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ABSTRACT Let G = (VG,EG) be a simple and connected graph. The eccentric connectivity index of G
is represented as ξ c(G) =

∑
x∈VG degG(x)ecG(x), where degG(x) and ecG(x) represent the degree and the

eccentricity of x, respectively. The eccentric adjacency index ofG is represented as ξad (G) =
∑

x∈VG

SG(x)
ecG(x)

,

where SG(x) is the sum of degrees of neighbors of x. In this paper, we determine the trees with the smallest
eccentric connectivity index when bipartition size, independence number, and domination number are given.
Furthermore, we discuss the trees with the largest eccentric adjacency index when bipartition size, matching
number, and independence number are given.

INDEX TERMS Eccentric connectivity index, eccentric adjacency index, bipartition, matching number,
independence number, domination number.

I. INTRODUCTION
Let G = (VG,EG) be a simple and connected graph where
VG and EG represent the vertex and edge set respectively.
The degree of a vertex x in G, symbolized by degG(x), is the
number of vertices linked to x. A vertex x is labeled as a
leaf or a pendent vertex if degG(x) = 1. Let PG represents
the set of all pendent vertices of G and PG(x) represents
the set of all pendent vertices adjacent at x ∈ VG . The
neighborhood 0G(x) of x ∈ VG is the set of vertices linked
to x in G. The length of a smallest path between two vertices
x, y in G is said to be the distance among x and y and is
represented by dG(x, y). The eccentricity ecG(x) of x ∈ VG is
characterized by ecG(x) = max

y∈VG
dG(x, y). The radius r(G) and

the diameter d(G) of G are represented by r(G) = min
x∈VG

ecG(x)

and d(G) = max
x∈VG

ecG(x), respectively. Let SG(x) be the sum

of degrees of linked vertices of the vertex x in G. A path Pn is
an arrangement of n distinct vertices such that two vertices
are linked if they are sequent in this arrangement. A path
consisting of vertices x1, x2, . . . , xn such that xi is linked to
xi+1 is written by x1x2 . . . xn and is called x1, xn-path. The
vertices x1 and xn are the end vertices and x2, x3, . . . , xn−1
are the internal vertices of the path x1x2 . . . xn. Two paths are
said to be internally disjoint paths if they do not contain any
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common internal vertex. Also, two paths are edge-disjoint if
they do not contain a common edge. The diametrical path
of G is the path of length d(G). A chemical tree is a graph-
theoretical representation of acyclic chemical structures.
A tree with n − 1 pendent vertices and a vertex with n − 1
degree is said to be a star and is symbolized by Sn.
Let G be a bipartite graph. Then VG has two unique parti-

tioned subsets V1 and V2 such that every individual edge has
one end vertex in V1 and other end vertex in V2. If |V1| = r
and |V2| = s then (r, s) is the bipartition size of G, where
r ≤ s and r + s = n.
A matching M in G is the subset of edge set of G as long

as any two edges of M do not have a same vertex in G.
A matching M is called a maximum matching if |M | ≥ |M1|

for any other matchingM1 in G. The matching number of G is
the cardinality of the largest matching in G and is represented
by mG . If w ∈ VG is an end vertex of an edge inM , then w is
recognized as M -saturated. A matching M is recognized
as a perfect matching in G if every single vertex of G is
M -saturated and G is said to be a conjugated graph if it has a
perfect matching.
A subset I ⊆ VG is represented as an independent set

of G if vertices of I are pairwise not linked. The independence
number of G is the maximum number of vertices in I and is
denoted by αG .
A subset A ⊆ VG is a dominating set of G if for every

single vertex u1 ∈ VG \ A, there is a vertex u2 ∈ A such that
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u1u2 ∈ EG . The domination number is the number of vertices
in the smallest dominating set of G and is denoted by γG .
Chemical graph theory is the part of mathematical chem-

istry and this theory plays a major role in the field of chemical
science. A molecular graph G is an illustration of the struc-
tural formula of a chemical compound in respects to graph
theory. The vertices and edges of G be equivalent to atoms
and chemical bonds, respectively. A single quantity that can
be given to distinguish some property of G of a molecule is
recognized to be a topological index. Recently, there has been
developing attraction in the area of computational chemistry
in topological indices. The topological indices are mainly
used in nonempirical QSPR and QSAR. There are many
classes of topological indices; some of them are distance
based, degree based, distance degree based and eccentricity
based indices of graphs.

