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ABSTRACT Coordinated multi-point (CoMP) transmission is one of the key features for long term evolution
advanced (LTE-A) and a promising concept for interference mitigation in 5th generation (5G) and beyond
future densely deployed wireless networks. Due to the cost of coordination among many transmission points
(TP), radio access network (RAN) needs to be clustered into smaller groups of TPs for coordination. In this
paper, we develop a novel, load-aware clustering model by employing a merge/split concept from coalitional
game theory. A load-aware utility function is introduced to maximize both spectral efficiency (SE) and load
balancing (LB) objectives. We show that proposed load-aware clustering model dynamically adapts into
the network load conditions providing high SE in low-load conditions and results in better load distribution
with significantly less unsatisfied users in over-load conditions while keeping SE at comparable levels when
compared to a greedy clustering model. Simulation results show that the proposed solution can reduce the
number of unsatisfied users due to over-load conditions by 68.5% when compared to the greedy clustering
algorithm. Furthermore, we analyze the stability of the proposed solution and prove that it converges to a
stable partition in both homogeneous network (HN) and random network (RN) with and without hotspot
scenarios. In addition, we show the convergence of our algorithm into the unique clustering solution with
the best payoff possible when such a solution exists.

INDEX TERMS 5G, network MIMO, coordinated multi-point, SON, load balancing.

I. INTRODUCTION
Mobile data traffic has been growing rapidly and it is expected
to grow at an annual growth rate of 46% over the next 5 years
i.e. a 7-fold increase is expected by 2022 [1]. A 1000 times
more capacity is envisioned for the next generation wireless
networks: 5G [2]. Cell densification, additional spectrum and
advanced interference mitigation techniques are proposed to
meet this additional capacity challenge for 5G.

To achieve higher SE, CoMP or network multiple-input
multiple-output (MIMO) is a promising concept which can
mitigate inter-cell interference, even exploit the interference
as useful signal. Multiple users are jointly served by a num-
ber of base stations (BS) in coordination, where schedul-
ing/precoding functions are performed jointly, typically from
a central CoMP control unit (CCU). CoMP is already a
key feature, standardized for LTE-A, by third generation
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partnership project (3GPP) in Release 11 [3] and it is a
promising concept discussed for 5G [2], [4].

Coordination between large number of BSs comes with
its challenges such as high amount of data sharing (user
data/channel state information (CSI)), precise synchroniza-
tion for coherent joint transmission, complex precoding and
scheduling design, additional signal processing etc. Due to
these challenges, coordination can only take place within
small clusters of cells. Hence network BSs need to be
grouped into smaller clusters for CoMP. Efficient cluster
design is a key factor to maximize the CoMP gain and
achieve various network objectives like SE, energy effi-
ciency and LB. An extensive survey on CoMP and clus-
tering challenges is available in [5]. Network clusters need
to be dynamic and adapt to changing network conditions
and user profiles. Dynamic CoMP clustering is identified
as a key concept for maximizing CoMP gains by adjusting
network clusters dynamically to adapt into spatio-temporal
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changes in user/network profiles [5]. Static clusters will fail
to provide optimum CoMP gains when network conditions or
user concentration changes significantly in the network. Self-
organized, dynamic CoMP clusters are also in paramount
importance in the case of man-made or natural disasters
where user density is populated in small areas and network
infrastructure are partly damaged and not in service. CoMP
clusters need to adapt to emergency network situation without
manual intervention to provide optimum service possible
with given changes.

There are mainly three different types of CoMP clustering
studied in literature [5]:

1) Network-centric clustering: Cells are grouped into
clusters where CoMP takes place within each cell clus-
ter, i.e. users are assigned cells from within the cell
clusters only. Users which are located at the cluster
boundary will experience interference from cells out-
side of the cluster. This type of clustering reduces
the additional overhead and complexity from CoMP,
but CoMP gain is compromised due to inter-cluster
interference.

2) User-centric clustering: There is no network-centric
clustering, but users are allocated groups of cells
for cooperation, so each user is provided its own
user-centric cluster of cells. There is no limit on which
cells to be selected for each user. This type of clustering
maximizes the CoMP gain, however the CoMP over-
heads and complexity is very high.

3) Hybrid clustering: This type of clustering utilities
both approaches above, employing a network-centric
clustering to group cells into clusters first to reduce
CoMP implementation complexity and overheads,
and deploy user-centric clustering within each of
the network-centric cluster where users are allo-
cated their own individual group of cells within
the network-centric cluster for cooperation. This
approach provides a balanced approach where com-
plexity/overheads for CoMP is reduced and CoMP gain
is relatively high with user-centric clustering model
operating within each network-centric cluster.

In this paper, we define LB as one of key objectives
for CoMP clustering as CoMP is likely to deployed in
areas where there is high concentration of users at differ-
ent times, and LB is key to manage the high demand in
specific areas. For the first time in literature, we design
a network-centric clustering model where LB and SE are
jointly optimized. We deploy a user-centric clustering model
within the network-centric clusters to present a hybrid clus-
tering model for a novel, low complexity solution. Related
work in literature and the contribution of our work is further
elaborated in the next section.

II. RELATED WORK AND PROBLEM STATEMENT
Network clustering challenge for CoMP attracted an exten-
sive amount of research activity recently [5]. Li et al. [6]
proposed a dynamic network-centric clustering algorithm to

maximize cell throughput where users are proposed to be
cooperating with two TPs only. Solution relies on exhaustive
search for finding the best clusters to maximize the number of
users with their preferred two cells in the same cluster, hence
not scalable for larger networks. Limiting coordination to a
fixed size (i.e. two) for each user can also lead to inefficient
CoMP design in some scenarios where there is more than
two cells serving in the area. In [7], a greedy algorithm is
employed to form dynamic network-centric CoMP clusters
with the aim of maximizing SE in uplink where a fixed
maximum cluster size is proposed. Fixed cluster size leads
to inefficiencies depending on the BS deployment density,
where higher cluster size is required for dense deployment
scenario to avoid inter-cell interference and maximize CoMP
gains and lower cluster size is sufficient in more sparse
deployment. Cluster size needs to be a dynamic parameter
which should adapt to the density of the network. Moreover,
depending on which cell the algorithm starts from, it ends
up with a different clustering scheme which degrades the
final design especially for a network with non-homogeneous
user traffic. Moon and Cho [8] propose a cluster merge
algorithm to maximize SE where every merge possibility
is evaluated and cells are merged into clusters based on
SE improvement. Unlike [7], clusters are formed around the
much needed loaded areas first, however the solution is not
scalable due to high complexity with large network size. This
proposal again is limited to a static maximum cluster size.
A distributed coalition formation framework using coalitional
game theory is presented in [9] where a merge/split game
is proposed for a distributed, low overhead cost cluster for-
mation for users. Maximum cluster size is also dynamically
allocated depending on the density of users. Although the
proposed algorithm is a distributed one, it lacks on scalability
for larger network size, as the number of possible merge
operations increase with the network size. A similar approach
is employed in [10], where BSs search for the best cluster to
merge at regular time intervals. The solution also lacks on
scalability similar to [9] and both solutions employ a capac-
ity function as the utility which lacks on a comprehensive
objective taking various network performance indicators into
account. A holistic approach to CoMP clustering needs to
combine multiple network objectives like load balancing,
energy efficiency, backhaul optimization etc. alongside with
SE and jointly optimise these key objectives.

