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ABSTRACT Foresight is a manifestation of human-level intelligence. In model-based reinforcement
learning, obtaining a perfect environment model is essential and significant. Although recent research has
achieved impressive advances in improving prediction accuracy, existing environment models are unable to
generalize well across environments, mainly because appearance-independent dynamics learning completely
relies on appearance-specific representation learning. In this paper, we propose a novel predictive model
named transferable environment model (TEM) which disentangles state representation and dynamics. The
disentanglement allows the model to deal with different observation distributions and meanwhile share a
cross-environment latent dynamics. In a 3D visual platform, we show that our model has good generalization
performance in target environments with very few data. Furthermore, the TEM is able to continually adapt to
a sequence of target environments without forgetting the knowledge for previous environments. To the best
of our knowledge, this paper is the first to endow a predictive model with the ability to work across multiple
environments.

INDEX TERMS Environment model, model-based reinforcement learning, domain adaptation, disentangled
representation.

I. INTRODUCTION
Foresight is a manifestation of human-level intelligence,
the idea of which has been widely applied in various
fields [1]–[3]. In reinforcement learning (RL) [4], the ability
to imagine and evaluate the future evolution of an environ-
ment is significant for artificial intelligence agents to act
in complex environments. Equipped with an environment
model, also called predictive model or dynamics model,
an agent is endowed with the predictive capability to simulate
how the environment changes in response to their actions.
Therefore, the agent with an environment model can act or
plan more effectively as allowed to consider consequences
of different actions without interacting in the real environ-
ments [5]. In the field of RL, the algorithms using dynamics
models are called model-based RL approaches [6]. With
the development of RL, research on predictive models has
already been an important topic for agent control. Recently,
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significant progress [7]–[9] has been made in constructing
accurate models, which can perform high prediction accuracy
in complex environments such as Arcade Learning Environ-
ment [10] and Deepmind Lab [11].

Despite these advances in obtaining high prediction accu-
racy, existing environment models still suffer from limited
cross-environment adaptability meaning that a well-trained
model in an environment (the source) can predict in other
unseen environments (the target). Due to over-optimization
in a single environment, previous models are very sensitive
to the changes of the environment, even minor ones like
appearance or components. An ideal model could generalize
to different environments rather than overfitting to a single
environment; and could learn a common dynamics shared
by similar environments (see Fig. 1). Moreover, re-training a
well-performing environment model always requires numer-
ous interactions between the agent and environment, which
is often prohibitively difficult an expensive, especially in a
real-world application. Thus, reusing a trained model is par-
ticularly crucial when training data are short for supply due
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FIGURE 1. A model-based agent acts with dynamics models. Past models
can only simulates a single environment. An ideal model (the universal
model) should has the ability to simultaneously work in different
environments.

to the interaction difficulty. In this paper, we focus on devel-
oping a more universal predictive model that can generalize
across different environments. Hereinafter, the environment
for first training is called the source environment and novel
environments are called the target environments.
A typical model contains two basic parts (see Fig. 2(a)):

(i) static state representation for encoding observations and
generating future predictions, (ii) dynamic state transition
for abstract state transition from the current time-step to the
next by integrating action, which represents intrinsic dynam-
ics. In the classic framework, the appearance-independent
dynamics learning completely relies on the appearance-
specific representation learning, resulting in the coupling of
the transition module and representation module. In conse-
quence, a past model always fails to dealing with the changes
of the environment appearance. We propose that the key
limitation to generalization of environment models is the
entanglement of representation and transition. As is well
known, humans can easily handle variety of environ-
ments because the advanced human behavior is based on
environment-independent semantic concepts rather than raw

perceptual inputs. Inspired by this, we argue that an envi-
ronme‘nt model should disentangle representations with
dynamics and high-level predictions are made upon the
abstract representations (see Fig. 2(b)). Considering that there
exists common intrinsic dynamics between the source and
target environments, a disentangled framework also allows a
model to share a common transition function and only adapt
the representation module to inputs from the target environ-
ment. Hence the learned knowledge of internal dynamics can
be reused across environments ignoring the variance of the
appearance.

In this paper, we propose a novel environment model
named Transferable Environment Model (TEM) with disen-
tangled state representation and transition modules, named
abstractor and predictor respectively. The abstractor is an
autoencoder, which projects the raw (pixel) observations to
a high-level feature space. The predictor is formed with the
action-conditional architecture [8], which estimates the future
features based on the latent space. In a single environment
(the source environment), we have access to a model via
learning the abstractor and predictor in two phases. Specially,
in view of that the disentangled learning can lead to the
convergence to a local optimal solution, we propose joint
prediction error as a loss function to overcome this unfa-
vorable situation. For generalizing the source model to a
target environment, we freeze the predictor and only adapt
the abstractor to the distribution of target observations. By
introducing the cycle consistence loss [12], we map the tar-
get observations to the latent space learned in the source
environment. Utilizing the source latent space as a common
space, we can ensure the consistence of the inputting space for
sharing predictor and we can also ensure the adapted model
work for the source environment.. A versatile abstractor and a
shared predictor makes up our model which is endowed with
the cross-environment generalizability.