Recently, many eccentricity based topological indices have
been interpreted; one of them is the eccentric connectiv-
ity index, which was proposed by Sharma et al. [15]. The
eccentric-connectivity index is interpreted as:

ξ c(G) =
∑
x∈VG

degG(x)ecG(x). (1)

The eccentric connectivity index has been exhibited to
give an upper ranking of characterization of pharmaceutical
properties and furnish leads to the growth of safe and useful
anti-HIV compounds [4].

The eccentric adjacency index [5] is the variation of eccen-
tric connectivity index. It is interpreted as:

ξad (G) =
∑
x∈VG

SG(x)
ecG(x)

.

Morgan et al. [13] computed sharp bounds of ξ c of graphs
with respect to order and also bounds for trees. In 2012,
Zhang et al. [19] gave lower bounds of eccentric connectivity
index in the form of size of graphs with a given diameter.
Later on, Zahng et al. [20] determined the largest eccentric
connectivity index of n-vertex graphs with m links, where
(n ≤ m ≤ n+4). Zhou et al. [21] derived bounds for eccentric
connectivity index in order of graph parameters. Relationship
of eccentric connectivity index and eccentric adjacency index
has been researched by Gupta et al. [9]. Ilić et al. [12] derived
ξ c of trees with a fixed largest vertex degree. For additional
studies on topological indices with given parameters (bipar-
tition, domination number, independence number, etc) we
refer [2], [3], [6]–[8], [10], [14], [16], [17] to the readers.

Motivated by the above statements, it is quite natural for
us to carry on the investigation on the eccentric connec-
tivity index and the eccentric adjacency index with some
given parameters. This article is structured as: In Section II,
we derive the trees with the smallest eccentric connectivity
index and the largest eccentric adjacency index among the
n-vertex trees with a given bipartition. In Section III, we find
the trees with the smallest eccentric adjacency index and
the largest eccentric adjacency index among n-vertex trees
with fixed matching number and independence number.

FIGURE 1. The graph T (n, r , s).

In Section IV, we derive the trees with the smallest eccentric
connectivity index among n-vertex trees with domination
number.

II. ECCENTRIC CONNECTIVITY INDEX AND THE
ECCENTRIC ADJACENCY INDEX OF TREES
WITH A (r , s)-BIPARTITION
Let T (n; r, s) be the set of all n-vertex trees, every one of
which has a (r, s)-bipartition, where r ≤ s and r + s = n.
Note that T (n; 1, n−1) = {Sn}. Let T (n, r, s) be the n-vertex
tree acquired by connecting r − 1 and s− 1 pendent vertices
to the two vertices of P2, respectively, where 2 ≤ r ≤ s and
r+ s = n. The graph T (n, r, s) is depicted in Figure 1. In this
section, we find the tree with smallest eccentric connectivity
index in T (n; r, s) and also determine the tree with largest
eccentric adjacency index in T (n; r, s).

In Lemma 1, we establish a new tree in T (n; r, s) from
a given tree in T (n; r, s) such that the new tree has smaller
eccentric connectivity index and larger eccentric adjacency
index.
Lemma 1: Let T ∈ T (n; r, s) with uv, vw ∈ ET ,

degT (u) ≥ 2 and 0T (w) = {v,w1,w2, . . . ,wt }, where
w1,w2, . . . ,wt ∈ PT (w), t ≥ 1 and also w1,w2, . . . ,wt
be the end vertices of a diametrical path in T . Construct
a new tree T1 from T as T1 = (T − {ww1, . . . ,wwt }) ∪
{uw1, . . . , uwt }. Then ξ c(T1) ≤ ξ c(T ) and ξad (T1) ≥ ξad (T ).

Proof: By the construction of T1, it is obvious that
T1 ∈ T (n; r, s). Let Tv be the component of T − {u,w}
which includes the vertex v and take x ∈ PT (w), define
A = {y ∈ VT | dT (x, y) = ecT (y)}. It is natural to see that for
any x ∈ VT \ (A ∪ PT (w)), we have

ecT1 (x) = ecT (x). (2)

• If ecTv (v) = 2 then for any y ∈ A, we have
ecT1 (y) = ecT (y).

