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ABSTRACT This paper presents a new type of Consensus problem named the Consensus (n, m) with
alternative plans, where n denotes the total number of processors in the network, m is the number of
processors with an initial value, n ≥4 and 1 ≤ m ≤ n. Compared to the traditional Consensus problem,
the Consensus (n, m) problem with alternative plans has two major features. First, each processor is no
longer required to propose an initial value. It can flexibly choose to propose or not propose an initial value.
This feature allows the Consensus problem to be flexibly applied in many new real-world applications of the
distributed system. Second, the proposed protocol ensures that all correct processors always agree on a good
plan from a correct processor and never on a bad plan. Compared to solutions of the traditional Consensus
problem, which does not guarantee that all correct processors agree on a good plan, this feature ensures the
rationality of the Consensus value. In other words, by solving the Consensus (n, m) problem with alternative
plans, the fault tolerance and reliability of distributed systems can be improved.

INDEX TERMS Distributed systems, fault tolerance, reliability, Byzantine agreement, Consensus problem.

I. INTRODUCTION
Adistributed system is a software system where its compo-
nents distributed across networked computers communicate
and coordinate their actions by exchanging messages [1].
However, in the event of hardware error, software error or
hacker attack, these components may have various types
of errors, which will hamper the distributed system from
accomplishing tasks requested by users [2], [3]. Therefore,
the reliability and fault tolerance of distributed computer
systems is an important topic [4]–[8].

A. BYZANTINE AGREEMENT
In fault-tolerant distributed systems, one of the well-known
problems is the Byzantine Agreement (BA) problem [9], [10].
With Byzantine fault tolerance, the system is able to defend
against Byzantine failure, which occurs when components of
the system fail in arbitrary ways [11]. The applications of BA
include the authentication protocol [12], the replicated file
system [13], the leader election problem [14], [15], and etc.
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In 1982, Lamport, Shostak and Pease [9] were the first
scholars to pay attention to the BA problem. Lamport et al.
defined the BA problem as follows: (1) A distributed system
comprises n processors with a maximum number of Byzan-
tine processors fb, where n ≥ 4 and fb ≤ b(n − 1)/3c;
(2) Processors can communicate with each other directly;
(3) Each processor can be uniquely identified; (4) One of the
processors is assigned to be the commander that holds an ini-
tial value vc; (5) The commander first sends the initial value vc
to other processors. On receipt of the value vc, each processor
exchanges the received value with other processors. After
b(n − 1)/3c + 1 rounds of message exchange, an agreement
value can be obtained. The term ‘‘round’’ denotes the interval
of a message exchange between any two processors [16].
In the above definition, the first condition clearly indicates
that the maximum allowed number of faulty processors is
b(n − 1)/3c; the second indicates that the network topology
is a fully connected network; the third is that the identifica-
tion of each processor cannot be falsified; the fourth indi-
cates that there is only one commander in the BA problem;
The fifth indicates that each processor can reach a common
agreement value after b(n − 1)/3c + 1 rounds of message
exchange.
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The difficulty of the BA problem lies in that there can be
b(n−1)/3c Byzantine processors at most in the network. The
worst case is that the commander is a Byzantine processor,
so the Byzantine commander may send inconsistent vc to
different processors in the network. Any protocol designed
to solve the BA problem must satisfy three requirements as
follows [9], [10], [17]:

� BA_Agreement: All the correct processors agree on a
common value.

� BA_Validity: If the commander processor is correct,
then all the correct processors agree on the initial value
sent by the commander processor.

� BA_Termination: All the correct processors eventually
decide.

A review of related works of the BA problem published
in recent years is provided as follows [18], [19]. With the
continuous development of wireless networking, networks
have evolved from being static to being dynamic. However,
previous BA protocols can only be applied to static net-
works, such as fully connected networks [9], [10], broad-
cast networks [20], and non-fully connected networks [21].
Hence, Cheng and Tsai [18] propose the Eventual Byzantine
Agreement Protocol for dynamic network with Byzantine
faulty processors (EBAdynP) as a solution for the BA problem
in dynamic networks. The feature of the EBAdynP protocol
is that it can not only solve the BA problem in dynamic
networks but also dynamically alter the number of rounds
of message exchange depending on the interference of faulty
processors.