To our best knowledge, this is the first for environment
models to generalize across environments. In order to demon-
strate the capacity of TEM, we conducted our experiments
on the Vizdoom Domain [13] that provides sufficient maze-
like 3D environments. Predicting in a single environment (the
source environment), TEM achieved the close performance to
the state-of-the-art model. Next, the source TEM can adapt
to the target environments by only one observation with-
out any interaction data, called zero-interaction adaptation.

FIGURE 2. The frameworks comparison. (a) The classic architecture of the state-of-the-art model (Oh Model) couples latent dynamics (transition
module) with state representation (encoder-decoder). (b) We propose the disentangled-dynamics architecture of TEM. The representation module is
independent of the transition module.
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FIGURE 3. Cross-environment transfer comparison. (a) Oh Model is overfitting in the source environment X and unable to straightly transferred to a
target environment Y . (b) The disentangled model learns a common feature space Z to connect the observation spaces of X and Y .

Meanwhile, the performance of the adapted TEM rivals that
of Oh-model trained with full transition data. Furthermore,
TES can continually adapt across a sequence of environments
without forgetting, called continual prediction. Here, zero-
interaction adaptation and continual prediction are the abili-
ties that previous models do not possess.

II. DISENTANGLED PREDICTION FRAMEWORK
The goal of an environment model is to estimate a state
transition function P(ot+1|ot , at ) predicting the next state
ôt+1 based on the current state ot and selected action at . The
prediction mapping can be expressed as P : O × A → O,
where O denotes the observation space and A is the action
space. As illustrated in Fig. 3(a), we learnPX : OX×A→ OX
in the source environment X . Since coupling of O and A
increases the complexity of input space, it exists inestimable
difficulties to reuse PX into the learning of PY : OY ×

A → OY for the target environment Y . We must retrain a
target model as we did in X .
The theory of disentangled representation [14]–[16]

focuses on learning underlying representations of the world,
which are not task or domain specific [17]. In this paper,
we introduce the idea of disentangled representation to
our model. Inspired by this, we consider to disentangle
the state representation with the state transition, which is
necessary for finding common state representations to con-
nect the observation spaces of source and target environ-
ments. Mathematically, we divide the original prediction
function P: O ×A −→ O into (i) state representation func-
tion F : O→ Z → O and (ii) latent transition function
PZ : Z ×A −→ Z , where Z is a latent feature space. In this
section, we will first construct and learn TEM in a single
environment.

A. DISENTANGLED PREDICTION
Under the disentangled framework, the full prediction
function is composed of separate state representation and
latent transition. Then TEM is correspondingly divided

into two modules respectively named abstractor and
predictor.

1) ABSTRACTOR
The front module for state representation is formed with a
variational autoencoder [18] that has the ability to extract
features and reconstruct inputs via unsupervised learning.
Inputting a raw observation o, abstractor encodes o into a
d-dimensional feature z ∈ Rd and then translates z to a
reconstructed observation ô. This module works for mapping
the raw (pixel) observations of the observation space O to
the latent feature space Z and then returning to O. Here the
encoding mapping f : O → Z and decoding g : Z → O
as described above are respectively denoted by fφ(z|o)
and gθ (o|z).

2) PREDICTOR
This internal module pω(zt+1|zt , at ) estimates the next obser-
vation relying on the encoded feature zt of current observation
by the abstractor. When selecting an action represented using
a one-hot vector at , the predictor aggregates the input feature
zt and at to obtain a predictive representation ẑt+1 of the next
state:

ẑt+1 ∼ pω(zt+1|zt , at ). (1)

where the aggregation of zt and at is the element-wise vector
multiplication.