• If ecTv (v) ∈ {0, 1} then there are some vertex z ∈ VT
such that dT1 (y, z) = ecT1 (y), for any y ∈ A. There are
two possibilities: either z = w or z ∈ VT \ {w}. If z = w
then we have

ecT1 (y) = dT1 (y,w) = dT (y,w) = ecT (y)− 1. (3)

Now if z ∈ VT \ {w} then we have

ecT1 (y) = dT1 (y, z) = dT (y, z) ≤ ecT (y). (4)

Note that ecT (x) = ecT (w)+ 1 for any x ∈ PT (w). Therefore
from (2)-(4), we get

ecT1 (x) = ecT1 (u)+ 1 ≤ ecT (u)+ 1. (5)
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Case I: By the construction of T1, it is easily seen that

degT1 (y) = degT (y), ∀ y ∈ VT \ {u,w}. (6)

Also, the degrees of vertices u and w are given by

degT1 (w) = degT (w)− t = 1, degT1 (u) = degT (u)+ t.

(7)

Thus from (2)-(7), we obtain

ξ c(T1)− ξ c(T ) = ecT1 (u) degT1 (u)− ecT (u) degT (u)

+ecT1 (w) degT1 (w)− ecT (w) degT (w)

+

∑
x∈PT (w)

ecT1 (x) degT1 (x)

−

∑
x∈PT (w)

ecT (x) degT (x)

≤ ecT (u)(degT (u)+ t)−ecT (u) degT (u)

+ecT (w)(degT (w)− t)−ecT (w) degT (w)

+

∑
x∈PT (w)

(ecT (u)+ 1) degT (x)

−

∑
x∈PT (w)

(ecT (w)+ 1) degT (x)

= t ecT (u)−t ecT (w)+t ecT (u)− t ecT (w)

= 2t(ecT (u)− ecT (w)).

Note that ecT (u) ≤ ecT (w), equality holds if d(T ) = 4.
Therefore ξ c(T1) ≤ ξ c(T ).
Case II: By the construction of T1, we have

ST1 (y) = ST (y), ∀ y ∈ VT \ {u,w}. (8)

Also, the sum of the degrees of neighbor vertices of v in T1 is
given by

ST1 (v) =
∑

x∈0T (v)\{u,w}

degT1 (x)+ degT1 (w)+ degT1 (u)

=

∑
x∈0T (v)\{u,w}

degT (x)+ (degT (w)− t)

+(degT (u)+ t)

= ST (v). (9)

Also

ST1 (u) = ST (u)+ t, ST1 (w) = ST (w)− t

ST1 (x) = ST (x)+ t, ∀ x ∈ 0T (u) \ {v}. (10)

Note that ST (x) = degT (w) = t + 1 and given that
degT (u) ≥ 2, for any x ∈ PT (w). Therefore we have

ST1 (x) = degT1 (u) = degT (u)+ t ≥ 2+ t

> degT (w) = ST (x). (11)

Thus from (2)-(5) and (8)-(9), we obtain

ξad (T1)− ξad (T )

=
ST1 (v)
ecT1 (v)

−
ST (v)
ecT (v)

+
ST1 (w)
ecT1 (w)

−
ST (w)
ecT (w)

+

∑
x∈PT (w)

ST1 (x)
ecT1 (x)

−

∑
x∈PT (w)

ST (x)
ecT (x)

+

∑
x∈0T (u)\{v}

ST1 (x)
ecT1 (x)

−

∑
x∈0T (u)\{v}

ST (x)
ecT (x)

≥
ST (v)
ecT1 (v)

−
ST (v)
ecT (v)

+
ST (w)− t
ecT (w)

−
ST (w)
ecT (w)

+

∑
x∈PT (w)

ST (x)
ecT (x)

−

∑
x∈PT (w)

ST (x)
ecT (x)

+

∑
x∈0T (u)\{v}

ST (x)+ t
ecT (x)

−

∑
x∈0T (u)\{v}

ST (x)
ecT (x)

=
t

ecT (u)
−

t
ecT (w)

+

∑
x∈0T (u)\{v}

t
ecT (x)

.

Note that ecT (u) ≤ ecT (w), equality holds if d(T ) = 4.
Therefore ξad (T1) ≥ ξad (T ). �
Applying Lemma 1 repeatedly yields the following

theorem.
Theorem 1: The tree T (n, r, s) is the unique tree in

T (n; r, s) which has the smallest eccentric connectivity
index among trees in T (n; r, s), where n ≥ 3 and
2 ≤ r ≤ s.