A number of multi-objective dynamic clustering algo-
rithms are studied in literature where energy efficiency and
spectral efficiency are jointly optimized [11]–[13] and also
backhaul availability is taken into account for clustering
design [14]–[16]. However, to our knowledge, load bal-
ancing has not been considered in network-centric CoMP
clustering in literature which jointly optimize LB and SE.
Given that CoMP is likely to be deployed in interference-
limited, dense deployment scenarios, there will be inevitably
hotspot areas where some cells will be much more loaded
than others at certain times of the day. Additionally, in the
event of disasters, users will be concentrated in small areas
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causing high load on certain BSs. Autonomous LB solu-
tion is required to distribute the load and relieve conges-
tion at hotspots without manual intervention. In the case of
CoMP deployment, LB needs to be taken into account in a
hybrid clustering solution where load-aware network-centric
clusters are formed, and user-centric clustering is deployed
within each network-centric cluster. There are few studies
in literature which provide load-aware user-centric clusters.
A user-centric clustering solution is provided in [17] for
non-coherent CoMP scenario to jointly optimize LB and SE.
In our recent work, we presented a load-aware, user-centric
clustering algorithm [18] for multi-user (MU), joint transmis-
sion (JT) CoMP scenario where trade-off between LB and
SE gain is studied. Both solutions suffer high complexity and
increased CoMP overhead when CoMP is deployed within
large number of cells. A load-aware network-centric solution
is required to cluster the radio access network into small
groups of cells where user-centric solution is deployed within
each cluster. To our knowledge, there is no network-centric
clustering solution studied in literature which takes LB into
account.

In this paper, we attempt to fill the gap in literature and
present a novel load-aware network-centric clustering algo-
rithm where LB and SE objectives are jointly optimized.
We formulate a merge/split coalition formation game to
design load-aware clusters for DL MU-JT CoMP scenario.
A load-aware utility is designed to formulate the trade-off
between cluster size/complexity and SE/LB. A dynamic clus-
ter size adaptation is formed where maximum cluster size
is dynamically increased in high load conditions to improve
SE and reduce load. We show that our proposed merge/split
cluster formation framework provides a low complexity solu-
tion and always converges to a stable partition in both HN
and RN scenarios with different load conditions. Moreover
our load-aware clustering model achieve high SE in low-load
scenario and better load distribution in high-load scenario
resulting in lower number of unsatisfied users while keep-
ing SE at comparably high levels. We analyze the trade-off
between additional complexity of bigger cluster size and the
improvement in SE and LB in both HN and RN scenarios.
Simulation results are compared to an improved version of
greedy clustering model presented in [7].

In this context, the unique contribution of this paper is
that we introduce LB as one of the key objectives for
network-centric clustering for the first time in literature and
develop a novel, low complexity and stable network-centric
clustering model as a first attempt to fill the gap in litera-
ture for load-aware network-centric CoMP clustering, jointly
optimizing LB and SE.

The rest of the paper is organized as follows. In Section III,
we present our system model for MU JT-CoMP and dis-
cuss key performance metrics and overheads for CoMP.
In Section IV, we first present coalition formation game
concepts. Next, we introduce our SE-based and load-aware
utility functions employed in our coalitional game. We then
present merge/split game operation in detail and discuss its

complexity and stability. In Section V, we present simulation
results for HN and RN with and without hotspot scenarios.
Finally, conclusions are drawn in Section VI.

III. SYSTEM MODEL
A. NETWORK MODEL
Consider a heterogeneous network (HetNet) scenario where
there is one macro base station (MBS), N small cells (SC)
and K users which are distributed within the coverage area
of the MBS. The SCs are connected to the MBS with fast
fiber backhaul links where all SCs share their CSI with MBS.
Similar to the approach taken by 3GPP scenario in [19], a des-
ignated frequency spectrum is assumed at each layer, hence
no interference is expected between MBS and the SC layer.

MU-JT CoMP is employed at SC layer where user data is
made available in all SCs within the same network-centric
cluster. Network-centric clustering and associated precod-
ing/scheduling is performed at CoMP control unit located at
theMBS.We propose that re-clustering activities don’t aim to
exploit the fast fading changes (i.e. in miliseconds) but it will
respond to spatio-temporal changes in user/demand profile
and the network. Hence, we propose re-clustering activity at a
slower rate i.e. in seconds/minutes where fast fading changes
are averaged out within this time window. This provides
extra resilience in clustering decisions to issues like imper-
fect CSI knowledge and also reduce the additional signaling
required for faster re-clustering [20]. Precoding within the
cluster takes place at much faster rate (i.e. in milliseconds)
where fast fading changes are exploited. We assume ideal
backhaul and perfect CSI knowledge where intra-cluster
interference is reduced to negligible levels with a typical
precoder like zero forcing (ZF) precoder. Similar assumptions
are made in other clustering works such as [7], [21].

Assume that the SC layer is partitioned into smaller clus-
ters of SCs C = {C1, . . . ,Cs} and users are assigned to
each SC cluster forming user clusters U = {U1, . . . ,Us}
i.e. user group Ui is assigned to SC cluster Ci. Suppose
any user UEk ∈ Ui is assigned a network-centric cluster
Ci and a user-centric cluster of Ck

i where |Ck
i | = T and

Ck
i ⊆ Ci. Let U k

i be the group of UEs including UEk which
are scheduled at the same physical resource block (PRB) in
Ck
i where |U

k
i | = R.We assume one antenna for each SC and

UE for simplicity. A T × R virtual MIMO system is formed
with Ck

i SCs and U k
i UEs.

For each UE in U k
i , received signal can be expressed as:

y = HWx+ n,H ∈ CR×T ,W ∈ CT×R (1)

where channel matrix H =
[
h1h2 . . . hR

]T
and channel vector at UEk is expressed as:

hk =
[
hk1hk2 . . . hkT

]
(2)

Precoding matrix W =
[
w1w2 . . .wR

]
and beamforming vector for UEk is expressed as:

wk =
[
w1kw2k . . .wTk

]T (3)
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FIGURE 1. System model for downlink MU JT-CoMP.

An illustration of the system model is shown in Figure 1.
Received signal at UEk is:

yk = h
Cki
k w

Cki
k xk +

∑
i∈U k

i /k
h
Cki
k w

Cki
i xi

+

∑
j∈K/U k

i
h
N /Cki
k wjxj + nk (4)

First term in (4) is the desired signal, where the second term
is the intra-cluster interference from SCs within the cluster
Cki followed by inter-cluster interference from SCs outside of
the cluster Cki . The last term nk is the additive Gaussian white
noise (AGWN) at UEk .

SINR at UEk can be expressed as:

SINRk

=
|h

Cki
k w

Cki
k xk |

2

∑
i∈U k

i /k
|h

Cki
k w

Cki
i xi|

2
+
∑

j∈K/U k
i
|h

N /Cki
k wjxj|

2
+|nk |2

(5)

Intra-cluster interference term
∑

i∈U k
i /k
|h

Cki
k w

Cki
i xi|

2
in (5)

becomes negligible when a typical precoder like ZF precoder
is employed at the CCU with perfect channel knowledge.
We assume equal transmit power on each physical resource
and also equal total transmit power for each SC. Average
SINR term is employed for clustering algorithm as discussed
in the previous section. The complex fast fading channel
coefficient of the path loss is averaged out in average SINR
term and hence, SINRaverk can be simplified as:

ˆSINRaverk =

PTx
∑

i∈Cki
|gki|2

PTx
∑

j∈N /Cki
|gkj|2 + N0Btot

(6)

where N0 is the noise spectral density, Btot is the total system
bandwidth and gki is the distance based path-loss and shadow
fading component.

Any user UEk is first assigned a network-centric cluster
Ci and a user-centric cluster Cki is formed for UEk from SCs
within Ci based on average received signal level. Inspired
from our previous work in [18], 2 simple conditions are fol-
lowed to form user-centric cluster Ck

i from Ci:
1) Average received power level at UEk from SC j in Ck

i
(Prxkj ) should be greater than a minimum threshold i.e.
Prxkj > Pmin. This eliminates any SCs which dont
provide the required level of coverage to UEk .

