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ABSTRACT Time series has a wide range of applications in various fields. Recently, a new math tool,
named as visibility graph, is developed to transform the time series into complex networks. One shortcoming
of the existing network-based time series prediction methods is time consuming. To address this issue,
this paper proposes a new prediction algorithm based on visibility graph and Markov chains. Among the
existing network-based time series prediction methods, the main step is to determine the similarity degree
between two nodes based on link prediction algorithm. A new similarity measure between two nodes is
presented without the iteration process in the classical link prediction algorithm. The experiments show that
the proposed method has better accuracy with less time consuming.

INDEX TERMS Time series, visibility graph, Markov chains, similarity measure, link prediction, construct
cost index.

I. INTRODUCTION
Time series analysis and prediction is an important topic
which is used in the fields of traffic [1], finance [2], engineer-
ing [3]–[5], complex networks [6]–[9], and so on [10]–[15].
Time series analysis can help analyze the characteristics of
data and explore potential information [16]–[18]. For exam-
ple, predicting project costs can help individuals and organi-
zations reduce costs and schedule projects. Construction cost
index (CCI) is the weighted sum of the average price of labor,
standard structural steel, Portland cement, and wood, which
is widely used in housing construction [19].

There are a lot of traditional time series foresting
methods including the stochastic [20], support vec-
tor machines (SVM) [21] and neural network meth-
ods [22]. Autoregressive Integrated Moving Average
(ARIMA) [20] is a typical method in stochastic methods.
ARIMA has several types, such as Autoregressive Moving
Average (ARMA) [23]–[25], Autoregressive (AR) [26]–[28].
MovingAverage (MA) [23], [24], [29]. Neural Network [20],
[22], [30] is a data-driven approach. SVM [31], [32] has
many applications in time series, such as regression, signal
processing, and time series analysis.

The associate editor coordinating the review of this manuscript and
approving it for publication was Dominik Strzalka.

The real world is fulled with uncertainty [33]–[35]. One
main reason is that the interaction between each fact in
the complex system can not only be modeled in a pre-
cise way [36]–[39] but also the knowledge of the system
is incomplete [40], [41]. Many methods are presented to
handle uncertainty in time series prediction such as gray
analysis [42], [43]. The typical work is to predict time series
with fuzzy sets theory [44] due to its efficiency to deal
with linguistic variables [45]–[48]. However, It’s necessary
to develop more efficient prediction method to address the
uncertainty. Recently, complex networks have been greatly
paid attention since it can efficiently model the complexity,
especially to deal with different nodes or facts interacting
with each other [49], which makes complex network widely
used in many applications such as identifying influential
nodes [50]–[52], social dilemma [53], [54] and topology
analysis of the key parameters in complex systems [55]–[57].

With the visibility graph [58], a new tool to transform
time series into complex networks [55], [59]–[61], network
analysis has been applied in time series analysis [62], [63].
Many studies have shown that complex networks can
help predict time series, and the effective information is
mined by researching the complex networks [64], [65]. Liu
and Lâĺâź [66] proposed a method to measure the simi-
larity of two nodes, some scholars use this method for
time series [13], [67]–[70]. However, this method needs to
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iteratively calculate the similarity of two nodes, which is
very time-consuming. To address this issue, a fast method
is proposed to calculate the similarity of two nodes without
iteration. the proposed method is mainly divided into four
steps. Firstly, the time series is converted into complex net-
works. Then the newmethod is used to calculate the similarity
between the nodes. Finally the k nodes which are the most
similar to the last node are determined, and the weights are
calculated to make a prediction.

The structure of this article is as follows: preliminaries
will be introduced in Section 2. Section 3 will introduce the
proposed method. The experiments will be carried out in
Section 4, and finally the summary will be given in Section 5.

II. PRELIMINARIES
In this section, some basic knowledge will be introduced
including visibility graph [71], transition probability [66],
and Markov chain [72].

A visibility graph [73], [74] algorithm is an algorithm
that converts a time series into complex networks [58], [75].
The constructed graph inherits several properties of the series.
The periodic sequence is converted into a regular graph,
and the random sequence is converted into a random graph.
Definition 1: A time series is defined as Y =

{y1, y2, . . . yN }, where iεT and T is the index of time [76].
Definition 2: Connectivity in time series is defined as

follows [58].

yk < yj + (yi − yj)
j− k
j− i

& i < k < j (1)

If the points (i, yi) and (j, yj) satisfy the above formula, then
the two points are connected.

Note that the visibility graph has a total of three properties.
• Connected: Each adjacent point is connected.
• Undirected: the visibility is non-directional.
• Mapping in-variance: visibility criterion is invariant for
both horizontal and vertical scaling and horizontal and
vertical translation.