On the other hand, it is assumed in the BA problem defined
by Lamport et al. [9] that each processor in the distributed
system can be uniquely identified. Hence, most of the BA
algorithms assume that each processor has a unique identity.
However, Delporte-Gallet et al. [19] argue that assuming
each processor has a unique and unforgeable identifier might
be a too restrictive assumption in practice. Therefore, they
reexamine the BA problem in synchronous systems with
homonyms. In their study, different processors may have
the same authenticated identifier (a system of n processors
sharing a set of l identifiers, where 1 ≤ l ≤ n). They pro-
posed a protocol named the Synchronous Byzantine Agree-
ment Algorithm with Distribution (n1, .., nl) (SBAAD in
short). The SBAAD protocol can solve the BA problem with
homonyms in synchronous systems after 2(b(n− 1)/3c + 1)
rounds of message exchange.

B. CONSENSUS (BINARY-VALUED / MULTI-VALUED)
The Consensus problem is another well-known problem in
fault-tolerant distributed systems. As mentioned earlier, the
feature of the BA problem is that only one processor has
the initial value. The difference between the BA problem
and the Consensus problem is that every processor has an
initial value of its own in the Consensus problem. There
are two main types of the Consensus problem, namely
the Binary-Valued Consensus (BVC) and the Multi-Valued

Consensus (MVC) [22]–[26]. In the BVC problem, the agree-
ment value is either 0 or 1. Any protocol designed to solve
the BVC problem must satisfy three requirements as fol-
lows [23], [25]:

� BVC_Agreement: All the correct processors agree on a
common value.

� BVC_Validity: If the initial values of all the correct
processors are v, then all the correct processors shall
agree on v.

� BVC_Termination: All the correct processors eventually
decide.

In terms of definition, the MVC problem is similar to the
SVC problem, except in that processors can propose values
with arbitrary length v ∈ V , where V is the domain of values
that can be proposed. The protocol can decide one of the
proposed values or a default value ⊥ /∈ V . Any protocol
designed for theMVCproblem shall satisfy five requirements
as follows [22], [24], [26]:

� MVC_Agreement: All the correct processors agree on a
common value.

� MVC_Validity1: If the initial values of all the correct
processors are v, then all the correct processors shall
agree on v.

� MVC_Validity2: If a correct processor decides v, then v
has been proposed by some processors or v = ⊥.

� MVC_Validity3: If a value v is proposed by only Byzan-
tine processors, then no correct processor agrees on v.

� MVC_Termination: All the correct processors eventu-
ally decide.

Some related works of the Consensus problem published
in recent years [25], [27] are introduced as follows. The
traditional Consensus protocols can tolerate b(n−1)/3c faulty
processors in a network after b(n− 1)/3c+ 1 rounds of mes-
sage exchange [22], [23]. Due to the continuous improvement
of software and hardware technologies, the actual number of
faulty processors (fact ) in a network has become very small (in
practice, fact << b(n − 1)/3c). Nevertheless, the traditional
Consensus protocols still need b(n − 1)/3c + 1 rounds of
message exchange to solve the Consensus problem even if
there is no faulty processor. Hence, Cheng and Tsai [25]
propose the Recursive Byzantine-Resilient (RBR) protocol to
address this issue. In this paper, the authors do not address
how to let the protocol tolerate a greater number of faulty
processors but focus on how to drastically reduce its space
complexity and time complexity by slashing the number of
faulty processors that can be tolerated. Moreover, they also
discuss how to achieve tolerance of more faulty processors
through iterative execution of the RBR protocol.

On the other hand, several variants of the Consensus
problem have been proposed for various applications. Using
the approximate Consensus protocol to solve the clock
synchronization problem in mobile ad hoc networks is an
example of these variants. Clock synchronization is cru-
cial for many applications in mobile ad hoc networks. For
instance, sensors must perform clock synchronization before
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TABLE 1. Four variations of the problem.

sleep/wake scheduling. Monitoring tasks may also require
identification of a total order among the events observed
on different sensors. However, mobile processors move in
a random walk pattern in mobile ad hoc networks. Hence,
previous approximate Consensus protocol cannot be applied
in mobile ad hoc networks. To address this issue, Li et al. [27]
attempt to solve the clock synchronization problem in mobile
ad hoc networks using an approximate Consensus proto-
col. They propose a protocol named Clock Synchronization
(CS). This CS protocol can solve the clock synchronization
problem in mobile ad hoc networks containing Byzantine
mobile processors.

