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ABSTRACT Due to the increasing uncertainty brought about by renewable energy, conventional determin-
istic dispatch approaches have not been very applicative. This paper investigates a nested sparse grid-based
stochastic collocation method (NS-SCM) as a possible solution for stochastic economic dispatch (SED)
problems. The SCM was used to simplify the scenario-based optimization model; specifically, a finite-
order expansion using the generalized polynomial chaos (gPC) theory was applied to approximate random
variables as a more facile approach compared to using complicated optimization models. Furthermore,
a nested sparse grid-based approach was adopted to reduce the number of collocation points while still
satisfying the nested property, thereby alleviating and effectively eliminating the need for computation. The
proposed approach can be directly applied to the SED optimization problem. Lastly, simulations on the
modified IEEE 39-bus system and a practical 1009-bus power system were provided to verify the accuracy,
effectiveness, and practicality of the proposed algorithm.

INDEX TERMS Stochastic optimization, economic dispatch, generalized polynomial chaos, stochastic
collocation method, Gauss-Hermite quadrature, sparse grid, nested property.

NOMENCLATURE
INDICES
ij Index of line, from bus i to bus j.
t Index of scheduling time interval.
g Index of conventional generator unit.
w Index of wind farm.
p Index of PV power generation.

SETS
G Index set of conventional generators.
T Index set of scheduling time intervals.
W Index set of wind farms.
P Index set of PV power generations.
8i
G Index set of conventional generators at bus i.

8i
W Index set of wind farms at bus i.

The associate editor coordinating the review of this manuscript and
approving it for publication was Lasantha Meegahapola.

8i
P Index set of PV power generations at bus i.

0 Set of lines.
s Set of scenarios.
�i Set of buses connected to bus i.

PARAMETERS
1T Period between any two adjacent time intervals.
xij Reactance of line ij.
gij Conductance of line ij.
ag Electricity generation cost of the

gth conventional generator unit.
ap Unit electricity generation cost of the pth PV

power generation.
aw Unit electricity generation cost of the wth wind

farm.
rdg Downward ramping rate limit of the

gth conventional generator.
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rug Upward ramping rate limit of the
gth conventional generator.

Pi,t Active demand of load bus i at time interval t .
Pmax
ij Maximum transmission power of line ij.
Pg,min Lower limit of the output of conventional

generators.
Pg,max Upper limit of the output of conventional

generators.
P′w,t Upper forecasted output of the wth wind farm at

time interval t .
P′p,t Upper forecasted output of the pth PV power

generation at time interval t .
l Integral precision of MNI.
Nucp Number of univariate collocation points.
Nuc Number of univariate scenarios.
Nuss Number of univariate sampling scenarios.
Ncp Number of collocation points.

VARIABLES
θi,t Voltage angle at bus i in interval t .
Pij,t Transmission power of line ij at time interval t .
Ploss,ij,t The active power loss of line ij at time interval t .
Pw,t Output of the wth wind farm at time interval t .
Pp,t Output of the pth PV power generation at time

interval t .
Pg,t Output of the gth conventional generator unit at

time interval t .
Psg,t Output of the gth conventional unit at time inter-

val t under the forecast scenario and the sam-
pling scenarios.

ABBREVIATIONS
RES Renewable energy sources
gPC Generalized polynomial chaos
SED Stochastic economic dispatch
SCM Stochastic collocation method
NS-SCM Nested sparse grid-based SCM
MNI Multi-dimensional numerical integral

I. INTRODUCTION
The application of renewable energy sources (RES), espe-
cially wind farm and photovoltaic (PV) power generation sta-
tions, have increased in last five years [1]. Countries such as
Denmark, Ireland, and Australia have aggressively installed
RES systems and are operating with annual RES penetra-
tions of more than 20% at the national level [2], [3]. Such
a large-scale integration of high-penetration RES has raised
significant challenges for the operation and dispatch of power
systems because of the high intermittency and volatility of
RES power. If its uncertainty is underestimated, the safety
constraints of the system can be seriously destroyed, while
overestimation can result in a sharp increase in the system
operational cost [4]. Obviously, the existing dispatch meth-
ods cannot efficiently cope with the strong randomness and
uncertainty of the RES. Therefore, it is significant to seek

approaches that are quite applicable for the stochastic eco-
nomic dispatch (SED) problem with high-penetration RES.