3) COMPLETE PREDICTION
At time step t , given the input observation ot and action
vector at , TEM predicts the next observation ot+1 in three
steps. First, abstractor compressed the current ot into low-
dimensional zt ∼ fφ(z|ot ). Then predictor integrates the
abstracted representation zt with one-hot action vector at to
predict the next latent representation ẑt+1 with (1). Finally,
abstractor decodes the predictive coding ẑt+1 to generate
the estimating observation ôt+1 ∼ gθ (o|ẑt+1) at the time
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FIGURE 4. The disentangled architecture of TEM. Under the framework, the abstractor maps ot to a feature space Z and then the
predictor reasons about the future feature ẑt+1 based on (zt , at ). The latent prediction error Llatent

pred and raw prediction error Lraw
pred

compose the joint prediction loss.

step t + 1. The full prediction function from ot , at to ot+1
can be expressed as:

P(ot+1|ot , at )= fφ(zt |ot )pω(zt+1|zt , at )gθ (ot+1|zt+1), (2)

where the abstractor fφ(·)gθ (·) is independent of the
predictor pω(·).

B. PREDICTION LEARNING
We train TEM in two phases. To train the model, we sample
transition data from experiences of an agent interacting with
the environment. A transition (ot , at , ot+1) at time step t
is composed of the current observation ot , action at and
next observation ot+1. The transition dataset is denoted by
DT = {(o0, a0, o1), (o1, a1, o2), · · · , (on−1, an−1, on)}Nn=1.
Phase I (State Representation Learning): In the first

phase, we train the abstractor independent of the predic-
tor. We employ the observation dataset DO as training set.
DO = {o1, o2, · · · , oM }, only containing the observations,
is a subset separated from DT . Using the autoen-
coder, we construct a variational bound [18] on the data
log-likelihood for the abstractor. Given an observation
point o ∈ DO, the variational bound is expressed as:

log p(o) = log
∫
pz(z)pθ (o|z)dz

= log
∫
fφ(z|o)

pz(z)gθ (o|z)
fφ(z|o)

dz

≥

∫
fφ (z|o)

[
log gθ (o|z)− log

qφ(z|s)
pz(z)

]
dz

= Efφ (z|o)
[
log gθ (o|z)

]
−DKL

(
fφ(z|o)||pz(z)

)
, (3)

where pz(z) is the prior assumed as N (0, I ). The first term is
the expected reconstruction error, which is formed with the
mean square error. The second KL-divergence term is a regu-
larizer to avoid the overfitting in the finite dataset by encour-
aging the encoded features close to the prior pz(z). Upon the
training set DO, we yield the loss function expressed as:

Labs (φ, θ;DO)

=
1
|DO|

∑
o∈DO

‖ô− o‖2 + DKL
(
fφ(z|o)||pz(z)

)
. (4)

The abstractor is optimized by minimizing (4) with gradient
ascent methods.
Phase II (Latent Dynamics Learning):Given the transition

dataset DT and a trained abstractor fφ∗ (z|o)gθ∗ (o|z), we aim
to optimize the internal module predictor in the second phase.
With the observation ot and at at time step t , the goal of learn-
ing the predictor is to obtain the predicted feature ẑt+1 close
to the groundtruth zt+1 representing the future state ot+1.
An intuitive approach is to directly minimize the distance
between the features ẑt+1 and zt+1. However, only focusing
on the feature distance will lead the parameters of predictor
to converging at a local optimum. We are more interested in
obtaining accurate observation-level outputs. Thus training
the predictor module, we introduce a joint prediction error
as the loss function, composed of (i) the feature predic-
tion error Llatentpred and (ii) the observation prediction error
Lrawpred . The joint prediction error focuses on reducing differ-
ences between the predicted outputs and the groundtruth in
both Z and O.

We first calculate the feature prediction error. For each data
point (ot , ot , ot+1) ∈ DT , we obtain the predicted feature
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FIGURE 5. Cross-environment adaptation of TEM. In the source model, we extend the abstractor to a paired-stream architecture and frozen the
predictor. The target observations are mapped to the feature space Z by sharing the hidden encoder and decoder. Note that the adaptation to Y can only
use one observation data.

ẑt+1 and compare it with the groundtruth zt+1. For the whole
dataset, the feature predictive error can be expressed as:

Llatentpred (ω, φ∗;DT ) =
1
|DT |

∑
(ot ,at ,ot+1)∈DT

‖ẑt+1 − zt+1‖2,

(5)

where ẑt+1 ∼ fφ∗ (zt |ot )pω(zt+1|zt , at ) and zt+1 ∼

fφ∗ (zt+1|ot+1). The bar (such as φ∗) represents that the
optimal parameters will not be updated during the module
learning. In addition, we introduce the pixel-pixel error to
improve the pixel-level accuracy of the final outputs. Then the
observation prediction error is formed by the mean distance
between real and decoded observations, expressed as:

Lrawpred (ω, φ∗, θ∗;DT )=
1
|DT |

∑
(ot ,at ,ot+1)∈DT

‖ôt+1−ot+1‖2,

(6)

where the predicted observation ôt+1 ∼ gθ∗ (ot+1|ẑt+1) is
decoded with the predicted feature ẑt+1 by the abstractor
module.