C. ALTERNATIVE PLANS
In traditional agreement related problems (i.e. BA and Con-
sensus problems), all the correct processors shall eventu-
ally accept a commonly agreed value. However, whether
the agreement (plan) is good or bad is not considered in
previous research. Therefore, Correia et al. [22] propose a
variant of the agreement problem called the Byzantine Gen-
erals with Alternative Plans problem (BGAP). In BGAP,
processors can devise several good plans and a set of bad
plans. The protocol for BGAP is to make all the correct
processors agree on a good plan that is proposed by one of
them.

Four variations of BGAP have been noted, and they differ
by the restrictions to the relation between the processors’
good plans (GP set) and bad plans (BP set). The four vari-
ations of the problem are explained in Table 1. According
to Correia et al., Variation 4 does not set any restriction to
the relation between good plans and bad plans, so it cannot
be solved. Protocols designed for BGAP shall satisfy four
requirements as follows [22]:

� BGAP_Agreement: No two correct processors decide
differently.

� BGAP_Validity1: If there is a value v such that for any
correct processor Pi, v ∈GPi, then any correct processor
that decides will decide a value v’ such that v’∈ GPj for
a correct processor Pj.

� BGAP_Validity2: No correct processor Pi decides a
value v if there is a correct processor Pj with v ∈ BPj.

� BVC_Termination: All the correct processors eventually
decide.

D. RELIABLE CHANNELS
In most BA and Consensus problems, processors are fully
connected by reliable channels. This ensures that messages
from the sender will be eventually received by the intended
receiver without being tampered [9], [10]. However, in reli-
able channels, the Byzantine sender can still send inconsistent
messages to different receivers. For example, the Byzantine
commander may send an attack instruction to some of the
generals and send a retract instruction to the others. There-
fore, Correia et al. [22] use a reliable broadcast protocol to
ensure that different messages with the same identifier can-
not be delivered. Using this reliable broadcast protocol can
avoid Byzantine senders from sending incongruous messages
to different processors. This reliable broadcast protocol has
three requirements as follows [28]:

� RB Validity: If a correct processor broadcasts a mes-
sage Msg, then some correct processors will eventually
receive Msg.

� RB Agreement: If a correct processor receives a mes-
sage, then all the correct processors will ultimately
receive Msg.

� RB Integrity: For any identifier ID, each correct proces-
sor receives only one messageMsg with identifier ID; if
the sender of messageMsg is correct, thenMsg has been
previously broadcast by the sender of Msg.

E. CONTRIBUTION (CONSENSUS (n,m) PROBLEM WITH
ALTERNATIVE PLANS)
As mentioned previously, only one processor can serve as
the commander in the BA problem. In other words, only one
processor is allowed to propose the suggestion (i.e. only one
processor has the initial value). In contrast to the BA problem,
all processors in the Consensus problem can serve as the
commander. That is, each processor must propose its sug-
gestion (as mentioned in Section I.B). However, requesting
all processors to propose suggestions or allowing only one
processor to propose a suggestion is not flexible and practical
for real-world applications. For example, demanding every-
one to vote for someone and not abstain in the election is
unreasonable. Therefore, the Consensus problem is reexam-
ined in this paper. A new type of Consensus problem called
Consensus (n, m) is defined, where n is the total number of
processors in the network,m is the number of processors with
an initial value, n ≥ 4 and 1 ≤ m ≤ n. Based on this
definition, the traditional BA problem can be expressed as
Consensus(n,1), and the traditional Consensus problem can
be expressed as Consensus (n, n). The difference between the
traditional BA/Consensus problem and the Consensus (n, n)
problem is that the processors in the Consensus (n, n) problem
can flexibly choose to propose or not propose an initial value.
That is, the value of m can flexibly vary between 1∼ n.
A greatermmeans there are more processors having an initial
value. However, the value of m does not affect the number of
rounds of message exchange and the number of messages that
are required by the proposed protocol. This feature allows
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the Consensus problem to be flexibly applied in many new
real-world applications of the distributed system. Moreover,
the proposed Consensus (n, m) problem will be combined
with alternative plans and solve the Consensus (n,m) problem
with the four variations in Table 1. Therefore, the Consensus
(n, m) problem is also a variation of the MVC problem.
Correia et al. [22] point out that if the correct processors

