the other hand, note that the BER curve for the opportunis-
tic system has an exponential decayment as Eb/N0 increases.
This can be verified in the BER expression given by (13)
and with more detail in its approximation, given by (14),
where the erfc(·) function has the exponential behavior. This
can be verified in its approximate expression, which is given
by (15). Therefore, opportunistic transmission presents the
best performance. Obviously, encoded systems have better
performance than uncoded ones. Compare uncoded with
encoded opportunistic results in the low BER region. Notice
that the second scenario requires approximately 4.5 dB
less Eb/N0 in order to guarantee the same BER than the
first scenario. The expected coding gain, given by (27),
is approximately 4 dB. This shows that the aforementioned
expression can also be used for opportunistic transmission
scenarios due to the BER curves behavior. As a particular
case, the uncoded scenarios have a slightly lower BER than
the encoded ones in the low Eb/N0 region. To explain this
behavior, it is important to indicate that to make a fair com-
parison, the encoded and uncoded systems must guarantee
the same transmission power for each uncoded bit. Thus,

FIGURE 6. Mean BER as a function of Eb/N0 for different scenarios
considering QPSK modulation. Encoded scenarios employ TCM encoding
via the code C2. Opportunistic transmission is applied with q = 1/2.

the encoded systems transmit a lower power per bit (encoded
or uncoded). As a result, it is observed that the encoded
systems have a performance slightly lower than that of the
uncoded systems in the region of very low Eb/N0. Specifi-
cally, the code has not yet started to work properly in this
region. However, this is a particular case, as this may change
depending on the type of code used. Thus, more powerful
codes may not present this type of behavior when compared
to uncoded systems. Finally, another interesting scenario to
note is that uncoded opportunistic system has better perfor-
mance than encoded ordinary systems. It is relevant to state
that both systems have the same mean spectral efficiency
of ξ = 1/2 bits/s/Hz. In addition, uncoded opportunistic
systems are superior to encoded ordinary systems not only
in performance but they also have smaller complexity imple-
mentation.

Fig. 6 is similar to the previous figure, but in this case
4-QAM modulation (QPSK) is used. The encoded systems
employ TCMwith the code C2 of Table 2 and the opportunis-
tic transmission applies q = 1/2. For the code employed,
d2free,E = 10 and for QPSK modulation, d2min = 4. Hence,
from (40), the expected coding gain is G ≈ 4 dB. In the fig-
ure, note that encoded opportunistic system requires approx-
imately 4.7 dB less Eb/N0 in order to guarantee the same
BER than uncoded opportunistic system. Moreover, notice
that uncoded opportunistic system has better performance
than encoded ordinary one although both systems have the
same spectral efficiency, which is ξ = 1 bits/s/Hz. In a
similar way to what was observed in Fig. 5, notice in Fig. 6
that the BER curves for the opportunistic case present expo-
nential decayment as Eb/N0 increases. It is also verified
in (15), (18), (26) and (39). In particular, the erfc(·) function
has an exponential decayment in these expressions. This
behavior is not observed in other opportunistic transmis-
sion approaches [31], [32], where the systems gains some
degrees of diversity, but the BER curves maintain a linear
decayment whenEb/N0 increases. Hence, these schemesmay
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FIGURE 7. Mean BER as a function of Eb/N0 for different scenarios
considering 16-QAM modulation. Encoded scenarios employ TCM
encoding via the code C3. Opportunistic transmission is applied with
q = 1/4.

require a greater Eb/N0 to guarantee the same BER than our
proposal.

Fig. 7 shows the mean BER as a function of the
Eb/N0 ratio for uncoded and encoded ordinary systems and
for uncoded and encoded opportunistic systems employing
16-QAM modulation. The encoded scenarios use TCM with
the codeC3 of Table 2. The opportunistic transmission applies
a transmission probability q = 1/4. Note that theoretical
curves are accurate with simulation results. Even when q
and rc decrease, the uncoded opportunistic system maintains
better performance than the encoded ordinary system. While
the mean BER curve of the uncoded opportunistic system
decays exponentially, the mean BER curve of the encoded
ordinary system decays linearly. Notice that both systems
present the same spectral efficiency of ξ = 1 bits/s/Hz.
Finally, observe that the encoded opportunistic system has the
best performance. However, the mean spectral efficiency for
this scenario is ξ = 1/4 bits/s/Hz.

In order to make a fair comparison, systems with the
same spectral efficiency are considered in Fig. 8, which com-
pares the BER curves obtained for different scenarios with
spectral efficiency ξ = 1 bits/s/Hz. The systems consid-
ered are uncoded ordinary with BPSK modulation, uncoded
opportunistic employing QPSK modulation and q = 1/2,
encoded TCM ordinary employing the code C2 with QPSK
modulation and encoded TCM opportunistic employing the
code C4, 16-QAM modulation and q = 1/3. For simplicity,
only simulation results have been plotted. The fact that all
systems have the same spectral efficiency implies that the
ratio between the transmitted bit rate and the used bandwidth
is maintained in all scenarios. Although the proposed oppor-
tunistic scheme enables transmission only when the fading
amplitude is above a threshold value, the transmitted bit rate
may bemaintained by increasing themodulation order, which
ensures that the bandwidth is not increased. In the results,
note that the encoded opportunistic scenario presents the best
performance. Observe also that the uncoded opportunistic

FIGURE 8. Mean BER as a function of Eb/N0 for different scenarios with
spectral efficiency ξ = 1 bits/s/Hz.