A number of stochastic approaches have been utilized
to solve the SED problem, including but not limited
to chance-constrained optimization [5], [6], probabilistic
power flow [8]–[12], robust optimization [13]–[17], and
scenario-based method [19]–[25]. The chance-constrained
optimization method obtains solutions within a certain prob-
ability; thus, it still risks violation of the constraints [7].
The robust optimization method employs a robust coun-
terpart rather than a large number of scenarios. However,
this approach may generate an obtained solution that may
be too conservative and may oftentimes produce infeasibili-
ties [18]. The scenario-basedmethod is easier to implement as
compared with chance-constrained and robust optimization,
given that it decomposes the complex stochastic problem
into simple subproblems that correspond to specific sce-
narios [19]–[21]. However, the scenario-based method can
suffer from heavy computational burdens in the presence of
high multi-dimensional random variables and large number
of sampling scenarios [22]–[24]. Therefore, many scenario
reduction techniques [20]–[23] have been proposed to over-
come the computational complexity, although at the cost of
losing the accuracy of the optimal solution.

Tang et al. presented an alternative idea for simplifying the
scenario-based optimization model to achieve a better trade-
off between the convergence speed and the problem size [26],
where the uncertainty quantification (UQ) was used to create
a surrogate model to solve the stochastic problem. In general,
the effect of random variables can be resolved according
to its probability distribution following the application of
the Monte Carlo method [27]. However, this approach con-
verges considerably slowly given the presence of the variable
1/
√
N [27] and often requires data from thousands of sam-

ples, thereby generating heavy computational burdens. The
Stochastic Galerkin (SGM) and Stochastic Collocation meth-
ods (SCM) were recently proposed and utilized for the reso-
lution of stochastic problems [28], [29]. Both SGM and SCM
generate uncertainty analysis results based on the application
of the generalized polynomial chaos (gPC) expansion theory
on a polynomial of random variables. SCM can be performed
without any additional alterations to the original model as
compared to SGM, which has a more complicated calculation
process. Therefore, a SCM-based approach can be considered
as a ‘‘black box’’ in the uncertainty quantification analy-
sis [30]. Tang et al. proposed the dimension-adaptive SCM to
obtain high-dimensional probabilistic uncertainty quantifica-
tion results with nonlinear dependence on the probabilistic
power flow problem [26]. In comparison, Bai et al. pro-
posed a dimension-reduced sparse grid strategy to improve
the computational efficiency of the SCM [31]. Although both
Tang et al. and Bai et al. presented SCM-derived algorithms
that were designed to solve this type of problem without
an optimization objective, their proposed methods cannot
be directly applied to optimization problems such as the
SED [26], [31]. Therefore, the present study attempted to
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design an optimization algorithm to serve as a new extension
to the SCM to solve the SED problem.

The contributions of this study are as follows:
• The SCM was applied to simplify the scenario-based
optimization model, thereby improving the computa-
tional efficiency of the system with minimal loss of
accuracy. The random variables were approximated
through finite-order expansion by the application of
the optimal gPC, thus eliminating the necessity of
solving complicated optimization models with random
variables.

• The sparse grid-based approach [40] was also employed
to reduce the number of collocation points prior to
calculating the gPC coefficients, which helped avoid
dimensionality calculation issues. To further improve
the computational efficiency, we proposed the nested
sparse grid approach [40], by which the selected colloca-
tion point satisfied the nested property, to construct the
collocation points.

The remainder of the paper is organized as follows:
The SED model, which served as the bases, is formu-
lated in Section II. Section III presents the SCM for ran-
dom variables. Section IV discusses a solution for the
multi-dimensional numerical integral (MNI) and applies the
sparse grid approach to improve the computational efficiency.
Section V puts forth the nested sparse grid-based stochastic
collocation method (NS-SCM) for modeling. Section VI pro-
vides the numerical findings of themodified IEEE 39-bus and
practical power systems. Finally, Section VII summarizes the
observations to present the final conclusions.

II. MODEL OF THE STOCHASTIC ECONOMIC
DISPATCH WITH RES
In general, the direct current (DC) power flow is applied to
formulate the SED model without additional considerations
for the transmission losses [31]–[35]. However, this approach
does not guarantee the accuracy of the economic dispatch,
especially in practical engineering applications. Therefore,
the present study considered the transmission losses based
on a modified direct current power flow model [36], [37].
Figure 1 shows the equivalent model of a transmission line
with respect to its active power loss. The active power loss of
line ij is presented as follows:

Ploss,ij = gij(θi − θj)2, (1)

FIGURE 1. Equivalent model of the transmission line with respect to the
active power loss.