have possibly different good plans and possibly different bad
plans (Variation 4 in Table 1), then the problem cannot be
solved. In this paper, how to make all the correct processors
in the network have the same set of good plans and the same
set of bad plans is discussed. This is a problem of reducing
Variation 4 to Variation 1. If Variation 4 can be reduced to
Variation 1, Variation 4 of the Consensus (n, m) problem
can be solved. In addition, the proposed Consensus (n, m)
protocol does not take advantage of the reliable broadcast
protocol to transmit messages in reliable channels. Therefore,
Byzantine senders can send differing messages to different
processors. Nevertheless, the proposed protocols can still
solve the Consensus (n, m) with alternative plans problem
without a reliable broadcast protocol in reliable channels. The
main contributions of this paper are summarized below.
1) We define a new type of Consensus problem named the

Consensus(n,m) with alternative plans. This problem features
a relaxed number of processors that are allowed to have an
initial value.
2) We integrate the concept of alternative plans into the

proposed algorithm. We integrate the Plan_Consensus Pro-
tocol (PCP) to ensure that all correct processors obtain a
consistent good plan set and a consistent bad plan set.
3) Under the influence from Byzantine processors, the pro-

posed algorithm can still solve the Consensus(n,m) with alter-
native plans problem without using the reliable broadcast
protocol.

This paper comprises six sections, and remainder is as
follows. Section 2 describes the definitions and conditions for
the proposed protocol. Section 3 describes the concept and
approaches. Section 4 shows how the proposed protocol runs
in an example problem. Section 5 evaluates the correctness
and complexity. Finally, the conclusion is presented in the
Section 6.

II. DEFINITIONS AND CONDITIONS
In this study, the Consensus (n, m) problem is discussed in
an asynchronous network with oracle or a timing assump-
tion [22] to circumvent the limitation of strictly asynchronous
systems. Moreover, it is assumed that processors are fully
connected by reliable channels. The definition of reliable
channel is given in Section I.D. To begin with solving the
Consensus (n, m) problem, the system model must be estab-
lished and problem definition must be clearly defined.

A. SYSTEM MODEL
In the Consensus problem, the number of allowable faulty
processors depends on the failure type of faulty processors
as well as the total number of processors in the network.

Common failure types of faulty processors include crash [29],
omission [30] and Byzantine [31]. The most damaging type
of failure is Byzantine failure. For instance, a Byzantine
processor may send bogus messages, send messages at the
wrong time or send differentmessages to different processors.
Besides, Byzantine processors may work with other faulty
processors to prevent correct processors from reaching a
common agreement.

So, if the Consensus (n, m) problem can be solved with
Byzantine processors, the Consensus (n,m) problem can also
be solved when there are other types of failures. Therefore,
the proposed protocol is designed to solve the Consensus
(n, m) problem with Byzantine processors. Fischer et al. [16]
show that when using oral messages to cope with fb Byzan-
tine processors, there must be at least 3fb + 1 processors.
Therefore, 3fb + 1 is also a constraint on our system model.
The assumptions and parameters of our model are listed as
follows:

G Let N be the set of all the processors in the network and
|N | = n, where n denotes the total number of processors
in the network.

G Each processor can be uniquely identified, and the
underlying network is an asynchronous network with
reliable channels.

G All messages are transmitted through reliable channels.
Intermediate components cannot falsify any message
from a sender to its receivers, but the Byzantine sender
may send different messages to different processors.

G Let fb be the maximum number of Byzantine proces-
sors allowed in the network, where fb = b(n − 1)/3c.
These faulty processors cannot break down a workable
network.

G Correct processors do not know the faulty status of other
processors in the network.

G Processors can propose values with arbitrary length v ∈
V , where V is the domain of values that can be proposed.