FIGURE 9. Mean BER as a function of Eb/N0 in AWGN and fading
channels for uncoded and encoded ordinary and opportunistic
transmissions.

system has better performance than both ordinary systems.
Therefore, from a performance viewpoint, the encoded
opportunistic system can be considered as the best option.
However, considering the complexity-performance trade-off,
the uncoded opportunistic approach is an interesting option
because it requires only 3.5 dB more Eb/N0 than the encoded
opportunistic system in order to guarantee the same BER, but
with lower implementation complexity.

The derived BER expressions and the above numerical
results show the exponential behavior of the BER curves for
opportunistic systems when they are plotted as a function of
Eb/N0. This behavior occurs for both uncoded and encoded
systems operating in fading channels. This shows that the fad-
ing effects are strongly attenuated. Consequently, opportunis-
tic systems in fading channels exhibit similar performance to
ordinary systems that operate in AWGN channels. To corrob-
orate this, Fig. 9 shows the following scenarios: uncoded ordi-
nary system inAWGNchannel employingBPSKmodulation,
encoded TCM ordinary system in AWGN channel employing
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FIGURE 10. Mean BER as a function of Eb/N0 for turbo encoded systems,
via the code C5, employing ordinary and opportunistic transmissions,
with q = 1/2, and parameterized by the number of iterations performed
by MAP.

the code C2, uncoded opportunistic system in a Rayleigh
fading channel employing BPSK modulation with q = 1/2
and encoded TCM opportunistic system in Rayleigh fading
channel employing the code C2 and q = 1/2. Notice the
exponential behavior of all the BER curves. As result of this
similarity, a comparable coding gain is observed for AWGN
and fading scenarios. For the chosen code, it is obtained
d2free,E = 10 and for QPSK the minimum square distance is
d2min = 4. Hence, from (40), the coding gain is G ≈ 4.0 dB.
In the figure, it is expected that at one point the BER curve of
the encoded ordinary system in AWGN and the BER curve of
the opportunistic encoding system in fading channel intersect
and thus, the first system will be better, similar to what is
observed in the uncoded scenario.

Finally, in order to show that the proposed scheme can be
used with other types of error correcting codes, Fig. 10 shows
the mean BER as a function of Eb/N0 for turbo encoded
systems. In this figure, the code C5 of Table 2 was used
for ordinary and opportunistic transmissions parameterized
by the number of iterations performed by the MAP detector.
As stated earlier, it is not straightforward to obtain theoretical
results for turbo codes because of the iterative nature of the
detector. For this reason, only simulations are presented in
the figure. In the results, note again the advantages of the
opportunistic transmission scheme, since it is possible to
obtain a lower BER even with a lower complexity, that is,
with a lower number of iterations in the detector, the oppor-
tunistic transmission ensures a lower BER than the ordinary
transmission. The behavior of the BER curves of this type
of codes, when they are plotted as a function of the Eb/N0 is
quite particular. Thus, it is not observed that the curves change
their diversity, or equivalently their slope when the Eb/N0
increases, as happens with convolutional or TCM codes in
ordinary transmissions. Rather, with turbo codes, the BER
curves decay rapidly as Eb/N0 increases. Nevertheless, it is
interesting to observe that with opportunistic transmission,

the decayment of the BER curves seems similar to that of
the ordinary scenario but with a significant gain in terms
of Eb/N0 and how it was indicated, this implies that fewer
iterations can be performed in the MAP detector.

VII. CONCLUSION
In this paper, a transmission scheme combining error cor-
recting codes with opportunistic transmission is proposed.
The main idea behind this scheme is that encoded symbols
are transmitted only when the fading amplitude is above a
threshold. The performance of this scheme is analyzed in
terms of the mean BER. Closed-form upper bound expres-
sions were derived for convolutional and TCM codes. The
expressions are very tight and they are in total concordance
with the simulation results. Moreover, turbo codes were also
employed in some simulations. In this case, it was observed
that opportunistic transmission can highly reduce the detector
complexity since a lower BER can be obtained performing
fewer iterations in the MAP detector than in the ordinary
transmission scenario.

Results showed that uncoded and encoded opportunistic
systems are superior to uncoded and encoded ordinary ones.
In addition, it was observed that uncoded opportunistic sys-
tems are superior to encoded ordinary systems. These results
were obtained by guaranteeing the same spectral efficiency
for all the systems. It is relevant to state that the implemen-
tation of opportunistic systems is much less complex than
encoded ordinary systems. In addition, the rapid decayment
of the BER curves suggests that fading effects are highly
attenuated. Moreover, for convolutional and TCM codes, it is
observed that the coding gain of encoded opportunistic sys-
tems over uncoded opportunistic systems in fading channel is
similar to the coding gain of encoded ordinary systems over
uncoded ordinary systems in AWGN channel.