The SED model, which aims to minimize the electricity
costs generated by the conventional generators and RES, can
be expressed as follows:

min f =
T∑
t=1

∑
g∈G

agPg,t +
∑
w∈W

awPw,t +
∑
p∈P

apPp,t


(2)∑

g∈8G
i

Pg,t +
∑
w∈8W

i

Pw,t +
∑
p∈8P

i

Pp,t

= Pi,t + Pij,t +
∑
j∈�i

Ploss,ij,t
2

, (3){
0 ≤ Pp,t ≤ P′p,t
0 ≤ Pw,t ≤ P′w,t

(4)

Pgmin ≤ Pg,t ≤ Pgmax (5)

−rdg1T ≤ Pg,t − Pg,t−1 ≤ rug1T (6)

Pij,t = (θi,t − θj,t )/xij (7)

−Pmax
ij ≤ Pij,t ≤ Pmax

ij , ∀ij ∈ 0 (8)

In the above SEDmodel, Equation (2) represents the objec-
tive of the model. Equation (3) represents the power balance
constraint at bus i. Equation (4) describes the constraint of
the output of the RES. Equations (5) and (6) describe the con-
straint of the output of conventional generators. Equations (7)
and (8) represent the network transmission constraints.

III. SCM-BASED RANDOM VARIABLE APPROXIMATION
In general, RES outputs are not accurately predicted,
as they randomly fluctuate around the predicted value.
The Monte Carlo simulation and a scenario-based method
(MCM-SBM) are generally applied to stabilize and resolve
these RES uncertainties. However, when there are a high
multi-dimensional random variable and a large number of
sampling scenarios, MCM-SBM endures a heavy calcula-
tional burden. Therefore, the present study applied the SCM
to simplify the scenario-based optimization model, thereby
improving the computational efficiency with minimal loss of
accuracy. The optimal gPC was applied to random variables
to approximate a finite-order expansion, thus avoiding the
need to resolve a complicated optimization model with ran-
dom variables.

A. FORMULATION OF THE SED MODEL WITH
RANDOM VARIABLES
The present study first defined the forecasted RES output
errors as the input random parameters, the voltage angle
of the buses and output of the RESs as the output random
variables, and the conventional generator unit outputs as the
deterministic variables. The SEDmodel based on the stochas-
tic problems is expressed as follows:

u
(
−→
ξ
)
= g

(
x,
−→
ξ
)

(9)

where x defines the vector of the deterministic variables,
−→
ξ is the deviation of the random parameter, and u

(
−→
ξ
)
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defines the vector of the output random variables, which
can be approximated by applying the optimal gPC through
finite-order expansion.

B. SCM THEORY
The present study first discussed one-dimensional normal
random variables. According to the SCM theory, we can uti-
lize the appropriate gPC to approximate the random variables
corresponding to their distributions; hence, both the voltage
angle of the buses and RES outputs were approximated by
Hermite polynomial chaos expansion [38]. The process of
solving Equation (9) by using SCM can be divided into three
steps as follows:

Step 1: Choose an appropriate set of collocation points

(sampling points)
{
−→
ξk

}M
k=1

in the random parameter space.
Here, M defines the number of collocation points. The

collocation points are the zero points of the M -order gPC as
defined in the SCM theory, where

−→
ξ defines the normal ran-

dom parameter and u
(
−→
ξ
)
can be approximated by Hermite

polynomial chaos expansion [38].
Step 2: Calculate a sequence of deterministic subprob-

lems that correspond to a specific collocation point
{
−→
ξk

}M
k=1

,
as presented in (9).

u
(
−→
ξk

)
= g

(
x,
−→
ξk

)
, i = 1, . . . ,M (10)

Equation (10) transformed the original stochastic equa-
tion (9) into M deterministic equations, which correspond

to the collocation point
{
−→
ξk

}M
k=1

, thereby allowing the

calculation of the deterministic solution u
(
−→
ξk

)
for each

subproblem.
Step 3: Use the gPC series expansion to approximate the

random variables:

u
(
−→
ξ
)
=

∞∑
q=0

αq8q

(
−→
ξ
)
≈

N∑
q=0

αq8q

(
−→
ξ
)
, (11)

where N defines the order of the expansion; αq represents
the unknown approximation coefficient, which can be com-
puted by numerical integration; and 8q

(
−→
ξ
)
is a set of the

one-dimensional gPC expressions that are used to approxi-
mate u

(
−→
ξ
)
. When the variables are multi-dimensional, they

should be approximated by multi-dimensional polynomial,
which is constructed by the one-dimensional ones [38].