B. PROBLEM DEFINITION
In the Consensus (n, m) problem with alternative plans, there
are a total of n (n ≥ 4) processors in the network, where m
(1 ≤ m ≤ n) processors have their own initial values. The
maximum number of Byzantine processors in the network is
fb (fb ≤ b(n− 1)/3c). During the execution of the Consensus
(n, m) protocol, each of the m processors shall propose its
initial value (i.e. suggestion) selected from its good plans
set. The goal of the Consensus (n, m) protocol is to make
all the correct processors agree on a common value with
no interference by Byzantine processors. The common value
is selected from good plans. That is, the protocol for the
Consensus (n, m) problem with alternative plans shall satisfy
the following requirements:

� Agreement: All the correct processors agree on a com-
mon value.

� Validity1: If there is a value v such that for any cor-
rect processor Pi, v ∈ GPi, then any correct processor
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FIGURE 1. Plan_Consensus Protocol (PCP) [24].

that decides will decide a value v’∈ GPj, for correct
processor Pj.

� Validity2: No correct processor Pi decides a value v if
there is a correct processor Pj with v ∈ BPj

� Termination: All the correct processors eventually
decide.

We set the object function of the Consensus (n,m) problem
with alternative plans as expressed in Equation (1), where vi
is the consensus value that processor Pi decides. Equation (2)
is used to limit the number of processors and its relationship
with the number of Byzantine processors. Equation (3) and
Equation (4) are used to ensure that all the correct processors
have the same set of good plans and the same set of bad plans.
Equation (5) is used to limit that the consensus value comes
from the good plan set.

vi = vj, ∀ correct processor Pi, Pj ∈ N where i 6= j (1)

subject

fb ≤ t, where t = b(n− 1)/3c

(2)
GPi = GPj, ∀ correct processor Pi, Pj ∈ N where i 6= j

(3)
BPi = BPj, ∀ correct processor Pi, Pj ∈ N where i 6= j

(4)
vi ∈ GPi, ∀ correct processor Pi ∈ N (5)

III. CONCEPT AND APPROACHES
To solve the Consensus (n, m) problem with alternative plans
in a network containing Byzantine processors, the proposed
protocol must be able to cope with the four variations of the
Consensus (n,m) problem as shown in Table 1. As mentioned
earlier, Variation 4 does not set any restriction to the relation
between good plans and bad plans, so it cannot be solved
(Correia et al. [22]).

To tackle this issue, we propose a protocol that makes all
the correct processors have the same set of good plans and
the same set of bad plans (to reduce Variation 4, 3 and 2 to
Variation 1) [24]. This protocol is called Plan_Consensus Pro-
tocol (PCP). The pseudocode of the PCP protocol is shown
in Fig. 1. Readers interested in understanding how the PCP
works are advised to check out the reference [24].

If the alternative plans model [22] is not considered in
the problem, all correct processors can still reach a common
consensus value through the proposed ECPAP protocol. That
is, the proposedECPAP protocol can deal with the raw con-
sensus problem. However, without the consideration of the
alternative plans model, the proposed ECPAP protocol cannot
ensure that the consensus value comes from the good plan
set. In the following subsection, how to solve the Consensus
(n, m) problem with alternative plans in a network with
Byzantine processors will be discussed.

A. ELASTIC CONSENSUS(n,m) PROTOCOL WITH
ALTERNATIVE PLANS (ECPAP)
The proposed protocol for the Consensus (n, m) problem
with alternative plans in a network with Byzantine pro-
cessors is called the Elastic Consensus (n, m) Protocol
with Alternative Plans (ECPAP). ECPAP has two phases,
including Msg_Collecting Phase and Dec_Making Phase.
Msg_Collecting Phase is a phase in which all the proces-
sors collect messages from other processors. In ECPAP, a
round of message exchange is defined in the same way as
in Fischer et al. [16], so the number of rounds of message
exchange is also t + 1 in this phase. In the Msg_Collecting
Phase, each processor will store the received messages into
an ECP-tree. ECP-tree is conceptually similar to ic-tree [24].
The difference between ic-tree and ECP-tree is that ic-tree
starts from Level 1 and ECP-tree starts from Level 0. After
t + 1 rounds of message exchange, all the processors will
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FIGURE 2. Elastic Consensus (n, m) Protocol with Alternative Plans (ECPAP ).

enter the Dec_Making Phase. In this phase, influence from
Byzantine processors will be removed by using the voteAC
function. A detailed explanation of voteAC function is pro-
vided in Section III.A.2. The formal description of ECPAP is
shown in Fig. 2.