At this point, some future research proposals in addition
to the work developed are provided. In this work, it has been
considered an error-free feedback link. However, depending
on how the feedback link is transmitted if via Time Divi-
sion Duplex (TDD), or Frequency Division Duplex (FDD),
opportunistic transmission may be more or less susceptible
to the undesired effects of fading in the feedback channel.
In addition, another aspect to be analyzed is that channelsmay
vary rapidly, so feedback channels can have some difficulties.
Therefore, to look for mechanisms that allow opportunistic
transmission to be used in these type of channels is desirable.
Finally, while most current cellular systems use turbo codes,
the trend for new cellular systems is to use the the so-called
polar codes [22]. Thus, another future work would consists
of evaluating the performance of opportunistic systems using
this type of coding.

APPENDIX A
OPPORTUNISTIC TRANSMISSION MEAN BER
EMPLOYING BPSK MODULATION
In this section, the mean BER of the uncoded opportunis-
tic transmission considering BPSK modulation is derived.
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From (9) and (10), this mean BER is obtained as

Pb =
∫
∞

T

1
2
erfc

(
α2c
Eb
N0

)
αc

σ 2 exp
(
−
α2c + T 2

2σ 2

)
dαc

= q
∫
∞

T

1
2
erfc

(
α2c
Eb
N0

)
αc

σ 2 exp
(
−
α2c

2σ 2

)
dαc, (43)

where (7) has been employed. The above integral has a
closed-form and as a consequence, (43) can be rewritten as

Pb = σ 2
(
1+ 2σ 2 Eb

N0

)− 3
2
{
1
q

√
2σ 2 Eb

N0

(
1+ 2σ 2 Eb

N0

)

× erf

(
T

√
1

2σ 2 +
Eb
N0

)
+

√
1+ 2σ 2 Eb

N0

×

[(
1+ 2σ 2 Eb

N0

)
erfc

(
T

√
Eb
N0

)

−
1
q

√
2σ 2 Eb

N0

(
1+ 2σ 2 Eb

N0

) ]}
, (44)

where (7) has been employed and erf(x) denotes the error
function, which is given by erf(x) = 1 − erfc(x). The mean
SNR has been defined in (12). Employing this definition,
with M = 2 for BPSK, and after some simplifications, (44)
can be rewritten as (13), which is the mean BER expression
for uncoded opportunistic transmission schemes considering
BPSK modulation.

APPENDIX B
ASYMPTOTIC APPROXIMATION FOR THE
COMPLEMENTARY ERROR FUNCTION
An approximation for the complementary error function,
defined by (11), is obtained in this appendix considering the
high SNR region.

Unfortunately, the integral defined by (11) cannot be eval-
uated in closed form in terms of elementary functions. How-
ever, by employing a recursive process, it is possible to write
the complementary error function as a series. Belowwe detail
some steps of this process.

Rewriting (11) as

erfc(x) =
2
√
π

∫
∞

x

1
y
exp(−y2)y dy︸ ︷︷ ︸

I

, (45)

it is possible to integrate by parts by letting u = 1/y,
du = −y−2, dv = exp(−y2)ydy and v = − exp(−y2)/2.
Therefore,

I = uv

∣∣∣∣∞
x
−

∫
∞

x
vdu

=
1
2x

exp
(
−x2

)
−

1
2

∫
∞

x

1
y2

exp
(
−y2

)
dy

=
1
2x

exp
(
−x2

)
−

1
2

∫
∞

x

1
y3

exp
(
−y2

)
ydy︸ ︷︷ ︸

J

. (46)

FIGURE 11. Complementary error function approximation.

Similarly, J can be integrated by parts by letting u = 1/y3,
du = −3y−4, dv = exp(−y2)ydy and v = − exp(−y2)/2.
Hence,

J =
1
2x3

exp
(
−x2

)
−

3
2

∫
∞

x

1
y4

exp
(
−y2

)
dy (47)

With (46) and (47), (45) is rewritten as

erfc(x) =
1
√
π

[
1
x
exp

(
−x2

)
−

1
2x3

exp
(
−x2

)
+
3
2

∫
∞

x

1
y4

exp
(
−y2

)
dy
]
. (48)

Repeating the previous process an infinite number of times
yields

erfc(x) =
1

x
√
π
exp

(
−x2

)
×

[
1+

∞∑
κ=1

(−1)κ
1× 3× 5× · · · × (2κ − 1)

(2x2)κ

]
.

(49)

For large x, the first term in the above series is the dominant.
Hence, this term can be considered as an asymptotic approx-
imation for the complementary error function, that is given
by (14). To prove this, Fig. 11 shows the exact erfc(x) function
together with approximations considering 1 and 10 terms of
the series given by (49). A region has been amplified in order
to observe the results better.
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