2) The difference in average received power from the best
serving SCm (Prxkm) to SC j within Cki should not be
greater than a treshold i.e. Prxkj /P

rx
km > P1. This ensures

only SCs with similar received power levels are in
the cluster to maximize interference cancellation from
CoMP and prevent unnecessary addition of SCs in Ck

i .
User-centric clusters Cki always have best serving SC and

other SCs in the cluster based on above 2 rules. In this
study, we design a network-centric clustering model to
jointly optimise LB and SE, but load balancing within the
network-centric clustering by adjusting user-centric clusters
Cki is out of scope for this work. A detailed load-aware
user-centric clustering model is presented in our previous
work in [18].

B. COMP PERFORMANCE AND OVERHEAD METRICS
The key performance metric for CoMP is the SE improve-
ment achieved by interference mitigation. SE improvement
leads to less radio resources utilised, and hence lower cell
load. More SCs within the same cluster Ci will provide
additional interference cancellation and better SE, but on
the other hand, increasing the cluster size will increase the
CoMP overheads. Additional pilot channels are required for
CSI estimation as cluster size increase, hence reducing the
resources available for user data. Moreover, precoding com-
putation gets more complex and additional backhaul bad-
width is required as the cluster size increase. In this section
we formulate CoMP performance and overhead metrics to
deploy in the our dynamic clustering problem.

1) CELL LOAD
Cell load can be interpreted as one of the key metrics to
quantify CoMP gain and cost trade-off. As CoMP cluster
size increases, interference frommore cells are mitigated, and
hence SE is improved further which then reduces the cell
load. On the other hand, with increased cluster size, more
pilot resources are required for channel estimation which will
reduce available PRB bandwidth for user data. This will then
derive the load higher due to reduced PRB bandwidth.

Cell load can be defined as the ratio of required PRBs
for all users associated to the cell against the total available
PRBs. We first define the average required PRBs for each
UEk at each cell. In no CoMP scenario, assuming constant
guaranteed bit rate (GBR) requirement dk for UEk , aver-
age PRB requirement for UEk can be expressed as rk =
dk/(ykBPRB) where yk = log2(1 + ˆSINRk

aver
) and BPRB is

the total bandwidth for user data in a single PRB. In MU
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JT-CoMP, UEk requires resources from all SCs within its
user-centric cluster Ck

i , and PRB resource for UEk is shared
between all users in U k

i which are scheduled within the same
cluster. We assume |Ck

i | = |U
k
i | = nk and define ‘‘virtually’’

dedicated PRBs for UEk at each SC within Ck
i as r̂k =

rk/nk ) [18].
Assume that SCm is in coalitionCi andUim is the associated

active UEs in SCm where Uim ⊆ Ui i.e. SCm is not connected
all users in Ui due to user-centric clusters of some users may
not include SCm. Let Rtot be the total number of PRBs for
each SC, assuming all SCs have same total bandwidth. Cell
load on SCm in coalition Ci can be expressed as:

l̂im =

∑
k∈Uim r̂k
Rtot

(7)

2) UNSATISFIED USERS
Based on cell load l̂im and the number of connected users
Uim at each SC, we further define an unsatisfied users metric
to quantify the impact of load in users. For a given GBR
requirement for each user dk , we denote users as ‘‘satisfied’’
if they achieve their GBR, otherwise unsatisfied. Intuitively,
if l̂im < 100%, all users are satisfied and if for example
l̂im = 300% then one third of the associated users are
satisfied [18], [22].

In MU JT-CoMP scenario, users are connected to more
than one SC, hence associated connected user count for
each SC will need to be adjusted for CoMP scenario to
avoid double-counting. We define a ‘‘virtually dedicated’’
user count for each SC by distributing the number of users
to each SC within its user-centric cluster. Assume UEk has
user-centric cluster of Ck

i with |Ck
i | = nk . We define the

‘‘virtually dedicated’’ user count at SCm in coalition Ci as
ûim =

∑
k∈Uim 1/nk .

Unsatisfied users for each SC in Ci can then be expressed
as [18]:

zim = max
(
0, ûim

(
1−

1

l̂im

))
(8)

3) ADDITIONAL PILOT OVERHEAD
One of the challenges for CoMP is the requirement for addi-
tional pilot channels for CSI estimation in downlink as the
number of TPs in coordination increases [23]. Using the opti-
mum pilot overhead estimation for multi-antenna channels
in [23]:

α =

√
(1+ SNR)

Ċ(SNR)
C(SNR)

2nT fD

−

(
(1+SNR)

C̈(SNR)

Ċ(SNR)
+2+

1
2SNR

∫
+1

−1

dξ

S̃H (ξ )

)
nT fD

+O(f 3/2D ) (9)

where
C(SNR) = E[log2(1+ SNR|H |2)]
Ċ(SNR) = 1

SNR

(
log2 e−

C(SNR)
SNR

)

C̈(SNR) = 1
SNR2

[
log2 e+ Ċ(SNR− 2C(SNR)SNR

]
S̃H (ξ ) is the doppler spectrum of the wireless channel.
fD is the normalised doppler frequency
nT is the number of transmit antennas

FIGURE 2. Optimum pilot overhead vs CoMP cluster size [23].

Figure 2 shows the optimum overhead required for three
typical wireless channels widely used by 3GPP [24] for
Clarke-Jakes spectrum with SNR=10dB. To estimate the
pilot training overhead for any coalition Ci, we adapted the
pilot requirement from (9) for extended pedestrian-a (EPA-A)
case where: fD = 0.000357 and the term

∫
+1
−1

dξ
S̃H (ξ )

simplifies

to π2/2 for Clarke-Jakes spectrum. We assume SNR=10 for
training overhead estimation and one antenna for each SC,
hence nT = |Ci|.
Pilot overhead increases with cluster size |Ci|, and hence

the actual bandwidth of a PRB for user data is reduced. This
will then be reflected on the overall available capacity/load
of all SCs within coalition Ci. Adjusted PRB bandwidth
available for user data can be expressed as: BWuserdata =

BWtotal(1− α)

4) OTHER CHALLENGES
There are other challenges of CoMP implementation such
as precoding, scheduling complexity and required backhaul
bandwidth which increase as coalition size |Ci| increases.
To account for these additional costs, we define complexity
factor c(|Ci|). A soft maximum cluster size limit is imposed
within the complexity factor where the cost of CoMP is
sharply increased beyond a max coalition size limit |Ci| >
CSmax . |Ci| can still increase beyond CSmax in extreme con-
ditions where the associated SE/load gain is higher than the
increased cost. For any coalition Ci, complexity function is
estimated as a sigmoidal function as follows:

c(|Ci|) =
1

1+ e−(|Ci|−CSmax )
(10)
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FIGURE 3. Complexity change with cluster size |Ti |, (CSmax = 6).

CSmax is designed to be an input parameter for the algo-
rithm where it can be adjusted based on signal processing
capacity and backhaul availability of the network. Figure 3
depicts the complexity factor used in our simulations when
soft maximum cluster size is set to CSmax = 6.

IV. DYNAMIC NETWORK-CENTRIC CLUSTERING
PROBLEM AS A COALITION GAME
Our goal is to find the best clustering structure C =

{C1,C2, . . . ,Cs} which best satisfies the network objectives
in terms of CoMP performance and its overhead costs. Find-
ing the best cluster formation by exhaustive search of every
possible cluster combination is too complex especially when
the network size is larger. As discussed in Section II, most
of the existing solutions lack on scalability due to exponen-
tial increase in processing complexity as the network size
increase. Applications of coalitional game theory in wireless
networks is an emerging concept especially with CoMP and
network coordination in general [25] to reduce this complex-
ity. It provides a flexible analytical framework to provide
distributed, low overhead, less complex solutions. We utilize
coalition game theory and setup a coalition formation game
to model the dynamic clustering problem for MU-JT CoMP
in downlink and employ a utility function to optimize SE
and LB jointly. We compare our solution with an improved
version of a greedy clustering presented in [7]. We show
that our solution outperforms the greedy solution and it
provides a low complexity, scalable and stable clustering
solution.