In summary, the joint prediction error is expressed as:

Lpred (ω, φ∗, θ∗;DT )=Llatentpred (ω, φ∗)+βLrawpred (ω, φ∗, θ∗),
(7)

where β is a trade-off parameter. Through minimizing (7),
we can obtain the optimal predictor.

With the abstractor and predictor, we have access to a
basic TEM for predicting in a single environment. In the next
section, we will introduce how to adapt the basic model to
other novel environments.

III. CROSS-ENVIRONMENT PREDICTION
With a basic model, we can acquire the dynamics mapping
PX : OX × A→ OX for the source environment X . Focusing
on the cross-environment transfer to a novel environment
Y , we attempt to acquire a target prediction mapping PY :
OY ×A→ OY utilizing the learned mapping PX . The theory
of transfer learning [19] defined that the source and target
domains are related. Here, we share a common latent space
Z and a common latent predictor PZ across environments. In
many cases, such as navigation tasks in different rooms, there
exist physical laws between the source and target environ-
ments which we name as related environments. It is natural
for us to consider sharing common high-level representations
and latent dynamics for cross-environment prediction.

In this section, we illustrate how to transfer the learned PX
(source model) from X to Y . Furthermore, we expound the
continual adaptability of TEM during adapting to a sequence
of environments.

A. ADAPTATION ACROSS TWO ENVIRONMENTS
In our cross-environment prediction task, we convert the
problem from dynamics adaptation to observation adaptation.
As shown in Fig. 3(b), the learning of PX has been done
in two steps: (i) we first learn the representation mapping
FX : OX → Z → OX (the abstractor module) and mean-
while obtain a latent feature space Z corresponding to low-
dimensional representations; (ii) based on the latent space
Z , we learn the latent prediction mapping PZ : Z × A →
Z (the predictor) representing the high-level dynamics. We
respectively setZ andPZ as common latent feature space and
latent transition function. Thenwe can adapt the sourcemodel
to the target environment Y only by learning a new
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representation mapping FY : OY → Z → OY which
connects OY and Z . Combing FY with the constant PZ ,
we obtain a full predictive model of Y with disentangled
prediction function PY : (OY → Z)× A→ (Z → OY ). The
adaptation does not need the agent to interacting with the tar-
get environment, which is called zero-interaction adaptation.

The source model fX ·pZ ·gX is extended to a paired-stream
architecture as shown and described in Fig. 5, where a target
stream is introduced into abstraction module of the source
model and the predictor pZ is kept constant. In the source
stream, the abstractor is divided into four parts: individual
encoder fX , common encoder fS , common decoder gS and
individual decoder gX , of which parameters are denoted by
φX , φS , θS , θX Here individual parts deal with the external
observation space and shared parts link the common feature
space. For pulling the observations of Y in, we add individual
encoder fY and decoder gY cloned from the source stream. For
clarity, we denote the full encoder and decoder of the source
path with FX = fX (h|o)fS (z|h) and GX = gS (h|z)gX (o|h).
Similarly, FY = fY (h|o)fS (z|h) and GY = gS (h|z)gY (o|h) in
the target path.

Our goal is to capture common representations shared by
X and Y . Feed an observation oy ∈ OY into the target stream,
then target encoder generates a latent representation zy. We
aim to enforce zy satisfying the latent feature distribution of X
asmuch as possible. Here we introduce theCycle Consistency
Loss ( CC loss ) referring to CycleGAN [12]. Given a target
observation y ∈ OY , a translation from the target to the source
is denoted by Y → X which means that y is first encoded by
FY and then decoded into the source style by GX . We use
TYX = FY · GX and TXY = FX · GY to denote the translation
Y → X and X → Y respectively. A cycle Y → X → Y
means the cycle translation y → TYX (y) → TXY (TYX (y)).
Through reducing the distance between y and TXY (TYX (y)),
we enforce the feature zy having common attributes with the
feature zx ∈ Z , where Z is the latent space earlier learned by
the source model. Sampling the observation set DY

O from Y ,
we construct the cycle consistency loss as:

Lcycle
(
2X ,2Y ,2S;DY

O

)
=

1

|DY
O|

∑
y∈DY

O

‖TXY (TYX (y))− y‖2, (8)

where shared and individual parameters are denoted by
2S = (φS , θS ), 2X = (φX , θX ) and 2Y = (φY , θY )
respectively.