Proof: Let T ∈ T (n; r, s) be an n-vertex tree. If T �
T (n, r, s) then there is a path uvw in T with degT (u) ≥ 2
and 0T (w) = {v,w1,w2, . . . ,wt }, where w1,w2, . . . ,wt ∈
PT (w), t ≥ 1 and also w1,w2, . . . ,wt be the end vertices
of a diametrical path in T . By using Lemma 1, we construct
a tree form T as T1 = (T − {ww1, . . . ,wwt } that satisfies
ξ c(T1) ≤ ξ c(T ). Now if T1 � T (n, r, s) then there is
a path u′v′w′ in T1 with degT1 (u

′) ≥ 2 and 0T1 (w
′) =

{v′,w′1,w
′

2, . . . ,w
′
t }, where w

′

1,w
′

2, . . . ,w
′
t ∈ PT1 (w

′), t ≥ 1
and also w′1,w

′

2, . . . ,w
′
t be the end vertices of a diametri-

cal path in T1. By applying Lemma 1, we construct a tree
from T1 as T2 = (T1 − {w′w′1, . . . ,w

′w′t } that satisfies
ξ c(T2) ≤ ξ c(T1). Therefore by using repeatedly Lemma 1
on diametrical paths in T we obtain a sequence of trees in
T (n, r, s) with smaller eccentric connectivity index such that
ξ c(T ) ≥ ξ c(T1) ≥ · · · ≥ ξ c(Tk ), where Tk ∼= T (n, r, s). This
shows that T (n, r, s) has the smallest eccentric connectivity
index among trees in T (n, r, s). �
By simple determining and using Theorem 1, we acquire

following result.
Corollary 1: Let T ∈ T (n; r, s) with 2 ≤ r ≤ s and r +

s = n. Then ξ c(T ) ≤ 5n − 6 with equality if and only if
T ∼= T (n, r, s).
By the definition of eccentric adjacency index and a similar

interpretation given in Theorem 1, we can find the extremal
tree with largest eccentric adjacency index in T (n; r, s) in the
next theorem.
Theorem 2: The tree T (n, r, s) is the unique tree in

T (n; r, s) that has the largest eccentric adjacency index
among trees in T (n; r, s), where n ≥ 3 and 2 ≤ r ≤ s.
By simple assessment and using Theorem 2, we acquire

next result.
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FIGURE 2. The graph Sn,m.

Corollary 2: Let T ∈ T (n; r, s) be an n-vertex tree with
2 ≤ r ≤ s and r + s = n. Then ξad (T ) ≤ 1

3 ((r + 1)2 + (s+
1)2 − 5) with equality if and only if T ∼= T (n, r, s).

III. ECCENTRIC CONNECTIVITY INDEX AND ECCENTRIC
ADJACENCY INDEX OF TREES WITH FIXED MATCHING
NUMBER AND INDEPENDENCE NUMBER
Let T (n,m) be the set of all n-vertex trees with a fixed
matching number m and T (n, α) be the set of all the n-vertex
trees with independence number α. If m = 1, then T is a star
Sn with ξ c(Sn) = 3(n − 1) and ξad (Sn) = n2−1

2 for n ≥ 3.
Let Sn,m ∈ T (n,m) be a tree acquired from star Sn−m+1
by attaching a pendent edge to each m − 1 pendent vertices
in Sn−m+1. The graph Sn,m is shown in Figure 2.
In this section, we derive the smallest eccentric connec-

tivity index of trees in T (n,m) and T (n, α). Also we find
the largest eccentric adjacency index of trees in T (n,m)
and T (n, α).

The following lemmas present the classic properties of
a tree with maximum matching m and these lemmas are
beneficial in the proofs of main results.
Lemma 2 Hou and Li [11]: Let T ∈ T (2m,m) be a tree

with m ≥ 3. Then T contains at least two pendent vertices
such that they are linked to the degree 2 vertices, respectively.
Lemma 3 Hou and Li [11]: Let T ∈ T (n,m) be a tree

with m ≥ 3 and n = 2m + 1. Then T contains a pendent
vertex linked to a degree 2 vertex.
Lemma 4 Hou and Li [11]: Let T ∈ T (n,m) be a tree

with n > 2m and m ≥ 3. Then there exists a m-matching
M and u ∈ PT such that u does not M-saturated.
Theorem 3 Xu et al. [18]: Let T ∈ T (n,m) be a tree with

n ≥ 2m and m ≥ 3. Then we have ξ c(T ) ≥ 5n+ 2m− 7 with
equality if and only if T ∼= Sn,m.
For an n-vertex tree T , it is widely known that α +m = n.