In this section, we first define the concepts for our coalition
formation game model based on two simple transformation
rules: merge and split. We then define two novel utility func-
tions to employ in our coalition formation game. We discuss
load-aware utility in detail and trade-off between perfor-
mance improvement in LB/SE against the increased system
complexity. We then present our novel network-centric clus-
tering algorithm as a merge/split coalition game and discuss
its complexity and stability properties.

A. COALITION FORMATION GAME CONCEPTS
Let N = {SC1, SC2, . . . , SCn} be the players of the game,
i.e. each player representing an SC in our scenario. Grand
coalition is defined as the unique group of all cells in the
game, i.e. N itself. Any cluster of SCs within the grand
coalition is defined as a coalition Ci = {SCi1, SCi2 . . . SCiz}.
A collection is defined as a group of coalitions C =

{C1,C2, . . . ,Cs} and a collection is called a partition if all
coalitionswithinC are disjoint coalitions i.e. ∀i 6= j,Ci∩Cj =
∅ and all players (SCs) are included in one of the coalitions
i.e. ∪si=1Ci = N .

The utility (payoff) of a coalition Ci within the partition
C is defined as u(Ci,C) and the overall coalition game
is uniquely defined by (N,u) pair. Utility of any coalition
includes both the benefit and the cost for cooperation. Utility
function for CoMP clusters in our scenario takes SE and cell
load distribution into account as benefits and include a cost
factor to account for increased computational complexity,
pilot overhead and backhaul requirement with increased clus-
ter size. The cost factor in the utility prevents a super-additive
game, i.e. the cost increases with cluster size and hence it
is mostly impossible to get all SCs to cooperate in a single
cluster.

Characteristic form of a coalition game is defined such that
the utility of any coalition u(Ci) does not depend on how the
rest of the partition (N\Ci) is structured i.e. ∀i u(Ci,C) =
u(Ci). In our scenario, since we propose clustering changes
in longer time intervals (seconds, minutes) where fast fading
changes are averaged out as expressed in (6), the amount of
interference created from the cells outside of the cluster are
the same regardless of their clustering structure. Hence our
scenario can be modelled as a coalition game in characteristic
form. We make use of this property to reduce complexity of
our algorithm as detailed in Section IV-D.

To compare the preference between 2 collections C =
{C1,C2, . . . ,Cs} and H = {H1,H2, . . . ,Hb} of the same
subset of players P where P ⊆ N , we define a comparison
relation F, where C F H means that coalitions in C is pre-
ferred to the coalitions in H . Various comparison orders are
discussed in [26] but two orders are of notable importance
for coalitional games for cooperative wireless networks [25].
First one is the utilitarian order which compares the utility
of the overall collection. The players in P prefer to move to
collection C from collection H i.e. C F H if

∑s
i=1 u(Ci) >∑b

i=1 u(Hi), in other words, the total utility of all coalitions
within collection C is greater than the one in collection H ,
irrespective of individual player utilities. The second impor-
tant order is known as pareto order which compares the
individual player utilities to make sure none of the players
are worse off due to new collection formation and at least one
player is better off. For a given subset of players P, the utility
of player Pi in collection C is denoted as u(Pi,C); then C FH
if ∀i ∈ P, u(Pi,C) ≥ u(Pi,H ).
It’s highly appealing to employ utilitarian order in our

coalition game to maximize the overall system utility.
The aim of our proposed coalition formation game is to
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maximize the total utility regardless of the utility for any
individual SC. In other words, if the utility gain of a group
of SCs is higher than the utility loss of the remaining SCs,
then the corresponding clustering change shall be performed.
In a typical hotspot scenario, cluster changes aim to reduce
load for SCs with very high load (players with better payoff)
but this will inevitably cause increased traffic in other SC
where load is not as high (players with worse payoff). This
clustering change is preferred in utilitarian order if the overall
utility is increased however this is not allowed in pareto order
as some players are worse off regardless of the overall utility.

To form coalitions and dynamically adapt the coalitions
based on user profile/network changes, 2 simple transforma-
tion rules are followed:
• Merge: Players (SCs) in any two or more coalitions
{C1,C2, . . . ,Cs} prefer to merge into one coalition
F = ∪si=1Ci i.e. ∪

s
i=1Ci F {C1,C2, . . . ,Cs}, if u(F) >

(
∑s

i=1 u(Ci)) following the utiliterian order.
• Split: Players (SCs) prefer to split from any coalition Ci
into smaller coalitions {Ci1,Ci2, . . . ,Ciy} where Ci =
∪
y
j=1Cij i.e. {Ci1,Ci2, . . . ,Ciy} F Ci if (

∑y
j=1 u(Cij) >

u(Ci) following utiliterian order.

B. UTILITY FUNCTION
Utility function u(SCm,Ci) is defined to calculate payoff for
any SCm (player) in coalition Ci and payoff for any coalition
u(Ci) is simply the total payoff of all SCs within the coali-
tion i.e. u(Ci) =

∑
SCj∈Ci u(SCj,Ci). Utility function should

reflect both the proposed performance improvement and the
associated overhead costs of any coalition formation. Firstly,
we define a load-aware utility function aiming to jointly
maximize SE and LB objectives. The goal is to distribute
SC load evenly and relieve congestion in hotspot scenarios
while keeping SE at high levels and also provide high SE
in non-hotspot scenarios when LB is not required. Secondly,
we define an SE-based utility intending to maximize SE only
for comparison to our load-aware utility.

1) Load-aware utility: For any SCm in coalition Ci,
load-based utility function is defined as follows:

u1(SCm,Ci) =


−(l̂im)

1− c(|Ci|)
ûim l̂im < 1

−(l̂im)3

1− c(|Ci|)
ûim l̂im ≥ 1

(11)

The main aim of the load-aware utility is to jointly
optimise LB and SE by reducing SC load l̂im which then
implicitly enforces for better SE.When SE is improved,
less radio resources are used for any given demand, and
hence load is reduced. Payoff for each SC u1(SCm,Ci)
is reduced as SC load l̂im increases. Once the cell is
congested (i.e. l̂im ≥ 1), any load increase is penalized
more than the case when l̂im < 1. This is achieved by
increasing the impact of load with the term (l̂m)3 in the
utility function in (11) when l̂im ≥ 1. In other terms,
additional payoff incentive is introduced for reducing
the load in high load range, when compared to low

load, i.e. enabling load distribution from congested
SCs to lightly loaded SCs. In the high load range,
distribution of load is given higher priority and hence
clustering decisions in this range will prioritize LB
improvement despite other clustering solutions may be
available with better overall SE. In low-load range,
u1(SCm,Ci) will provide similar results to SE-based
utility as SC load reduction implicitly enforces higher
SE. Payoff u1(SCm,Ci) is also directly proportional
with ‘‘virtually dedicated’’ user count ûim i.e. highly
loaded cells with more active users are given more
incentive to reduce load and achieve better payoff. This
promotes fairness in the system and aims to reduce
the total number of unsatisfied users zim at each SC.
Term c(|Ci|) in u1(SCm,Ci) represents the complexity
factor as the cluster size increases. Complexity function
c(|Ci|) enforces low cluster size |Ci|, by introducing
high payoff penalty as the cluster size increases. Cluster
size is only increased when the payoff incentive from
reducing the load is higher than the payoff penalty
introduced with c(|Ci|).
Figure 4 illustrates the utility function u1(SCm,Ci)
against SC load l̂im for different cluster sizes |Ci| for
ûim=50 and c(|Ci|) = 1

1+e−(|Ci|−CSmax )
when CSmax = 6.