The cycle consistency loss mainly focuses on enforcing
the target representations zy to obtain common attributes with
the source representations zX ∈ ZX . In addition, we also
expect that zy fits the individual distributions in Y . Thus we
add the reconstruction loss as the constraint to avoid the
representations deviating the original observation distribution
in the target Y . The reconstruction loss LYrecons is formed
with (4) using DY

O, expressed as:

LYrecons
(
2Y ,2S;DY

O

)
= LYabs

(
DY
O

)
(9)

Considering that the learned predictor is based on the
latent space Z in the source environment, we should keep Z
still maintaining the source attributes to make the predictor
effective. In this purpose, the parameters of shared networks
will not be updated by the data from Y . Noting that the
bars exists on 2S , it indicates that fS and gS are detached
during backpropagation of loss (8) and (9). And we introduce
the reconstruction loss LXrecons for X to maintain the source
mapping FX : OX → Z → OX :

LXrecons
(
2X ,2S;DX

O

)
= LXabs

(
DX
O

)
(10)

Algorithm 1 Cross-Environment Prediction
Input:
Source dataset DX

O = {o
X
1 , o

X
2 , · · · , o

X
M }

Target dataset DY
O = {o

Y
0 }

Paired-path abstractor parameters 2 = 2S ∪2X ∪2Y .
Frozen predictor parameters ω.
// Initialization
Initialize parameters 2Y and batch size Nb;
// Transfer learning
while not converged do

for iteration step i = 1, · · · ,
[
M
Nb

]
do

Sample a batch Bi ∈ DX
O ;

Feed Bi and DY
O into two-path abstractor;

Calculate Ltransfer
(
2;Bi,DY

O
)
from (11) ;

Update 2← 2− αtOLtransfer (2) ;
end

end
// Module Aggregation
Aggregate 2 of extended abstractor and ω of predictor
Obtain a cross-environment predictive model with
(2, ω)

Above all, the full loss function of adaptation from X to Y
is:

Ltransfer
(
2X ,2Y ,2S;DX ,DY

)
= Lcycle + λYLXrecons + λXLYrecons (11)

where λX , λY are a trade-off parameter. By minimizing (11),
we can obtain the abstractor adaptive to both source X and
target Y . Combined the abstractor and predictor, a full pre-
diction function for the target environment can be available:

PY (ot+1|ot , ot ) = fY (ht |ot )fS (zt |ht )

·pZ (zt+1|zt , at )gS (ht+1|zt+1)gY (ot+1|ht+1). (12)

The process of cross-environment adaptation for TEM is
described in Algorithm. 1. Referring to [20], we can use only
one observation to achieve adaptation of the abstractor as
shown in Algorithm. 1.

VOLUME 7, 2019 106853



Q. Yan et al.: TEM With Disentangled Dynamics

B. CONTINUAL PREDICTION ACROSS MULTIPLE
ENVIRONMENTS
Continual (lifelong) learning is the ability to learn con-
secutive tasks without forgetting how to perform previ-
ously trained tasks, considered as an important capacity for
artificial general intelligence [21]. In this paper, we define
continual adaptation for predictive models as the ability to
continually adapt to a novel environment without forgetting
the dynamics learned in the previous environments.

Algorithm 2 Continual Prediction
Input:
Source observation dataset DX

O = {o1, o2, · · · , odM } ;
Target environments set Y = {Y1,Y2, · · · ,Yn} ;
Parameters set 2 = {2S ,2X };
// Initialization
Initialize learning rate αt ;
Clone (2X ,2S ) into temporal parameters (2′X ,2

′
S ) ;

Clone 2X into 2Y and randomly initialize 2Y ;
// Continual adaption process
for Y = Y1,Y2, · · · ,Yn ∈ Y do

Randomly initialize 2Y ;
Aggregate 2Y ,2X and 2S into paired-path model ;
Adapt the source model to Y with Algorithm. 1 ;
// Parameters storage
Put individual 2Y into 2← 2 ∪ {2Y } ;
// Reused in the previous
if used in Yi ≤ Y then

Combine 2Yi and 2
′
S to form model P2Yi2

′
S
;

Make predictions in Yt using P2Yt2
′
S
.

end
end

We assume such a scenario that a model covers a sequence
of different environments Y0,Y1,Y2, . . .Yn}. The environ-
ment sequence can be in any order, and the first Y0 is set
as the source environment X . At the first task step, we can
learn a predictive model in X (the source environment). We
denote the shared modules as PSh = fS (z|h)pz(z|z, a)gf (h|z)
and storage all model parameters 2X ,2S in a parameter
set 2 = {2X ,2S}. When encountering the first target
environment Y1, the source model can adapt to Y1 with
Algorithm. 1. Thenwe get individual encoder fY1 and decoder
gY1 to form a full predictive model fY1 · P