The unknownαq can be computed by numerical integration
by obtaining the inner product for gPC in Equation (11) is due
to the orthogonality of the gPC:

αq =

∫
0ξ

u
(
−→
ξ
)
8r

(
−→
ξ
)
ρ
(
−→
ξ
)
d
−→
ξ , (12)

where0ξ and ρ
(
−→
ξ
)
are the random parameter space and the

joint probability density function of
−→
ξ , respectively.

The right-hand side of Equation (12) is a continuous
numerical integral, which allows its approximate computa-
tion by discrete numerical integration:

αq =

∫
0ξ

u
(
−→
ξ
)
8r

(
−→
ξ
)
ρ
(
−→
ξ
)
d
−→
ξ

≈

M∑
k=1

u
(
−→
ξk

)
8r

(
−→
ξk

)
wk , (13)

where wk represents the quadrature weight corresponding

to point
{
−→
ξk

}M
k=1

, and it is determined by the quadrature
formula we chosen [39].

IV. SOLUTION OF MULTI-DIMENSIONAL
NUMERICAL INTEGRAL
The typical economic dispatch analysis is related to some
multivariate problems, such that the approximation coeffi-
cient αq can be calculated using multi-dimensional numerical
integral. Usually, the full grid-based stochastic collocation
method (F-SCM) [40] is used to calculate αq, but it may
cause a combinatorial explosion. Therefore, the collocation
point number can be reduced by applying the sparse grid
approach prior to the gPC coefficients calculations, which
helps eliminate dimensionality problems.

A. FULL GRID-BASED NUMERICAL INTEGRAL
In general, the F-SCM is applied to construct collocation
points and compute the coefficient αq of a d-dimensional
random parameter [ξ1, ξ2, . . . ξd ], specifically through its
multi-dimensional numerical integral. The MNI can be con-
structed from one-dimensional ones [40]. Generally, a one-
dimensional numerical integral Qoe1 (f ) of the e th variable
with the oeth level precision can be defined as follows:∫

g (ξe) ρ (ξe) dξe ≈ Qoe1 (f ) ,
noe1∑
ue=1

g
(
ξoee,ue

)
woee,ue , (14)

where noe1 is the total amount of collocation points (inte-
gration points) ξoee,ue determined by the oeth-level precision,
and W oe

e,ue represents the quadrature weight corresponding to
point ξOee,ue . Hence, the FSCM utilizes the full grid quadrature
to calculate the multidimensional numerical integral in (12)
by the tensor product as follows:

Qd (f ) ,
∫
g
(
−→
ξ
)
ρ
(
−→
ξ
)
d
−→
ξ

≈
(
Qo11 ⊗ · · · ⊗ Q

od
1

)
(g)

=

n
o1
1∑

u1=1

· · ·

n
od
1∑

ud=1

(
wo11,u1×· · ·×w

od
d,ud

)
· g
(
ξ
o1
1,u1

, · · ·, ξ
od
d,ud

)
.

(15)

The total amount of integration points
{
ξ
o1
1,u1

, · · ·, ξ
od
d,ud

}
in (15) can be defined as follows:

NTPM = no11 × · · · × n
od
1 . (16)
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Suppose each integration point uses the same integral for-
mula with the lth quadrature precision; then, NTPM is equal
to
(
nl1
)d
, and will increase exponentially with respect to the

dimensions due to dimensionality issues.

B. SPARSE GRID-BASED NUMERICAL INTEGRALS
To improve the computational efficiency by reduction of
the number of integration points, the present study proposes
the sparse grid-based stochastic collocation method (S-SCM)
thereby addressing the combinatorial explosion brought by
FSCM. The S-SCM in (14) employs sparse grid quadrature
to calculate the multi-dimensional numerical integral in (12).
The sparse grid quadrature of the d-dimensional variables
with lth-level precision is defined as follows:

Qld (f ) ,
∑

l+1≤|−→o |≤l+d

(−1)l+d−|
−→o |
(

d − 1
l + d −

∣∣−→o ∣∣
)

×
(
Qo11 ⊗ · · · ⊗ Q

od
1

)
(g) , (17)

where −→o denotes the multi-index, and
∣∣−→o ∣∣ = o1 + o2 + · ·

· + od . According to (17),
∣∣−→o ∣∣ is present within the range of

l+ 1 to l + d , such that one dimensional quadrature with a
higher precision requires the other dimensions to use integral
formulas with lower precisions. The set of integration points
V l
d with sparse grid quadrature in (15) can be expressed as

follows:

V l
d = ∪

l+1≤|−→o |≤l+d
V o1
1 × · · ·V

od
1 , (18)

where the nodal set V oe
1 comprises the zeros of the Hermite

polynomial of the eth variable with the oeth-level, which can
be expressed as follows:

V 1
1 = {0}

V 2
1 = {−1, 1}

V 3
1 = {−1.73, 0, 1.73} ,

... (19)

where noe1 is defined as the number of one-dimensional inte-
gration points in V oe

1 . Hence, nld in V l
d is defined as follows:

nld =
∑

l+1≤|−→o |≤l+d

no11 · · · n
od
1 . (20)

In particular, when l = 1, 2, the number of integration
points in V d

1 and V d
2 with sparse grid quadratures is defined

as n1d = 2d+1 and n2d = 2d2+2d+1, respectively. If d � 1,
the total number of integration points is expressed as follows:

NTPM = nld ≈
2l

l!
d l . (21)

Hence, NTPM in the sparse grid does not increase exponen-
tially with increasing dimensions as compared to what is gen-
erally observed in the full grid. As reported in (14) and (17),

the expression of the numerical integral on the basis of the
sparse grid can be expressed as follows:

Qd (g)
∫
g
(
−→
ξ
)
ρ
(
−→
ξ
)
d
−→
ξ ≈ Qld (g)

=

∑
l+1≤|−→o |≤l+d

n
o1
1∑

u1=1

· · ·

n
od
1∑

ud=1

g
(
ξ
o1
1,u1

, · · ·, ξ
od
d,ud

)
×wo1,··· ,odu1,··· ,ud , (22)

where wo1,...,odu1,...,ud defines the quadrature weight correspond-
ing to the integration point

(
ξ
o1
1,u1

, · · ·, ξ
od
d,ud

)
, which is

expressed as:

wo1,··· ,odu1,··· ,ud =(−1)
l+d−|−→o |

(
d − 1

l+d−
∣∣−→o ∣∣

)
wo1e,u1×· · ·×w

od
e,ud .

(23)

However, the conventional Gauss-Hermite quadrature
nodal set determined by the zero points of the Hermite poly-
nomial does not satisfy the nested property. That is, V 1

1 ⊆

V 2
1 ⊆ 9V 3

1 . . ., such that collocation points with lower
precisions cannot be reused in the quadrature nodal set with
the higher precisions, thereby reducing the computational
accuracy and efficiency.

V. NESTED SPARSE GRID-BASED STOCHASTIC
COLLOCATION METHOD
In this section, the present study proposes a nested sparse
grid-based stochastic collocation method (NS-SCM) with an
extended Gauss-Hermite quadrature to enhance the calcula-
tional accuracy and efficiency of the S-SCM. The NS-SCM
utilizes the one-dimensional extended Gauss-Hermite
quadrature to construct the multi-dimensional nested sparse
grid quadrature, thereby generating new collocation points
that are based on existing collocation points with lower pre-
cision. The nested collocation points used in the NS-SCM not
only maintain higher Gauss-Hermite quadrature calculational
precision but also satisfy the nested property compared with
applications in the S-SCM.

A. POLYNOMIAL PRECISION OF THE QUADRATURE
The present study first introduced the idea of polyno-
mial space in Definition 1 to assess the accuracy of the
Gauss-Hermite quadrature.
Definition 1: The univariate polynomial space P(oe) is

defined as the space of all the polynomials in one variable,
whose degrees do not exceed oe.
According to Definition 1, the polynomial space P(4)

includes all linear combination of the polynomials whose
degrees do not exceed 4 (i.e., 1, ξ , ξ2, ξ3 and ξ4). Hence,
the polynomial precision of the Gauss-Hermite quadrature is
defined as follows.
Definition 2: The integrand g( ξ ) in (13) is defined as

any polynomial within the polynomial space P(oe). Therefore,
if the integration can be strictly computed by the numerical
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quadrature in (13), we can define the quadrature of g( ξ ) to
be exact within the polynomial space P(oe).
In the Gaussian quadrature [39], a numerical integral with

n integration points is exact within the polynomial space
P(2n-1). Therefore, the Gaussian quadrature of sets V 1

1 ,V
2
1 ,

and V 1
3 in Section IV is accurate within the polynomial space

P(1), P(3), and P(5), respectively.