It can be seen that payoff only gradually increases as
the load decrease in low load range, whereas there is
sharper payoff increase in high load, in other terms,
the load-aware utility provides additional payoff incen-
tive to reduce load in high load range. On the other
hand, increasing cluster size is penalized with com-
plexity factor c(|Ci|) where a sharp payoff penalty is
observed especially moving from |Ci| = 5 to |Ci| = 6
in this example. A higher cluster size is expected in
high load when compared the low load as the payoff
incentive for reducing the load is higher in high load
range as introduced in c(|Ci|). A dynamic trade-off
between cluster size/complexity and SE/load is formed
with this utility where maximum cluster size limit
is dynamically adjusted based on load situation in
the network. The cost/gain factors and the trade-off
between system complexity and LB/SE performance in
u1(SCm,Ci) provides a sample which can be adjusted
based on specific radio network operator priorities. For
example, in a highly customer-centric network, perfor-
mance can be favored more than complexity in hotpots
and to minimize the number of unsatisfied users due
to congestion, term l̂3im when l̂im ≥ 1 can be adjusted
to give more incentive for reducing load in high load
range. Similarly, c(|Ci|) can be adjusted to increase
maximum allowed cluster size in high/low load ranges.
Our simulation results in Section V show the
proposed dynamic cluster size adaptation depend-
ing the load situation, i.e. increasing cluster size
dynamically when there is high load and hence
improve SE/LB performance in both HN and
RN scenarios.
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FIGURE 4. Utility function u1(SCm, Ci ) vs SC load l̂m for different cluster
sizes when ûm = 50 and CSmax = 6.

2) SE-based utility: We define a second utility function
to maximize SE, without considering load conditions.
This utility is employed in our game model and in
a greedy algorithm to compare with our load-aware
utility.
SE-based utility function is introduced as follows:

u2(SCm,Ci) =
∑

k∈Ûim
yk (1− c(|Ci|)) (12)

where:
Ûim is the list of users where SCm is the best serving cell
based on average received signal power, i.e. a subset
of the associated users Uim at the SCm. yk is the SE
achieved at UEk i.e. yk = log2(1+ ˆSINRaverk ).
The SE experienced at each user is added up to get
the total utility at SCm and complexity factor c(|Ci|) is
embedded to impose a soft cluster size limit similar to
the one in load-aware utility in (11).

Similar to the two utility functions presented above, other
utilities can be designed to optimize different network objec-
tives like SE, load balancing, energy efficiency and back-
haul availability etc. Furthermore, a combination of different
network objectives can be embedded within the same utility
function to jointly optimize multiple network objectives. Our
novel clustering model based on merge/split coalitional game
sets a flexible framework to employ various utility functions
aiming for different network objectives.

C. MERGE/SPLIT OPERATION
Let C = {C1,C2, . . . ,Cs} be a partition of N , i.e. the current
status of the network. We propose to start merge operation
with Ci which has got the maximum absolute payoff value.
In both utility functions defined in (11) and (12), high abso-
lute payoff value refers to coalitions with high number of
active users and hence high load. CoalitionCi looks for neigh-
bor coalitions Cj for any possible merge operation. We define
neighbor coalition concept to avoid exhaustive search for
merge operation and reduce complexity, i.e. merge operation

will not be tried for every other coalition in the system but
only towards the neighbor coalitions.

Neighbor definitions are performed by utilizing the aver-
age received reference signal level measurements received
from the users. Firstly a simple neighbor relations list is
performed at SC level. For any UEk in the serving area of
SCm, the average received signal from all other SCj where
Prxkj > Pneimin are compared. A neighbor rank count is incre-
mented for {SCm, SCj} pair if Prxkj /P

rx
km > Pnei1 . Once each

SC has a rank based neighbor list, then neighbors at cluster
level are calculated in a similar way i.e. the neighbor rank
is incremented for {Cm,Cj} coalition pair when SCm ⊆ Cm,
SCj ⊆ Cj, Prxkj /P

rx
km > Pnei1 and Prxkj > Pneimin.

The possibility of a merge operation is checked for all
neighbor coalitions of coalition Ci and merge is performed
with Cj if u(Ci ∪ Cj) > u(Ci) + u(Cj) based on utilitarian
order as described in Section IV-A. Once a merge operation is
successful, then neighbor lists are updated for the newmerged
coalition (Ci ∪ Cj) and further possible merges are searched
in a similar fashion until there is no more neighbors left for
a possible merge operation. Same process is repeated for the
rest of the coalitions in partition C = {C1,C2, . . . ,Cs} in
absolute payoff value order as illustrated in Algorithm 1 until
there is nomoremerges possible. A new partitionH if formed
at the end of the merge operation. Partition H is then subject
to split operation where every coalition Hi is checked for all
possible split options and it’s split only when the total payoff
of the split coalitions are better than the bigger coalition
following utilitarian order i.e. (

∑y
j=1 u(Hij) > u(Hi). Split

operation is successively iterated for the rest of the coalitions
in partition H until no more split is possible as outlined in
Algorithm 2. Merge and split operations are then performed
iteratively until there is no more merge and split possible
and the algorithm terminates. Termination of the algorithm
is always guaranteed as all merge and split operations aim for
the same objective i.e. increase the overall system utility u(C).
There is always a finite number of merge/split operations
possible for increasing u(C) and the algorithm will termi-
nate when there is no room to increase u(C) by merge/split
operations.

D. ALGORITHM COMPLEXITY
Exhaustive search for any potential merge operation can
increase complexity of the algorithm exponentially as
the network size increase. Unlike exhaustive search pro-
posed in previous network-centric clustering solutions
like [7], [10], [10], we define neighbor cluster concept as
described in section IV-C and propose merge operation only
with neighbor clusters which reduces merge operation com-
plexity and makes the algorithm scalable for larger networks.

Split operation can be a complex task as the number of pos-
sible splits increase exponentially with cluster size. To reduce
this complexity, we utilize the characteristic form property of
our coalition gamewhere the possibility of any split operation
does not depend on how the rest of the SCs are clustered.
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Algorithm 1 Merge Operation
For any given network clustering state C =

{C1,C2, . . . ,Cs}, ∀Ci ∈ C , set Ci.clustered = 0
Merge-ongoing = 1
whileMerge-ongoing do
Merge-ongoing = 0
Sort ∀Ci ∈ C based on u(Ci) in descending order
for all Ci where Ci.clustered = 0 do
Update Ci.nei
for all Cj in Ci.nei where Cj.clustered = 0 do
Update payoff gain for possible merge(Ci,Cj) i.e.
δuij = u(Ci ∪ Cj)− {u(Ci)+ u(Cj)}

end for
Find Cm ∈ Ci.nei where δuim = max

Cj∈Ci.nei
(δuij ) and

δuim > 0
while Cm exist do

Merge(Ci,Cm)
Cm.clustered = 1
Update Ci.nei
for all Cj in Ci.nei where Cj.clustered=0 do
Update payoff gain for possible merge(Ci,Cj)
i.e. δuij = u(Ci ∪ Cj)− {u(Ci)+ u(Cj)}

end for
Find Cm ∈ Ci.nei where δuim = max

Cj∈Ci.nei
(δuij ) and

δuim > 0
end while
Ci.clustered = 1
if Any merge operation with Ci then
Break for-loop and continue with while-loop
Merge-ongoing = 1

end if
end for

end while

Once we check a coalition for a possible split and if there
is no possible split operation, then even when the rest of the
network is re-clustered, marked coalitions will not be checked
again for split in the following iterations.