As mentioned in Section I.D, a reliable broadcast proto-
col can avoid Byzantine senders to send inconsistent mes-
sages to different processors. In this study, ECPAP does not
take advantage of reliable broadcast protocol. Even though
Byzantine senders may send inconsistent messages to differ-
ent processors, ECPAP can still solve the Consensus (n, m)
problem with alternative plans in a network with Byzan-
tine processors. This is because if the amount of Byzantine
processors is smaller than fb (fb = b(n− 1)/3c , where n is
the total number of processors), the impact of one Byzan-
tine processor can be fixed after one round of message
exchange [32]. Given at most fb Byzantine processors in the
network, after b(n − 1)/3c + 1 rounds of message exchange
in the Msg_Collecting Phase, the impact of fb Byzantine
processors can be fixed. Using the voteAC function in the
Dec_Making Phase, the impact of the Byzantine processors
can be further excluded through a majority rules procedure
(Theorem 2).

1) Msg_Collecting PHASE OF ECPAP
The main purpose of the Msg_Collecting Phase is to enable
all the processors to gather sufficient messages. In the
Msg_Collecting Phase, each processor has to compute how
many rounds of message exchange are needed first (t + 1,
where t = t = b(n − 1)/3c) and then construct an ECP-tree
and set the value of root (Level 0) as its initial value (Line 1 of
ECPAP). Later, all processors begin to exchange messages.
Each of them will send its initial value to all the proces-
sors in the network (Line 2-6 of ECPAP), which will then
store the obtained initial values in their ECP-trees (Level 1)
respectively (Line 7-11 of ECPAP). In the following rounds

(Round r , 2≤ r ≤ t+1), each processor will send the mes-
sages it has received in the previous round (Round r − 1) to
other processors and store the messages delivered from other
processors at Level r of its ECP-tree (Line 12-28 of ECPAP).
This process continues until Round t + 1 is completed.
In the Consensus (n,m) problem, some processors (n-m)

may not have any suggestion (i.e. initial value). For proces-
sors whose initial value is null, η0 will be used to represent
their messages. In other words, value η is used to report
the absence of suggestions. Besides, for processors to bet-
ter identify that value η comes from a preceding processor,
ECPAP has the following design: if a processor receives ηj

(0 ≤ j ≤ (b(n − 1)/3c) in Round 2∼ t+1 of message
exchange, it will store ηj+1 in its ECP-tree (Line 24-26 of
ECPAP). This process continues iteratively until Round t + 1
is completed.

2) Dec_Making PHASE OF ECPAP
The Dec_Making Phase enables all the correct processors
to compute a common good plan. After the Msg_Collecting
Phase, every processor has built an ECP-tree of t + 1 levels.
The correct processors will apply the voteAC function to their
ECP-tree to compute a common good plan.

First of all, each processor will bring its ECP-tree into the
voteAC function to derive the function values at the first level
(Level 0) and uses this function to remove the influence from
Byzantine processors. To put the matter simply, after bringing
the messages stored at each leaf (Level t + 1) into the voteAC
function, a voteAC function value of each leaf (Level t+1) can
be obtained. Later, the voteAC function value of each node at
Level t can be computed based on the values of leaves (Level
t+1) under the same parent node. The voteAC function value
of each node is computed from the last level (Level t + 1) to
the first level (Level 0). Finally, each correct processor can
get the same good plan by voteAC function (Line 29-31 of
ECPAP).
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FIGURE 3. voteAC function.

FIGURE 4. The flow chart of solving the Consensus (n, m) problem with alternative plans.

The voteAC function has four conditions as follows: (1) If
vertex α is a leaf, there is only one value in vertex α. Thus,
the majority value is the value of vertex α; (2) It is used to
remove the influence fromByzantine processors. (3) It is used
to identify the processors with no suggestion; (4) It is used
to find the majority value. The formal description of voteAC
function is shown in Fig. 3.