S
h · gY1 working

for Y1. We storage individual parameters 2Y1 = (φY1 , θY1 )
in 2 = 2 ∪ {2Y1} where the size of 2Y1 is small. Since
shared PSh only depends on the observation distribution of
X , transferring the source model to others will not affect
the parameters of shared PSh . Even if the source model is
transferred to Y2, it can still be effective to Y1 only by aggre-
gating 2Y1 with 2S . Therefore, the model can sequentially
adapt to novel environments andmeanwhile retain the learned
dynamics function in a small memory cost. The continual
prediction learning is illustrated in Fig. 6 and described in
Algorithm. 2. So the prediction across two environments

FIGURE 6. Continual prediction of TEM.

can be generalize to multiple environments only using one
model.

IV. EXPERIMENTS
Our experiments are designed to (i) evaluate the performance
on prediction for an environment, (ii) verify the ability of
cross-environment prediction and (iii) demonstrate the ability
of continual prediction without forgetting. We compare our
model with a baseline, the state-of-the-art model of Oh. In
the following, we test TEM and Oh Model in the source
environment to predict on testing dataset. Then we focus
on cross-environment prediction. We succeed in transferring
the source TEM to multiple target environments with only
one observation while Oh Model failed. And the prediction
performance of transferred TEM is close to the Oh Model
trainedwith full transition data. Furthermore, we use only one
model to adapt to a sequence of environments, in which TEM
can continually adapt to them and remember the previous
environments but Oh Model will lose its earlier memory.

A. ENVIRONMENT SETTINGS
In our experiment setting, multiple environments are
required. We conduct our experiments on the ViZDoom,
an AI research platform which employs the first-person per-
spective in a semi-realistic 3D world [22]. We generate vari-
ant environments with the Slade [13], a map editor dedicated
to Vizdoom. In Slade, we can design the styles or structures
of environments, and also add different components. In our
experiments, we sample four environments composed of a
source environment and three target environments, as shown
in Fig. 7. We train both TEM and baseline in the source
environment and then attempt to reuse the source models into
the other target environments.

B. DATA AND PREPROCESSING
The dataset DT contains 5000 transition tuples
{(o, a , o′)i}5000i=1 from the interactions between the agent and
environments. The observation is resized as a 64 × 64 RGB
image. We use an exploration-based A3C [23] agent, capable
of covering the entire maze, to sample experiences as training
data. In the source environment, the training of both TEM
and Oh Model requires the whole transition set DX

T . In
each target environment, the dataset of TEM only contains
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FIGURE 7. The environments used in our experiment. The map structure and initial observation are respectively shown in the left and right of each
sub-figure.

FIGURE 8. Prediction performance in the source environment. (a) TEM has almost the same prediction accuracy in a single environment. (b) We visualize
the predicted trajectories of TEM in 10 time steps.

one image captured from the initial observation o0 of the
agent. Yet, the target dataset DYi

T of Oh Model consists of
the same number of transitions as the dataset for the source
environment.

C. EVALUATION METHODS
In each of the environments built above, we collect sev-
eral trajectories a testing set, expressed as {((o0, a0, o1),
· · · , (oK−1, aK−1, oK ))(i)}

Nt
i=1 which consists of Nt sampled

trajectories with the length of K time steps. Given a sam-
pled trajectory, predictive models output the corresponding
predicted trajectory. The predicted trajectory is generated by
unrolling [8] the model, which uses the predicted frame as an
input for the next time-step. We evaluate the prediction per-
formance with quantitative evaluation and qualitative eval-
uation. In quantitative evaluation, we use K-step prediction
error, calculated with mean square error between the predic-
tion and groundtruth. We plot the error-step curve for each
model to compare our model with the baseline. In qualitative
evaluation, we visualize the predicted trajectories into the
sequences of images. In this way, one can more intuitively
evaluate the prediction performance.

D. PREDICTION IN THE SOURCE ENVIRONMENT
In this part, we expect to demonstrate that our model still is
able to make accurate predictions although the prediction of
TEM is based on the high-level feature space. Then we eval-
uate the predictive capacity of TEM on prediction in a single
environment (the source environment X ). We train TEM and
Oh Model with DX

T the source environment. Feeding testing
set to the trained models, we obtain the predicted trajectories
of both models in the source environment.

1) QUANTITATIVE EVALUATION
First, we evaluate by comparing the predicted trajecto-
ries with those of the baseline. In quantitative evaluation,
the error-step curves (K = 50) of both models are plot-
ted in Fig. 8(a). We can see that the predicted trajectories
are almost exactly consistent with the baseline. As already
mentioned above, the introduction of a disentangled structure
loses pixel-level information of the predicted outputs. And
our model is slightly worse than Oh Model in prediction
accuracy, which can prove it. However, our goal is indeed
to exchange the cross-environment predictive capability by
sacrificing little model accuracy for a single environment.
Even so, our model is still able to maintain predictive ability
close to the state-of-the-art model.