Furthermore, in our coalitional game model, we have a
soft maximum cluster size limit embedded in both utility
functions to avoid increased signal processing and backhaul
bandwidth required for CoMP. This limitation reduces the
complexity on the split operation, i.e. less number of pos-
sible split options are available due to limited cluster size.
Additionally, the split operation stops searching for other split
options once a split option with better utility is found and
hence the split operation does not have to go through all split
options in most cases.

In summary, we define a low complexity merge and split
operation in our novel game-theoretic clustering algorithm:
We limit themerge operations to only neighbor clusters which
improves scalability of the solution and reduces complexity.
Additionally, a soft maximum cluster size limit is embedded
in both utility functions which reduces complexity on split

Algorithm 2 Split Operation
For any given network clustering state C =

{C1,C2, . . . ,Cs}, ∀Ci ∈ C , set Ci.splitpossible = 1

Split-ongoing = 1
while Split-ongoing do
Split-ongoing = 0
for all Ci where (Ci.split-possible= 1 and |Ci| > 1) do
Update Ci.Split-options
Ci.split-possible = 0
for all Ci.Split-Options do
if Any split option is possible i.e. (

∑y
j=1 u(Cij) >

u(Ci) then
Split(Ci to {Ci1,Ci2, . . . ,Ciy}
Split-ongoing = 1
∀Cij, set Cij.split-possible = 1
Break for-loop and continue with next Ci

end if
end for

end for
end while

operation preventing high number of potential splits. Further-
more, we make use of the characteristic form property of our
coalitional game model and reduce split complexity further.
The stability of the algorithm and convergence to the best
outcome is discussed in the next section.

E. PARTITION STABILITY
We utilize a novel concept of defection functionD introduced
in [27] to analyze stability of our merge/split coalition game.
Defection function D(C) of a partition C associates partition
C with a set of collections. Partition C is defined as D-stable
if none of the players have any incentive to leave the partition
to form collections allowed by D.

The most robust stability is defined as Dc stable if it is
the unique partition where the utility is maximum, i.e. there
is no intention for any players to deviate into any other
partition [27]. A partition C = {C1,C2, . . . ,Cs} is Dc stable
only if below 2 conditions are satisfied [27]:

1) ∀Ci ∈ C , any disjoint coalitionsCia andCib inCi where
Cia∪Cib ⊂ Ci, then u(Cia∪Cib) ≥ u(Cia)+u(Cib) i.e.
any a sub-group of players in any coalition dont have
any additional payoff incentive to leave the coalition.

2) For any arbitrary coalition A in N where A 6⊂ Ci and
all players in coalition A may not belong to the same
coalition in C , then:

∑s
i=1 u(Ci ∩ A) ≥ u(A)

Dc is the most desired form of stability as it is the unique
partition with maximum utility, however partitions formed
from merge/split game does not always guarantee Dc parti-
tions. Our merge/split coalition game results in the Dc stable
partition depending on the network and user profiles. In a
typical SC deployment scenario, basic coverage is provided
by the MBS, and SCs are deployed in hotspot areas only.
There are hotspot areas within the MBS coverage area where
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FIGURE 5. An illustration of Dc stable partitions.

most users and SCs are concentrated as illustrated in Figure 5.
We show that both conditions of Dc stability are guaranteed
in this deployment scenario as follows:

Condition 1 for a Dc-stable partition C states that for each
coalition Ci ∈ C , any 2 disjoint sub-coalitions Cia,Cib ∈
Ci won’t have additional payoff to form separate coalitions.
In our model, there is dense deployment of SCs and high
concentration of users in small hotspot areas where inter-cell
interference is high due to dense deployment in the absence
of CoMP. Therefore, there is high payoff incentive to form Ci
to include all SCs within the same hotspot area in both utility
functions in (11) and (12) as severe inter-cell interference is
mitigated, improving SE (yk in (12)) and hence reducing the
cell load l̂m in (11). The cost (c(|Ci|)) of forming this coalition
is kept low when |Ci| < CSmax and it increases exponentially
when the coalition size increase beyond CSmax . Therefore,
our coalition game forms the coalitions to include all SCs
within the same hotspot when the number of SCs within the
same hotspot do not exceed CSmax .

LetCi be the coalition including all SCs within any hotspot
location where |Ci| < CSmax , and assume Cia and Cib are
2 disjoint sub-coalitions of coalition Ci. Individual SCs in Ci
will not have better payoff for leaving Ci to form a smaller
sub-cluster Cia i.e. ∀SCm ∈ Ci, u(SCm,Ci) > u(SCm,Cia).
SCs will have better payoff in bigger clusters due to improved
inter-cell interference mitigation provided that the size of the
bigger cluster does not exceed CSmax , i.e. for any 2 disjoint
sub-clusters, ∀SCm ∈ Cia, u(SCm, (Cia∪Cib)) > u(SCm,Cia),
and thus u(Cia ∪ Cib) > u(Cia)+ u(Cib). Condition 1 for Dc
stability is satisfied when |Ci| < CSmax .
For a Dc-stable partition C , condition 2 states that any

players from different coalitions Ci and Cj have no additional
payoff to form another coalition Hi where Hi /∈ C . Let Ci
and Cj be the coalitions of SCs in two separate hotspots and
|Ci| < CSmax and |Cj| < CSmax so condition 1 of a Dc
stability is satisfied i.e. all SCs within the same hotspot are
in the same coalition with no incentive to leave and form
smaller coalitions. There is no incentive for any SCi ∈ Ci and
SCj ∈ Cj to form another coalition if the distance between the
two are > d0 where no user UEk have any incentive to have

FIGURE 6. Dc stable partitions from merge/split cluster formation game.

both SCi and SCj in the same user-centric cluster Ck
i . This is

guaranteed when for any UEk , if the average received signal
power from SCi from distance dki is above the minimum
threshold for clustering i.e. Prxki (dki) > Pmin, then Prxkj (dkj)
should be below Pmin. Similarly, if Prxkj (dkj) > Pmin, then
Prxki (dki) < Pmin. Assuming distance based path loss only for
simplification, to satisfy this condition for anyUEk , the worst
case scenario is considered where UEk is located in the
middle of SCi and SCj with equal distance. If the distance
between SCi and SCj is > d0 where both Prxki (d0/2) < Pmin
and Prxkj (d0/2) < Pmin then it is guaranteed that SCi and SCj
can never be in the same user-centric cluster Ck

i i.e. average
received power will not be above Pmin for both SCs for
any arbitrary user, hence there is no incentive for SCi to
leave Ci to form a new coalition with SCj from coalition Cj,
i.e. condition 2 is satisfied.

In summary, our merge/split formation game results in a
Dc stable partition in our typical deployment scenario where
merge/split operation results in forming coalitions including
all SCs within the local hotspot areas if the number of SCs
within the same hotspot is not higher than the maximum
cluster size limit and the distance between the hotspot areas
are > d0. Figure 6 shows the clustering results from our
merge/split cluster formation game in a typical SC deploy-
ment scenario in hotspots. Unique Dc stable partition is
achieved in this deployment scenario where all local SCs
within the same hotspot are included in the same cluster.

In the case when the SC deployment is not so dense,
or low power SCs are used with almost isolated coverage
areas, i.e. there is very limited inter-cell interference, pro-
posed solution will not form clusters around all cells within
hotspot as there won’t be enough payoff incentive to jus-
tify cluster formation. This intuitively implies that expected
CoMP gain would be minimal in this scenerio, and there
won’t be a unique Dc stable partition around all SCs within
the same hotspot area. In other sceneries, where there is no
specific hotspot deployment, or the number of cells within
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hotspot area exceed CSmax , unique Dc stable partition will
not exist. In these cases, a more relaxed defection function
Dhp is defined in [27] where for any partition C , players are
allowed leave to form another partition only by means of
possible merge and splits. As our coalition game only follows
merge/split operations and always terminates as there is only
finite number of merge/split possible which can increase
the overall system utility, all partitions resulting from our
merge/split coalition game are always Dhp stable. Dhp sta-
bility does not have to be unique and other partitions with
better utility may exist. To improve the merge/split game
clustering outcome when Dc stability is not possible, we pro-
pose to start merge operations from the coalition with the
maximum absolute payoff value aiming to achieve better util-
ity for the loaded cells and maximize the resulting partition
utility.