By Theorem 3, it results that
Theorem 4: Let T ∈ T (n, α) be an n-vertex tree with α ≤

n − 3. Then we have ξ c(T ) ≥ 7n − 2α − 7 with equality if
and only if T ∼= Sn,n−α .
Theorem 5 Akhter and Farooq [1]: Let T ∈ T (2m,m) be

an n-vertex tree with m ≥ 3. Then ξad (T ) ≤
1
6
(2m2

+

11m− 8), with equality if and only if T ∼= S2m,m.
Theorem 6: Let T ∈ T (n,m) be an n-vertex tree with

n ≥ 6 and m ≥ 3. Then we have ξad (T ) ≤ 1
6 (2n

2
+ 2m2

−

4nm+ 3n+ 5m− 8) with equality if and only if T ∼= Sn,m.
Proof: We establish the result using induction on n.

If n = 2m, then the required result holds from Theorem 5.

Suppose that n > 2m and the outcome satisfies for trees
in T ∈ T (n − 1,m). Let T ∈ T (n,m) and M be a largest
matching of T . By Lemma 4, there is a pendent vertex w in T
such that w is not M -saturated. Let v be the unique neighbor
of w in T and T1 = T − {w}. Then T1 ∈ T (n − 1,m). Since
M is a largest matching, thereforeM contains one edge linked
with v. There are n− 1− m edges of T outside M , therefore
degT (v) ≤ n − m. If ecT (w) = 2, then T ∼= Sn with w as
a pendent vertex in Sn. Therefore we take ecT (w) ≥ 3 and
ecT (v) ≥ 2.

Now take x ∈ PT (v), define A = {y ∈ VT | dT (x, y) =
ecT (y)}. It is casual to see that for any x ∈ VT \ (A ∪ PT (v)),
we have

ecT1 (x) = ecT (x).

There are some vertex z ∈ VT such that dT1 (y, z) = ecT1 (y),
for any y ∈ A. There are two possibilities: either z = v or
z ∈ VT \ {v,w}. If z = v then we have

ecT1 (y) = dT1 (y, v) < dT (y, x) = ecT (y).

Now if z ∈ VT \ {v,w} then we have

ecT1 (y) = dT1 (y, z) = dT (y, z) ≤ ecT (y).

By the construction of T1, we acquire

ST1 (v) = ST (v)− 1.

Also. for x ∈ 0T (v) \ {w}, we have

ST1 (x) =
∑

y∈0T (x)\{v}

degT1 (y)+ degT1 (v)

=

∑
y∈0T (x)\{v}

degT (y)+ (degT (v)− 1)

= ST1 (x)− 1.

Therefore by the induction hypothesis, we have

ξad (T )

=

∑
z∈VT \({v}∪0T (v))

ST (z)
ecT (z)

+
ST (v)
ecT (v)

+

∑
x∈0T (v)\{w}

ST (x)
ecT (x)

+
ST (w)
ecT (w)

≤

∑
z∈VT \({v}∪0T (v))

ST (z)
ecT (z)

+
ST (v)+ 1
ecT (v)

+

∑
x∈0T (v)\{w}

ST (x)+ 1
ecT (x)

+
degT (v)
ecT (w)

= ξad (T1)+
1

ecT (v)
+

∑
x∈0T (v)\{w}

1
ecT (x)

+
degT (v)
ecT (w)

ξad (T )

≤
2(n− 1)2 + 2m2

− 4(n− 1)m+ 3(n− 1)+ 5m− 8)
6

+
1
2
+

∑
x∈0T (v)\{w}

1
3
+
n− m
3

95656 VOLUME 7, 2019



S. Akhter: Two Degree Distance-Based Topological Indices of Chemical Trees

=
2n2 + 2m2

− 4nm+ 3n+ 5m− 8)
6

+
(−4n+ 4m− 1)

6

+
1
2
+
n− m− 1

3
+
n− m
3

=
2n2 + 2m2

− 4nm+ 3n+ 5m− 8)
6

.