B. NUMERICAL INTEGRAL WITH ONE-DIMENSIONAL
EXTENDED GAUSS-HERMITE QUADRATURE
Compared with the conventional Gauss-Hermite quadrature,
a set of integration points with lower precision is contained
in the set that presents higher precision in the extended
Gauss-Hermite quadrature. Therefore, the nodal sets of col-
location points do satisfy the nested property, which means
that collocation points with lower precision can be reused in
the quadrature nodal set with the higher precision.

For the Gauss-Hermite integral in (13), several families of
univariate integration points with extendedGaussian-Hermite
quadratures are proposed in [39]. To reduce the number of
integration points, the present study chose the following nodal
sequence with the slowest growth in points as follows:

Ṽ 1
1 = {0}

Ṽ 2
1 = {0,±1.732}

Ṽ 3
1 = {0,±1.732,±4.18,±0.74,±2.86}
...,

(24)

where Ṽ oe
1 denotes the nodal set of the extended

Gauss-Hermite quadrature in one variable at the oeth level.
According to the definition in [38], the nodal sets, Ṽ 1

1 Ṽ
2
1 ,

and Ṽ 3
1 with Gauss-Hermite quadrature in (24) are exact in

the polynomial space P(1), P(5), and P(15), respectively.
In nodal set Ṽ 2

1 , the uppermost quadrature accuracy of the
three integration points is P(5) following the addition of two
integration points {±1.732} to the nodal set Ṽ 1

1 . Similarly,
the uppermost quadrature accuracy of those nine integra-
tion points in Ṽ 3

1 is P(15). Therefore, the nodal sets of the
zero points within the extended Gauss-Hermite quadrature
in (24) do satisfy the nested property and can be expressed
as Ṽ 1

1 ⊂ Ṽ 2
1 ⊂ Ṽ 3

1 ⊂ · · · .

C. MULTI-DIMENSIONAL QUADRATURE WITH
NESTED SPARSE GRIDS
The NS-SCM can be applied to compute the MNI in (14),
of which the produced NS-SCM quadrature equation is sim-
ilar to (17). However, the d-dimensional nested sparse grid
quadrature with lth level precision in the NS-SCM generates
a different nodal set as compared to that from in S-SCM [40],
which is expressed as follows:

Ṽ l
d = ∪
|
−→o |≤l+d

W̃ o1
1 × · · · W̃

o1
1 , (25)

where W̃ oe
1 (e = 1, . . . , d) denotes the difference set between

two adjacent nodal set Ṽ oe
1 and Ṽ oe−1

1 with extended

Gauss-Hermite quadrature, and it can be expressed as W̃ oe
1 =

Ṽ oe
1 \Ṽ

oe−1
1 . Therefore, we obtain the following:

W̃ 1
1 = Ṽ 1

1 = {0}

W̃ 2
1 = Ṽ 2

1 \Ṽ
1
1 = {±1.732}

W̃ 3
1 = Ṽ 3

1 \Ṽ
2
1 = {±4.18,±0.74,±2.86}

.... (26)

In (26), we define m̃oe1 as the number of integration points
in the nodal set W̃ oe

1 , such that the total amount of integration
points used by NS-SCM is defined as:

ñld =
∑
|
−→o |≤l+d

m̃o11 · · · m̃
od
1 . (27)

According to (27), increases in the quadrature degree
increases from l to l+ 1 defines the W̃ l+1

d as follows:

W̃ l+1
d =

⋃
|
−→o |=l+d

W̃ o1
1 × · · · × W̃

oe
1 , (28)

Hence, we obtain the following:

Ṽ l+1
d = Ṽ l

d ∪ W̃
l+1
d . (29)

From (29), the nodal set Ṽ l+1
d does appear to satisfy the nested

property.

D. ALGORITHM FLOW
Figure 2 presents the algorithm based on the proposed
NS-SCM to solve the SED model with RES as follows:

Step 1: Set the network topology based on the size of the
systems, the number, and PDF of the input random variables,
and the expansion order of the Hermite polynomial.

Step 2: Set the nodal set Ṽ oe
1 , oe = 1, · · · , l based on the

order presented in (24).
Step 3: Compute the quadrature weight corresponding

to the integration points with the extended Gauss-Hermite
quadrature according to [39].

Step 4: Construct the nodal set Ṽ l
d with the MNI according

to Equations (25) – (29).
Step 5: Calculate the quadrature weight w̃o1,··· ,odu1,··· ,ud with

respect to the integration points
(
ξ
o1
1,u1

, · · ·, ξ
od
d,ud

)
∈ Ṽ l

d and
following the guidelines presented in [40].