The transition probability is the key parameter in link
prediction [66].
Definition 3: The transition probability is defined by [66]

Pij =
Iij
Di

(2)

where Pij is the probability that i turns to j, Di is the degree
of point (i, yi), and

Iij =

1, yk < yj + (yi − yj)
j− k
j− i

& i < k < j

0, otherwise

Definition 4: Given a sequence of random variables
{X1,X2, . . . ,XN }, a discrete time of Markov chain is defined
as follows [72], [77].

P(XN+1|XN , . . . ,X1) = P(XN+1|XN ) (3)

which means that the probability of next time N + 1 is only
depends on the present time N and not on the previous times.

FIGURE 1. Flow chart of proposed method.

FIGURE 2. Predict time series based on complex networks.

III. PROPOSED METHOD
This paper proposes a new method that uses the past N data
points to predict the (N + 1th) data point.

The flow chart of the proposed method is shown in
FIGURE 1.
Step 1: Convert time series Y = {y1, y2, . . . yN } into com-

plex networks according to Eq.(1). The visibility algorithm
is an algorithm that converts time series into a visibility
graph [58].
Step 2: Calculate the probability transfer matrix according

to Eq.(2). The transition probability of two nodes can be
regarded as a similar measure of two nodes. Zhang et al. [67]
explained in detail why the transition probability can be used
to measure the similarity of two nodes. However, the method
proposed by Zhang et al. [67] is very time consuming. It is
necessary to present a faster way.
Step 3: A method of similarity of new computational

nodes is proposed based on stationary distribution of Markov
chains in this step. The stationary distribution of the Markov
chain is determined by the transition matrix and the initial
distribution. Note that we assume that the time series Y =
{y1, y2, . . . yN } is a Markov chain.

In the method of time series prediction based on complex
networks, a key step is to calculate the similarity between the
Nth node and the previous N − 1 nodes. Then, the value of
the (N + 1)th node is determined by the Nth node and the Jth
node. Where the Jth node is the node most similar to the Nth
node, which can be seen in FIGURE 2.

To the best of our knowledge, most current methods of
calculating similarity are based on link prediction. The advan-
tage of this method is that it can calculate the similarity of any
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two nodes in a complex network. However, isn’t the similarity
of such compute nodes fully applicable to time series? In fact,
it is only necessary to calculate the similarity between theNth
node and the previousN−1 nodes. Thismethod uses the value
of the stationary distribution of the probability transfer matrix
as the similarity, which is presented as follows.

V T
Nj(j) = PTV0 (4)

where V is the N -dimensional column vector, V T
Nj(j) is the

similarity between the Nth node and the Jth node, and V0 is
the probability distribution of the initial nodes. Somemethods
such as distance function [78]–[80], entropy method [81],
[82], bio-inspired model [83], [84] and divergence [85]–[87]
are used to determine the similarity measure. In the proposed
method, we set T ensuring that the

∥∥V T+1
− V T

∥∥ are less
than 10−5. In the link prediction, the similarity of any two
nodes is calculated as follows [67].

SSRWij =

T∑
t=0

ki
2|E|

Ptπi +
kj

2|E|
Ptπj (5)

where SSRWij is the similarity between node i and node j, ki
and ki are the degrees of nodes i and node j, |E| is the number
of edges in the network. Note that π is different from V . πi is
an N -dimensional column vector, where the value of the i-th
element is 1, and the value of the other elements is 0. V is a
column vector of N , representing the probability distribution
of all nodes, where the values of all elements are between 0
and 1.

Normally, calculating the similarity between the Nth node
and the previous N − 1 nodes requires N − 1 calculations
based on link prediction. However, in the proposed method,
it only needs to be calculated once [67].

It is noted that one property of the Markov chain is utilized
in calculating the similarity of nodes: the limit distribution
is the same as the stationary distribution. The process of
certification is provided in Section V.
Step 4: This step first looks for the top k maximum values

in V . Here, it is considered that the top k maximum values
points are most similar to the Nth point.The final prediction
can be calculated as follows.

yN+1 =
k∑

r=1

Vr∑k
j=1 Vj

(
yN − yr
N − r

((N + 1)− N )+ yN ) (6)

where V T
Nj(j) is recorded as Vj.

How to choose the optimal k does play a role in improving
the accuracy. After our best efforts and attempts, a rule of
experience is proposed.

(1) If the trend of the time series is an upward trend, usually
the k value is set to 2.

(2) If the trend of the time series has periodicity, usually
the k value is set to 4.

(3) If the trend of the time series is a downward trend, the k
value is usually set to 2.

FIGURE 3. Flow chart of the prediction.

IV. APPLICATION
This section firstly verifies the effectiveness of the method
through CCI data. The CCI data set is the engineering cost
data [88], [89], with a total of 295 data points. From Jan-
uary of 1990 to July of 2014. The flow chart of the whole
experiment is shown below.

In order to assess the accuracy of the forecast, a total
of 5 evaluation criteria are chose including normalized root
mean square error (NRMSE), mean absolute percentage error
(MAPE), symmetric mean absolute percent error (SMAPE),
mean absolute difference (MAD), Root Mean Squared Error
(RMSE) [90].