The first equality holds if and only if ecT1 (z) = ecT (z),
for all z ∈ VT and second equality proved if and only if
degT (v) = n − 2m, |0T (v) \ {w}| = n − m − 1, ecT (v) = 2
and ecT (x) = 3 for all x ∈ 0T (v) \ {w}, that is, T ∼= Sn,m.
Therefore, all the equalities proved if and only if T ∼= Sn,m.
This finishes the proof. �

By using α+m = n in Theorem 6, we acquire the following
result.
Theorem 7: Let T ∈ T (n, α) with α ≤ n − 3. Then we

have ξad (T ) ≤ 1
6 (8n + 2α2 − 5α − 8) with equality if and

only if T ∼= Sn,n−α .

IV. ECCENTRIC CONNECTIVITY INDEX OF TREES WITH
DOMINATION NUMBER
Let T (n, γ ) be the set of all the n-vertex trees with domination
number γ . If γ = 1, then T is a star Sn with ξ c(Sn) =
3(n − 1). Let Sn,γ ∈ T (n, γ ) be a tree acquired from star
S∗1,γ by attaching a pendent edge to each n − γ − 1 pendent
vertices.

In this section, we find the smallest eccentric connectivity
index of trees in T (n, γ ) and the largest eccentric adjacency
index of trees in T (n, γ ).
Lemma 5: Let T be a tree with n ≥ 4 and u1u2 ∈ ET

such that u1, u2 /∈ PT . Let T ′ be the new tree acquired from
T by deleting u1u2 and identifying u1 and u2, denoted by u′1
and introducing a pendent edge u′1u

′

2, where u
′

2 be a pendent
vertex. Then we have ξ c(T ′) < ξ c(T ) and ξad (T ′) > ξad (T ).

Proof: Let T1 and T2 be two components of T − {u1u2}
such that u1 ∈ VT1 and u2 ∈ VT2 . For each vertex w ∈ VT1 \
{u1}, we have

ecT (w) = max{ecT1 (w), dT1 (w, u1)+ 1+ ecT2 (u2)},

ecT ′ (w) = max{ecT1 (w), dT1 (w, u1)+ ecT2 (u2),

dT1 (w, u1)+ 1}. (12)

For each vertex w ∈ VT2 \ {u2}, we have

ecT (w) = max{ecT2 (w), dT2 (w, u2)+ 1+ ecT1 (u1)},

ecT ′ (w) = max{ecT2 (w), dT2 (w, u2)+ ecT1 (u1),

dT2 (w, u1)+ 1}. (13)

Now, it is simply seen that the eccentricities of u′1 and u′2
in T ′ are as follows:

ecT ′ (u
′

1) = max{ecT1 (u1), ecT2 (u2)},

ecT ′ (u
′

2) = max{ecT1 (u1)+ 1, ecT2 (u2)+ 1}. (14)

By the construction of T ′, we have

degT ′ (w) = degT (w), ∀ w ∈ VT \ {u1, u2}. (15)

Also, the degrees of vertices u′1 and u
′

2 in T
′ are given by

degT ′ (u
′

1) = degT (u1)+ degT (u2)− 1,

degT ′ (u
′

2) = 1. (16)

Note that from (12) and (13), we get ecT ′ (w) ≤ ecT (w) for all
w ∈ (VT1 \{u1})∪(VT2 \{u2}). Thus from (12)-(16), we obtain

ξ c(T )− ξ c(T ′)
=

∑
w∈VT1\{u1}

(degT (w)ecT (w)− degT ′ (w)ecT ′ (w))

+

∑
w∈VT2\{u2}

(degT (w)ecT (w)− degT ′ (w)ecT ′ (w))

+ degT (u1)ecT (u1)+ degT (u2)ecT (u2)

− degT ′ (u
′

1)ecT ′ (u
′

1)− degT ′ (u
′

2)ecT2 (u
′

2)
≥

∑
w∈VT1\{u1}

(degT (w)ecT (w)− degT (w)ecT (w))

+

∑
w∈VT2\{u2}

(degT (w)ecT (w)− degT (w)ecT (w))

+max{ecT1 (u1), ecT2 (u2)+ 1} degT (u1)
+max{ecT1 (u1)+ 1, ecT2 (u2)} degT (u2)
−max{ecT1 (u1), ecT2 (u2)}(degT (u1)+ degT (u2)
−1)−max{ecT1 (u1)+ 1, ecT2 (u2)+ 1}(1)