Step 6: Utilize the solver to calculate the values of the out-
put random variables with respect to each integration point,
after which calculate αq by applying Equation (22).
Step 7: Utilize the expansion of the Hermite polynomial

to approximate the output random variables. Substitute the
results into the original SED model to generate the surrogate
SED model.

Step 8: Establish the constraints of the scenario transition
to determine the adjustable output of the conventional genera-
tor units from the forecast scenario to the sampling scenarios,
as defined in (30). Subsequently, utilize the MCM-SBM to
simulate and approximate the surrogate SED model.{
−rdg1T ≤ P0g,t − P

s
g,(t−1) ≤ rug1T

g = 1, 2, . . . ,NG; t = 1, 2, . . . ,T ; s = 0, 1, . . . ,Ns.
(30)
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FIGURE 2. Algorithm flow of NS-SCM for solving the SED model with RES.

VI. NUMERICAL RESULTS
According to the theory of the NS-SCM, as soon as the
original SED models have a feasible solution, we can utilize
the NS-SCM to handle the heavy calculational burden. The
present study then conducted simulations on amodified IEEE
39-bus system and a practical 1009-bus power system to ver-
ify the proposed approach. The forecast error of the outputs
of the RES were assumed to obey the Gaussian distribution
N (µ, σ 2), where µ is the forecasted outputs of the RES.
The number of scheduling time intervals was defined as 24
(i.e., T = 24 h,1T = 60 min) in the day-ahead SED model.

A. IEEE 39-BUS SYSTEM
Figure 3 presents two wind farms that have the capacities
of 360 MW and 280 MW, respectively, that were joined to

FIGURE 3. Modified IEEE-39 bus system with the RES.

Bus 6 and Bus 16, respectively. Two PV power generations
with capacities of 120 MW and 100 MW, respectively, were
joined to Bus 4 and Bus 18, respectively. The penetration of
the RES was performed at 13.98% of the load. The system
exhibited peak and valley loads of 6,150MW and 4,611MW,
respectively. Figure 4 shows the predicted total daily loads
and the outputs of the RES. The other system parameters
defined those generally observed in a standard IEEE 39-bus
system [41]. For the modified IEEE-39 bus system, σ was set
to 0.2 and Nusp was set to 999.

FIGURE 4. Forecast of the daily loads and outputs of the RES in the IEEE
39-bus system.

The relative errors of the three SCM algorithms were cal-
culated to verify the accuracy of the method, specifically the
relative solution errors (Sol.) and the relative errors of the
objective value (Obj.). The relative solution error is defined
as the maximum relative deviation of the results following the
application of the three SCM algorithms as compared with
those calculated using theMCM-SBM. The relative objective
value error is defined as the relative error of the optimal

VOLUME 7, 2019 91833



Z. Lu et al.: Stochastic Optimization of Economic Dispatch With Wind and Photovoltaic Energy Using NS-SCM

objective values:

Sol.error =

∥∥∥∥xSCM − xMCM−SBM

xMCM−SBM

∥∥∥∥
∞

× 100%

Obj.error =

∣∣∣∣ fSCM − fMCM-SBM

fMCM-SBM

∣∣∣∣× 100% (31)

where xSCM and xMCM−SBM are the vectors of the three SCM
algorithms and MCM-SBM results, respectively; fSCM and
fMCM−SBM are the optimal objective values of the three SCM
algorithms and the MCM-SBM, respectively. Figure 5 illus-
trates the Sol. and the Obj. obtained by NS-SCM with differ-
ent integral precisions l of MNI.

FIGURE 5. Results obtained by NS-SCM with different integral precision
of MNI.

Figure 5 presents the relative solution errors and the
decreased relative objective value errors following an
increase in the integral precision. When the integral preci-
sion l increased to 29, the Sol. and the Obj. dropped to
0.0088% and 0.0440%, respectively, both of which were
sufficiently small and could be defined as negligible. Upon
further increasing the integral precision, we found that both
changed very little. Therefore, we confirmed that the integral
precision threshold was 29 for the IEEE-39 bus modified sys-
tem. That is, the best integral precision was equal to 29. The
MCM-SBM, F-SCM, S-SCM, and the proposed NS-SCM
were respectively compared and evaluated based on their
ability to resolve the SED model of the IEEE-39 bus system,
the results of which are presented in Table 1.

TABLE 1. Comparison of the approaches in the IEEE 39-bus system.

Each of the three SCMalgorithms in Table 1 presented con-
siderably close costs to the cost obtained by the MCM-SBM.
In addition, the Sol. and the Obj. of the three SCM algo-
rithms did not exceed 0.0159% and 0.0653%, respectively.