2) QUALITATIVE EVALUATION
Second, we evaluate by visually comparing the prediction
with the groundtruth in qualitative evaluation. For more intu-
itive illustration, we visualize the predicted trajectories and
the groundtruth in two streams as shown in Fig. 8(b). As
seen in the observation trajectories, we can find that the
predicted outputs from TEM are realistic compared with the
real trajectories. This also proves that the disentanglement
has little adverse effect on prediction accuracy in a single
environment.

E. ZERO-INTERACTION TRANSFER PERFORMANCE
The cross-environment transfer task from X to Yi is defined
as learning a model for the target environment Yi by utilizing
the trained source model. As entangling the observations and
actions, the learning of Oh Model must depend on the inter-
actions between the agent and target environments. However,
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FIGURE 9. Cross-environment prediction performances. The TEM adapted by only an image has competitive performances with Oh Model trained by
full transition data.

FIGURE 10. Visualization of cross-environment prediction. Given an input observation and determinate actions, a predicted trajectory can be visualized.
The predicted trajectories (pointed by dashed arrows) from adapted TEM are almost consistent with the groundtruth trajectories (pointed by solid arrows)
from the real platform.

in many cases, the access to interacting with the unknown
environments is expensive. In the following, As mentioned
in Section. III, TEM can adapt to a novel environment with-
out trial-and-error interactions. We clone the source model
to three copies and respectively transfer the three cloned
models to target environments As described in Algorithm. 1,
we obtain the TEM working for the given target environment
with only one observation, which uses the initial inputting
observation. In this part, we will test on the three target
environments to demonstrate the unique ability of TEM. The
results are shown in Fig. 9 and Fig. 10.

1) QUANTITATIVE EVALUATION
We compare the cross-environment prediction performance
of TEM with that of Oh Model trained train with the full
transition data. In Fig. 9, the models predict in 30 steps
(K = 30). We can see that our model can achieve almost the
same performance as the Oh Model. The adaption for TEM
to each target environment only use one initial observation

without any interactions. In the figure, TEM has close perfor-
mance to OhModel while OhModel needs to be retainedwith
lots of transition data sampled from the target environment.
Note that the values of prediction error have large difference
in different environments. That is in that the prediction error
is the mean error of pixels and average pixel values are not
completely close in different environments.

2) QUALITATIVE EVALUATION
We still evaluate the performance of TEM in target environ-
ments with output visualization. Similarly as we did in the
source environment, we visualize the predicted trajectories
of TEM and compare them with the groundtruth for all of the
three target environments, as shown in Fig. 10. From the fig-
ure, the predicted images can reflect the real trends of the
state changes in respond to the actions. Noise exists in the
output images due to information loss during transfer process.
But we can see that the basic structure and components are
presented in the predicted observations. Therefore, the shared
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FIGURE 11. Continual prediction performance. We sequentially train Oh Model or adapt TEM in a sequence of environments. TEM in the previous
environments still performs high accuracy while Oh Model gets worse.

feature space does reflect high-level representations of the
observations in these related environments. And we also cap-
ture the common latent dynamics of the related environments
by constructing the common predictor module.

F. CONTINUAL PREDICTION PERFORMANCE
Another advantage of TEM is that it can continually adapt to a
sequence of environments without forgetting the knowledge
learned in the previous. In general settings, a model-based
agent is equipped with only one predictive model. When the
agent needs to cope with multiple environments, it will be dif-
ficult for the agent to perform well in all of them considering
the catastrophic forgetting [24]. In this experiment, we aim
to verify that our model can remember the learned dynamics
but Oh Model fails to.

1) TASK SETTING
We consider a task that we use only one network to simulate
a sequence of environments for TEM or Oh Model. In this
task, both TEMandOhModel will copewith the environment
sequence, which is set as: source→ target I→ target II→
target III as shown in Fig. 7. First, we randomly initialize
the parameters of both models. In the source environment,
we train TEM and Oh Model on the full transition set DX

T .
Then we adapt TEM and fine-tune Oh Model from target
environment I to target III. The initial models to simulate
a novel environment are from its last environment. And
having adapted to a novel environment, the model will be
tested on the prediction performance in all of the previous
environments.