In summary, Dc stability provides the most desired unique
partition with maximum utility and this is achievable in our
merge/split game in certain network conditions which is most
likely to be the deployment scenario for future networks.
In the case when Dc stability is not possible, all partitions
from our merge/split game are Dhp stable.

V. SIMULATION RESULTS
To evaluate the performance of the proposed load-aware,
game-theoretic clustering framework, simulations are run for
both HN and RN scenarios with various hotspot schemes.
To compare our load-aware clustering model performance
based on load-based utility in (11), we employed SE-based
utility in (12) as well in our framework and additionally
we compared simulation results with an improved version
of the greedy algorithm proposed in [7]. We adapted our
novel SE-based utility function (12) in the greedy algorithm
and lifted the maximum cluster size limit in [7] as the clus-
ter size is self-limited with cost function c(|Ci|) within the
utility function in (12). We also reduced complexity of the
algorithm in [7] and utilized our neighbor coalition concept
where only neighbor coalitions are considered for possible
clustering as described in Section IV-D. Greedy algorithm
starts with a random SC and forms clusters with neighbor
SCs starting from the SC with maximum joint payoff. Unlike
merge/split game clusters, greedy clusters lack on additional
split functionality and also the randomness of the starting SC
can provide under-optimized clustering solution depending
on which SC the algorithm starts with. Algorithm 3 shows
a summary of the enhanced version of the greedy algorithm
presented in [7].

Following abbreviation is used in the rest of this section:
SE-GR: Greedy clustering with SE-based utility.
SE-GA: Game-theoretic clustering with SE-based utility.
L-GA: Game-theoretic clustering with load-based utility.
A network of SCs within one MBS is considered for our

simulations as described in Section III. Each SC is assumed
to have one cell with omni directional antenna for simplicity.
ITU-R microcell urban non-line-of-sight (NLOS) path loss

Algorithm 3 Greedy Clustering
Initiate Clusters i.e. ∀Ci ∈ C , Ci = {SCi} and Ci.clustered
= 0
for all Ci where Ci.clustered = 0 do
Update Ci.nei
for all Cj in Ci.nei where Cj.clustered = 0 do
Update payoff gain for possible merge(Ci,Cj) i.e.
δuij = u(Ci ∪ Cj)− {u(Ci)+ u(Cj)}

end for
Find Cm ∈ Ci.nei where δuim = max

Cj∈Ci.nei
(δuij ) and δuim >

0
while Cm exist do
Merge(Ci,Cm)
Cm.clustered = 1
Update Ci.nei
for all Cj in Ci.nei where Cj.clustered = 0 do

Update payoff gain for possible merge(Ci,Cj) i.e.
δuij = u(Ci ∪ Cj)− {u(Ci)+ u(Cj)}

end for
Find Cm ∈ Ci.nei where δuim = max

Cj∈Ci.nei
(δuij ) and

δuim > 0
end while
Ci.clustered = 1

end for

model in [28] is adapted in our simulation as given in (13).

PL = 36.7 log10(d)+ 22.7+ 26 log10(fc) (13)

TABLE 1. Simulation parameters.

Rest of the simulation parameters are summarized
in Table 1. We ran our simulation 100 times for each deploy-
ment scenario described below and present the results from
the average of 100 snapshots.
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A. HOMOGENEOUS NETWORK (HN) SCENARIO
Firstly, we evaluate the performance for a HN deployment
scenario where 25 SCs are located within the simulation area
of 0.5kmx0.5km with 100m inter-site distance. 2 scenarios
are evaluated in HN deployment:
• HN without hotspot: 250 UEs are distributed within the
simulation area following uniform random distribution.
A fixed GBR of 512kbps is assigned to each UE.

• HN with hotspot: 2 hotspot areas are assumed within
the simulation area, each hotspot is 100mx100m with
125 UEs distributed in each hotspot area following uni-
form random distribution. 250 additional UEs are uni-
formly distributed in the whole test area including the
hotspot areas. All UEs have a fixed GBR requirement
of 512kbps.

FIGURE 7. Average spectral efficiency and cluster size in HN with/without
hotspot scenarios.

Figure 7a depicts the average SE and in HN with/without
hotspot scenario for each of the clustering algorithms
i.e. SE-GR, SE-GA and L-GA respectively. Without the
hotspots, we observe similar SE improvement on SE-GR
and SE-GA algorithms. This is an expected outcome as pos-
sible merge-split iterations in the coalitional game model
does not play an important role when compared to greedy
algorithm in forming clusters due to even distribution of
SCs and users. We also observe that L-GA algorithm also
achieve similar SE when compared to SE-GR/SE-GA, even
though the employed utility function does not directly aim
to maximize SE. Load-aware utility in L-GA aim to reduce
load and improve load distribution which improves the SE
indirectly. Average cluster size for each of the algorithm
in HN without hotspot scenario is also similar as depicted
in Figure 7b. CS is controlled by the same cost function
c(|Ci|) in both employed utility functions in (12) and (11),
and hence similar average CS is expected for all 3 schemes

in HN without hotspot scenario. It can be concluded that our
novel load-aware clustering model (L-GA) perform as good
as SE-based algorithm in maximizing SE when there is no
over-load conditions.

A more realistic network scenario is when the users are
not uniformly distributed and there are hotspots at certain
locations. Clustering is more challenging in this scenario
where any clustering combination without load awareness
can potentially reduce achievable performance. Figure 8
shows a snapshot of clusters formed from SE-GR, SE-GA
and L-GA clusters respectively in HN with hotspot scenario.
Due to random selection of SCs for clustering, greedy algo-
rithm (SE-GR) fails to get SCs within the same hotspot in
the same cluster in this snapshot. However, SE-GA clus-
ter starts the clustering process from the SC/cluster with
maximum absolute payoff value and hence SC/clusters with
higher load are given the priority on forming the clusters.
SE-GA clusters manage to form clusters including the near-
est SCs to the hotspots which then improves the SE for
majority of the UEs. L-GA clusters form larger clusters
around the hotspots when compared to SE-GA and SE-GR.
This is due to employed load-aware utility (11) providing
more payoff incentive for reducing load in high load condi-
tions overcoming the cost of increasing cluster size c(|Ci|),
resulting in bigger cluster size, improved inter-cell interfer-
ence mitigation, better SE and hence reduced load with the
expense of increased processing complexity and backhaul
requirement.

SC load distribution in HN with hotspot scenario is
depicted in Figure 9 where it is visible that highly loaded SCs
are significantly reduced in L-GA clusters when compared to
SE-GR/SE-GA clusters resulting in better load distribution.
Consequently, a significant reduction in unsatisfied UEs is
achieved in L-GA clusters when compared to SE-GR/SE-
GA clusters as shown in Figure 10. Total number of unsat-
isfied users is reduced by 34.7% in L-GA when compared
to SE-GR. A total of 12.95% of the UEs are unsatisfied
in L-GA clusters whereas 19.85% and 18.18% of the UEs
are unsatisfied in SE-GR and SE-GA clusters respectively.
As depicted in Figure 7b, average cluster size is increased in
SE-GA and L-GA models by 4.1% and 11.6% respectively
when compared to SE-GR algorithm. Load-aware utility
function (11) in L-GA provides additional payoff incentive
for reducing load at highly loaded cells which can overcome
the cost of increased cluster size resulting in higher cluster
size in hotspot scenario and hence the L-GA model responds
to hotspots much better than SE-GR and SE-GA.