A. STEP BY STEP PREDICTION

NRMSE =

√
1
N

∑N
i=1 |ŷi − yi|

2

ŷmax − ŷmin
(7)

MAPE =
1
N

N∑
i=1

|ŷi − yi|
ŷi

× 100 (8)

SMAPE =
2
N

N∑
i=1

|ŷi − yi|
ŷi + yi

(9)

MAD =
1
N

N∑
i=1

|ŷi − yi| (10)

RMSE =

√√√√ 1
N

N∑
i=1

|ŷi − yi|2 (11)

The flow chart of the prediction is shown in Figure 3.
TABLE 1 shows a comparison of the three methods includ-

ing SMA [19], Zhang et al. [67] method and proposed

102556 VOLUME 7, 2019



F. Liu, Y. Deng: Fast Algorithm for Network Forecasting Time Series

TABLE 1. Comparison in three methods.

FIGURE 4. The real values and predicted values of CCI.

method. It can be seen that the proposed method performs
better than the previous method on three indicators.

FIGURE 4 shows a comparison of real and predicted val-
ues in the CCI data set. It can be seen that the overall predicted
value is very consistent with the real, but there is a partial
error.

B. OUT-OF-SAMPLE PREDICTIONS
To further verify the effectiveness of the proposed method.
The entire experimental process can be seen on Algorithm 1.
The sliding windowmethod is used to test. In the experiment,
the sliding window was set to L = 3, L = 6, L = 12.

Algorithm 1
Require: Dataset, length of L;
Ensure: Average error;
for i = 1 to (N − L − 2) do
Traindataset == {x|x(i), i = 1, . . . , k + 1} ;
for j to L do
ŷ = Proposedmethod(Traindataset(k + j+ 1));

end for
Error;

end for
Averageerror;

TABLE 2 shows the error of non-synchronization. It can be
seen that the MAD, MAPE, SMAPE, and RMSE gradually
increase with the increase of the step size, but the NRMSE
decreases with the increase of the step size.

TABLE 2. Errors comparison in three step size.

FIGURE 5. MAPE in three step size.

FIGURE 6. MAPE error L = 12 comparisons with other methods.

FIGURE 5 shows that each error of the error MAPE is in
three step size.

FIGURE 6 shows the comparison of different methods
on MAPE [67]. Where the time consumption is smaller,
the accuracy of the proposed method is the same as that of
the Zhang et al. [67] method.

In order to further validate the proposed method, some
new data sets are utilized, Shampoo Sales Dataset, Monthly
Sunspot Dataset and Daily Female Births Dataset. Shampoo
Sales Dataset describes the number of Shampoo sales per
month for a total of three years. Monthly Sunspot Dataset
describes the monthly sunspot count for a total of 230 years.
Daily Female Births Dataset describes the number of female
births per day in California in 1959.

In Shampoo Sales Dataset, the data are adopted for forecast
the remaining sales volume from January 5th. In the Monthly
Sunspot data set, data was used from 1749 to 1956 to predict
data from 1757 to 1966. In the Daily Female Births data set,
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TABLE 3. Comparisons in three dataset.

the data was predicted from January 10, 1959 to the remaining
period. As can be seen in TABLE 3, the proposed method
performs best in sunpot data. It surpasses other methods in
five indicators. The time complexity of the proposed method
is less than that of Zhang et al. [67] and Mao and Xiao [91].

V. CONCLUSION
Based on the stationary distribution of visibility graph and
markov chains, a more efficient method is proposed to predict
the time series.

The proposed method is divided into four steps. The first
step is to convert the time series into a visibility graph.
The second step uses the visibility graph to calculate the prob-
ability transfermatrix. The third step uses the properties of the
probability transfer matrix to solve the stationary distribution.
The fourth step is based on finding the point with the highest
pro-k probability as the most similar point to the Nth, and
the value of the (N + 1th) point is predicted according to the
weighted coefficient.

The contribution of this paper is that a faster method to
calculate similarity between Nth and previous N − 1th nodes
is proposed. In predicting that the value of the N+ 1th node
is jointly determined by the first k nodes, it seems to improve
the accuracy.
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APPENDIX
Definition 5: The stationary distribution V = {v1, v2, . . . vN }
is defined as follows.

•

∑
jεE vj = 1.

• vj =
∑

iεE viPij.

where PV = V is the matrix form of the above formula.
Definition 6: If there is a limit, for all states i and j, the limit

distribution is defined as follows.

lim
n→∞

Pnij = 5j &
∑
jεE

5j = 1 (12)

Theorem 1: The stationary distribution of Markov pro-
cesses is equal to the limit distribution:

Proof: Assume that the limit distribution of the Markov
chain X = {x(n), n = 1, 2, . . . } is (51,52, . . . ).

lim
n→∞

Pnij = 5j (13)

because pn+1ij =
∑

rεE 5r ·Prj. So when n tends to infinity

5j =
∑
rεE

5r · Prj (14)
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