2) EVALUATION AND ANALYSIS
We evaluate the continual prediction performance with one-
step prediction error, shown in Fig. 11. The curves of TEM
This proves that TEM can continually adapt to novel envi-
ronments without performance degradation in the previous
environments. In contrast, for Oh Model, the prediction error
in the previous environments increases badly. It indicates

that Oh Model will lose the old knowledge after learning
new dynamics. We can find that our model is more versa-
tile than Oh Model. Furthermore, the continual prediction
performance of TEM also proves that our model learned a
common feature space that fits these related environments
and meanwhile the predictor dose learn the latent dynamics
which is shared among them. Thus, TEM is also a general
environment model which can predict across multiple envi-
ronments simultaneously.

V. RELATED WORK
A. MODEL-BASED RL
Model-based RL aims to control agents by using a predictive
model to reason about the future. Having a perfect environ-
ment model, model-based RL is a more straight and efficient
approach compared with model-free RL [23], [25], [26].
Earlier, researchers have also demonstrated that RL can be
accelerated if an environment model is learned and used for
policy learning [6], [27]–[29]. In recent years, model-based
RL approaches have shown impressive success. In current
model-based methods, predictive models can be mainly used
to (i) plan by imagining different potential trails [30]–[32];
(ii) improve data efficiency [33]–[35]; (iii) improve explo-
ration efficiency in sparse-reward tasks [36], [37]. In this
paper, we focus on another advantage of model-based RL
in transfer problem. For the environment dynamics model
is independent of the tasks, model-based RL methods are
more data-efficient and flexible to handle multiple tasks
[38], [39] in the certain environment compared with mode-
free RL. However, the current model-based RL methods
cannot do well on tasks across different environments since
existing dynamics models have one-to-one relationships with
environments.

B. ENVIRONMENT DYNAMICS MODELING
Model-based RL methods decompose the RL problems into
two subproblems: how to learn a model and how to control
agent with the model [30]. The research on how to construct
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an accurate environment model is significant and essential
for model-based Rl methods. Schmidhuber and Huber [40]
first introduced the idea of building a model to simulate the
environment for vision-based RL problems. More recently,
Khansari-Zadeh and Billard [41] used Gaussian mixture
models to learn more general dynamics model for robot con-
trol. Deep neural networks have recently enabled significant
advances in simulating complex environments, allowing for
models that consider high-dimensional visual inputs across a
wide variety of domains [42]–[44]. In current stage, themodel
of Oh et al. [8] represents the state-of-the-art in this area,
demonstrating high accuracy in deterministic and discrete-
action environments. Chiappa et al. [9] built on the model of
Oh and advanced in long-term prediction performance. The
architecture proposed by Oh is still representing the state-
of-the-art framework. However, the models mentioned above
only fit in one environment and are unable to generalize
across environments. In this paper, we focus on the gener-
alization of predictive models. To our knowledge, our model
is the first one to have the ability to generalize across multiple
environments.

C. DOMAIN ADAPTION
The goal of domain adaptation (DA), a form of transfer
learning, is to deal with changes to the input distribution [17].
It is widely applied in computer vision (CV) [45]–[48] and
reinforcement learning (RL) [17], [49], [50], aiming at adapt-
ing a model trained in a source domain for using in a target
domain [51]. Our work can be viewed as a bridge to con-
nect both CV domain adaptation and RL domain adaptation.
A major idea is to map the source and target domains into
a shared feature space [52]–[54], which inspired us to con-
struct a common latent space connecting different environ-
ments. Another line is to reduce the differences between
the distributions of source and target domains by image-to-
image translating techniques [12], [20], [55]. The previous
works mainly deal with visual inputs while our model needs
to response to numerous combinations of observations and
actions containing temporal information. This is the first time
to apply DA into the dynamics learning, which has more
complex inputting spaces than common classification tasks.

VI. CONCLUSION
Addressing the issue of modeling transferable dynamics,
we present a novel environment model named TEM with
the ability to generalize across multiple environments. TEM
is the first environment model to simulate in multiple envi-
ronments. Different from the classic models, our model
first learns a visual module for abstracting high-level state
representations and then learn a latent predictor upon the
feature space. The disentangled framework ensures differ-
ent observation distributions to share a common feature
space and latent predictor. For adapting to target environ-
ments, we demonstrate that our model only using few tar-
get observation images performs competitive results with
the state-of-the-art model (Oh Model) trained by full target

interaction data. In an advanced task for continual adaptation,
TEM also outperforms Oh Model for looking back in the
previous environments.

In this paper, we show that our model is a more general
model in response to multi-environment dynamics learning.
Since we mainly focus on the generalization performance,
the problem of long-term prediction accuracy was not con-
sidered a lot. In future work, recurrent neural networks can
be introduce into our framework for pursuing high accuracy
in long-term prediction across environments.
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