Our SE-based game theoretic clustering algorithm SE-GA
also outperforms the greedy clustering SE-GR in hotspot
scenario, where a marginal improvement in SE is observed,
resulting from the fact that SE-GR algorithm starts from
any random cell for clustering, resulting in non-optimum
clustering solutions especially in hotspot scenario. Moreover,
SE-GR algorithm lacks on iterative improvements introduced
in merge/split game when compared to SE-GA and L-GA
algorithms.
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FIGURE 8. Snapshot of SE-GR, SE-GA and L-GA clusters in HN with
hotspot scenario.

In summary, we show that our novel L-GA clusters result
in significantly less number of unsatisfiedUEs by distributing
load more evenly while keeping SE at comparable levels in

FIGURE 9. eNodeB load CDF in HN with hotspot.

FIGURE 10. Unsatisfied UEs in HN with hotspot.

hotspot scenario. In non-hotspot scenario, L-GA clustering
performs as good as SE-based approaches (SE-GR/SE-GA).
Overall, L-GA model performs well in all scenarios
with/without hotspots providing a multi-objective clustering
model which jointly optimises cell load and SE. It is also
shown that L-GA provides an interesting dynamic cluster
size metric, where average cluster size is increased in hotspot
conditions and it’s reduced to lower levels when hotspot dis-
appears in the network, providing a control on the additional
complexity associated with increased cluster size. Moreover,
we also show that our SE-based game theoretic clustering
model (SE-GA) clusters result in better SE than greedy algo-
rithm (SE-GR) in HN with hotspot scenario, due to cluster
formation priority given to cells in hotspots first, and also
the iterative process of merge/split algorithm outperforming
greedy cluster formation.

B. RANDOM NETWORK (RN) SCENARIO
We evaluate our novel clustering solution further for a random
network (RN) topology where SCs are randomly distributed
within a circle of 0.4km radius following poisson point pro-
cess (PPP) distribution with density parameter λN . All SCs
within the circle are assumed to be connected to one MBS as
described in Section III. UEs are also randomly distributed
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FIGURE 11. Random network simulation setup.

following PPP distribution. To simulate the hotspot scenario,
higher user density is assumed within an inner circle with
0.1km radius with user density λKhigh and a low user den-
sity of λKlow is simulated in the outer ring. Outer ring is
assumed to go beyond SC deployment radius to make sure
users are distributed in the whole coverage area of all SCs.
In the non-hotspot scenario, both inner and outer circle user
density has been set to the same lower density. A snapshot
of the simulated network topology with hotspot is illustrated
in Figure 11. Simulations are run for 100 times for each
RN scenario and various user/UE distribution is generated at
each snapshot following PPP distribution with same user/SC
density.

FIGURE 12. Average spectral efficiency and cluster size in RN
with/without hotspot scenarios.

Figure 12a shows the average achieved SE for all clustering
types for hotspot and non-hotspot scenarios. Similar to HN
scenario, average SE is comparable on all 3 clustering types in

evenly distributed traffic scenario where there is no hotspots,
i.e. L-GA clusters perform as good as SE based clusters when
there is no overload. In hotspot scenario, SE-based coalitional
game model (SE-GA) achieves a 1.57% better SE than the
greedy model (SE-GR), similar to HN results.

Our novel L-GA model achieves significant improvement
in LB while keeping SE at high levels in hotspot scenario,
resulting in reduced number of unsatisfied users. Average
achieved SE is increased in L-GA model by 6.73% when
compared to SE-GR as depicted in figure 12a. Figure 13
shows the load distribution of the SCs where L-GA clustering
achieves significantly better load distribution with reduced
amount of SCs in high load range when compared to SE-GR
and SE-GA clusters. Figure 14 shows the average total num-
ber of unsatisfied UEs for each clustering algorithm in RN
with hotspot. L-GA algorithm is significantly more effective
in distributing the load and reducing the number of unsatisfied
users, resulting in 68.50% less unsatisfied users when com-
pared to SE-GR clusters. 3.63% of the UEs are unsatisfied in
L-GA when compared to 11.54% and 12.14% in SE-GR and
SE-GA respectively.

FIGURE 13. eNodeB load CDF in RN with hotspot.

Figure 12b depicts the average cluster size achieved for
each clustering algorithm with and without hotspot scenario.
Similar to HN results, average cluster size is increased in
L-GA clusters significantly more than SE-GR and SE-GA
clusters in hotspot scenario when compared to non-hotspot
scenario due to additional payoff incentive in L-GA utility
function to reduce load in hotspots. L-GA clusters manage to
increase the cluster size in a self-organized way when there
is high capacity requirement in hotspot scenario. Cluster size
is dynamically reduced when the hotspot disappears and load
is evenly distributed.

We further analyze merge/split iterations in RN scenario
with and without the hotspots. In Figure 15, total payoff of
all SCs is shown for each merge/split operation until the
final cluster is formed for L-GA clusters in RN scenario
with/without hotspot. At each merge/split operation, utili-
tarian order is followed where merge/split operation is only
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FIGURE 14. Unsatisfied UEs in RN with hotspot.

FIGURE 15. Payoff changes with merge/split iterations for L-GA algorithm
in RN with/without hotspot scenario.

FIGURE 16. Unsatisfied UEs/spectral efficiency changes with split/merge
iterations for L-GA algorithm in RN with hotspot scenario.

allowed if the total system payoff is increased. In hotspot sce-
nario, payoff is sharply increased in the first few merge/split
operation where highly loaded cells are clustered, resulting in
lower SC load and a higher payoff. Payoff increase is more
gradual in non-hotpot scenario where merge/split operation

gives an average payoff for each cell as they are almost
equally loaded. Figure 16 depicts the changes in unsatisfied
UEs and SE for each merge/split iteration for L-GA algo-
rithm in RN with hotspot scenario where our load-based
utility function manages to improve both load and SE at
the same time for each merge/split operation for majority of
merge/split operations. Marginal reduction in SE is observed
in later iterations for forming clusters to distribute load more
evenly and therefore reduce unsatisfied UEs further with the
expense of marginal SE reduction.

VI. CONCLUSION
In this paper, we propose a novel, load-aware network-
centric clustering solution based on merge/split coalition
game for CoMP deployment in future networks.We introduce
merge/split coalitional game concepts and provide analysis
on its stability and complexity. We show that our novel algo-
rithm provides the unique partition with maximum utility
when it is available, i.e. in the expected SC deployment
scenario where SCs are deployed in local hotspot areas. In the
case when this is not achievable, a more relaxed stability is
always guaranteed where proposed algorithm converges to a
final partition with no more merge/splits possible. Proposed
solution is employed with two utility functions: SE-based
utility is designed tomaximize SE and load-aware utility aims
to jointly optimize SE and LB objectives. It is shown that our
SE-based clustering outperforms greedy algorithm providing
better SE in scenarios where users are unevenly distributed.
Furthermore, we show that our load-aware clustering model
(L-GA) achieve significantly better load distribution while
keeping SE at high levels. Unsatisfied UEs are reduced by
68.5% in RN scenario with hotspots in L-GA algorithm
when compared to greedy clustering model. Moreover, L-GA
model provides a self-organized cluster size metric where CS
is increased in hotspot scenarios to reduce high load with
the expense of higher processing complexity and backhaul
requirement, and it is reduced back down when hotspot dis-
appears. In summary, our novel load-based game theoretical
clustering algorithm (L-GA) is shown to be low-complexity,
stable clustering solution combining both SE and LB objec-
tives into the same utility function which can dynamically
adapt to both hotspot and non-hotspot scenarios.
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