= max{ecT1 (u1), ecT2 (u2)+ 1} degT (u1)
+max{ecT1 (u1)+ 1, ecT2 (u2)} degT (u2)
−max{ecT1 (u1), ecT2 (u2)}(degT (u1)+ degT (u2)
−1)−max{ecT1 (u1)+ 1, ecT2 (u2)+ 1} (17)

Case I: If ecT1 (u1) ≥ ecT2 (u2)+ 1, then

ξ c(T )− ξ c(T ′)

= ecT1 (u1) degT (u1)+ (ecT1 (u1)+ 1) degT (u2)

−ecT1 (u1)(degT (u1)+ degT (u2)− 1)

−(ecT1 (u1)+ 1)

= degT (u2)− 1 > 0. (18)

Case II: If ecT2 (u2) ≥ ecT1 (u1)+ 1, then

ξ c(T )− ξ c(T ′)

= (ecT2 (u2)+ 1) degT (u1)+ ecT2 (u2) degT (u2)

−ecT2 (u2)(degT (u1)+ degT (u2)− 1)

−(ecT2 (u2)+ 1)

= degT (u1)− 1 > 0. (19)

Case III: If ecT1 (u1) = ecT2 (u2), then

ξ c(T )− ξ c(T ′)

= (ecT2 (u2)+ 1) degT (u1)+ (ecT2 (u2)+ 1)

× degT (u2)− ecT2 (u2)(degT (u1)+ degT (u2)− 1)

−(ecT2 (u2)+ 1)

= degT (u1)+ degT (u2)− 1 > 0. (20)

The proof is complete. �
Xu et al. [18] determined that any graph G without isolated

vertices has a subset A of VG of cardinality γG such that for
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each u ∈ A, there is a vertex in VG \ A that is only linked
to u. Therefore we acquire the following lemma.
Lemma 6 Xu et al. [18]: For any graph G, we have

γG ≤ mG .
Lemma 7: If T1 ∈ T (n, γ ) has the smallest eccentric

connectivity index, then γT1 = mT1 = γ .
Proof: By Lemma 6, we have γ = γT1 ≤ mT1 . Now it

suffices to prove that γT1 ≥ mT1 . Let A = {u1, u2, . . . , uγ } be
a dominating set of T1 with cardinality γ . Then there exists γ
edges u1u′1, u2u

′

2, . . . , uγ u
′
γ ∈ ET1 , where u

′

1, u
′

2, . . . , u
′
γ ∈

VT1 \A. Note that if γ = γT1 < mT1 , there exists another edge
x1x ′1, that is independent of each edge u1u

′

1, u2u
′

2, . . . , uγ u
′
γ .

If ui ∈ A dominate both the vertices x1 and x2, then
a triangle x1x2ui occurs, where i = 1, 2, . . . , γ . But we
know that T1 is a tree therefore it is impossible. Thus x1
and x2 are dominated by two quite different vertices of A.
Without loss of generality we suppose that xi is dominated
by ui, for i = 1, 2, with degT1 (x1), degT1 (x2) ≥ 2 and
degT1 (u1), degT1 (u2) ≥ 2. Now we can construct a new tree
T ′1 ∈ T (n, γ ) from T1 by applying transformation described
in Lemma 5 on the edge x1u1 or x2u2 and we get ξ c(T1) >
ξ c(T ′1). This is the contradiction of our assumption. Therefore
γT1 ≥ mT1 . �
By using Lemma 7, Theorem 3 and a simple calculation,
we have following result.
Theorem 8: Let T ∈ T (n, γ ) with 2 ≤ γ ≤

⌊n
2

⌋
. Then

we have ξ c(T ) ≥ 5n + 2γ − 7 with equality if and only if
T ∼= Sn,γ .

V. CONCLUSION
In this paper, we focuss on determining the trees with the
smallest eccentric connectivity index and the largest eccen-
tric adjacency index among the n-vertex trees with a given
bipartition size. Also we discuss the smallest eccentric adja-
cency index and the largest eccentric adjacency index of
trees among n-vertex trees with fixed matching number and
independence number. Finally, we characterize the smallest
trees among all n-vertex trees with domination number with
respect to eccentric connectivity index. Finding extremal
graphs with different parameters in general classes of graphs
with respect to distance based indices will be an interesting
and a challenging problem.
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