FIGURE 6. Dispatching plan of conventional generator units in an entire
day.

As the SED models modified using SCM were considerably
simpler than the original one, the three SCM algorithms had
greatly improved computational efficiency compared with
MCM-SBM (>71.57%). We then analyzed the relationship
of the performance of the three SCM algorithms and the
number of their collocation points. The F-SCM exhibited the
least error but required the highest amount of collocation
points, thus requiring an application and computation time
of 35.65 min. The S-SCM exhibited a reduced CPU time
due to the decrease in the number of collocation points and
a certain loss in accuracy. In comparison, although the pro-
posed NS-SCM used more collocation points than S-SCM,
it took less time and had higher calculation precision. Figure 6
presents the outputs of each conventional generator unit,
which were calculated by the NS-SCM over one full entire
day.

B. PRACTICAL 1009-BUS POWER SYSTEM
The present study proceeded with calculations following a
real 1009-bus system in China to further demonstrate the
benefits of the proposedmethod in practical applications. The
bus system consisted of 1724 branches, two wind farms with
capacities of 1105 and 2219 MW, respectively, and two PV
power generations with capacities of 1500 and 1100 MW,
respectively. The penetration of the RES was performed at
10.82% of the load. The practical system had peak and val-
ley loads of 54750 and 44611 MW, respectively. Figure 7
presents the forecasted total daily load and outputs of the RES

FIGURE 7. Forecasted daily loads and outputs of the RES in the practical
1009-bus system.
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in the practical 1009-bus system. The other parameters of the
simulation are given in Table 2.

TABLE 2. Parameters of simulation.

Figure 8 demonstrates the computational performances of
both MCM-SBM and NS-SCM. As can be seen, NS-SCM
was considerably faster than the MCM-SBM in solving SED
problems. Furthermore, the CPU time of the MCM-SBM
scaled linearly with an increase in the number of scenarios.
This comparison showed that the proposed NS-SCM was
very suitable for SED problems and showed an overwhelming
advantage in the computational efficiency.

FIGURE 8. Comparison of computational time between MCM-SBM and
NS-SCM.

TABLE 3. Comparison of the approaches in the 1009-bus system.

Table 3 lists the comparisons of the results obtained by
MCM-SBM, F-SCM, S-SCM, and the proposed NS-SCM.
As shown in Table 5, all three of the SCMalgorithms obtained
the very small Sol. and Obj., not exceeding 0.150% and
0.263%, respectively. Following the sampling scenarios of
the MCM-SBM, the F-SCM exhibited the least error due
to the application of a significant amount of collocation
points, though this approach generated a calculation time
of 256.36 min. The SED models were considerably simpler
and presented a calculation efficiency that could be further
improved as compared to the sparse grid-based approach,
which was initially applied to reduce the number of colloca-
tion points. As compared to the S-SCM, the NS-SCM used

TABLE 4. Parameters of conventional generators.

TABLE 5. Forecast daily loads and outputs of the RES corresponding to
Figure 4.

more collocation points to streamline the SED model but
generated more precise results and a higher computational
efficiency. In particular, the CPU time of NS-SCM was only
12.53% of that of MCM-SBM. These comparisons verified
that NS-SCM was applicable to solve SED problems in prac-
tical large-scale systems.

VII. CONCLUSION
Fully considering the uncertainty of RES, in this paper,
we proposed the NS-SCM to simplify the scenario-based
SED model, which improved the computational efficiency
with minimal loss of accuracy. According to the SCM,
the optimal gPC was applied to approximate random vari-
ables through a finite-order expansion, thus eliminating the
need to apply a complicated optimization model with random
variables. We proposed a strategic method for construction of
collocation points based on the nested sparse grid method to
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enhance the computational efficiency, by which the chosen
collocation points satisfied the nested property. This proposed
method was successfully applied and was able to successfully
resolve the optimization problem (i.e., the SED problem).
By performing case studies on IEEE 39-bus and practical
1009-bus systems, we verified the accuracy, practicality, and
effectiveness of the proposed method. The numerical find-
ings indicate that the method we propose is suitable for
systems with different scales and presents promising engi-
neering application prospects, specifically for the economic
dispatching of power systems.

APPENDIX
In this section, the technical details of the considered power
system in Figures 3 and 4 are given.

The other system parameters, including the data
of 39 buses and 46 branches, are generally observed in a
standard IEEE 39-bus system [41].
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