B. THE FLOW CHART OF THE APPROACH
The flow chart of the approach is shown in Fig. 4. In order
to solve the Consensus (n, m) problem with alternative plans
in a network with Byzantine processors, the PCP protocol is
utilized to ensure that all the correct processors have the same
set of good plans (GP) and the same set of bad plans (BP).
As shown in the left of Fig. 4 (step 1), each processor Pi has
a set of its Initial Good plans IGi ={v1, . . . , vgi} and a set
of its Initial Bad plans IBi ={v′1, . . . , v

′
bi} in the beginning,

where IGi ⊆ V , IBi ⊆ V, and IGi∩ IBi = null. Subsequently,
the BA function ensures that all the correct processors get the
same message (i.e. the same initial good/bad plan set from all
the processors, Step 2 in Fig. 4). Then, using the following
rule to compute the good/bad plan set: If plan v is recognized
as a good plan by b(n− 1)/3c + 1 processors, plan v will be

placed in the set of GP; in contrast, if plan v is recognized as a
bad plan by b(n− 1)/3c+ 1 processors, plan v will be placed
in the set of BP. Hence, every correct processor can compute
the same good/bad plan set because with the same input and
the same computing rule, the same output will be obtained
(Step 3 in Fig. 4). That is, the role of the PCP protocol is
important. It is used to reduce the Variation 2, Variation 3 and
Variation 4 to Variation 1 (Table 1). Finally, the proposed
ECPAP protocol is used to make all the correct processors
agree on the same good plan (Step 4 in Fig. 4).

IV. AN EXAMPLE OF EXECUTING THE
PROPOSED PROTOCOLS
This section shows how the proposed protocols work. This
example is given as follows: A network consists of eight pro-
cessors, with each processor Pi having some initial good plans
(IGi set) and initial bad plans (IBi set), as shown in Fig. 5 and
Table 2. Among these processors, P3 and P7 are Byzantine
processors.

After executing the PCP protocol, all the correct processors
obtain a consistent BP set and a consistent GP set, where
BP = {ζ , ψ} and GP = {τ , ρ, ω}. How to use the ECPAP
protocol to allow all the correct processors to obtain a final
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FIGURE 5. An example of the network with Byzantine processors.

TABLE 2. The IG set and IB set of each processor.

TABLE 3. The initial value of each processor.

TABLE 4. The initial value sends by Byzantine processors P 3 and P 7 in
the 1st round.

common value that comes from the GP set is explained as
follows.

First of all, each processor will obtain a 0∼1 value from
the GP set to be its initial value and store it in the root of its
ECP-tree. Table 3 shows the initial value of each processor.
P5 and P6 do not have a suggestion, so their initial values are
set as null. P3 and P7 are Byzantine processors, so they may
arbitrarily alter their initial values any time. In the worst case,
these two processors conspire to prevent the correct proces-
sors from reaching a consensus. In this example, the ECPAP
protocol will execute 3 (b(8 − 1)/3 + 1) rounds of message
exchange in the Msg_Collecting Phase. The operation of the
ECPAP protocol is explained from P1’s viewpoint.
In the first round of the Msg_Collecting Phase of ECPAP,

each processor sends its initial value to other processors in
parallel. For processors whose initial value is null, η0 will be
used to represent their messages. Later, each processor will
store the initial value from other processors in its ECP-tree.
Assume that Byzantine processors P3 and P7 work together
to send ρ to P1, P6 and P8 and τ to P2,P4 and P5, as shown
in Table 4. After the first round of the Msg_Collecting Phase,
P1 will have an ECP-tree as shown in Fig. 6(a), and P4 will
have an ECP-tree as shown in Fig. 6(b).

In the second round of the Msg_Collecting Phase of
ECPAP, each processor will send the value it has stored
at Level 1 of its ECP-tree to all the other processors and
store the messages it has collected at Level 2 of its ECP-
tree. Fig. 6(c) shows the ECP-tree of P1 after 2 rounds
of message exchange. Take P4 in the second round of the
Msg_Collecting Phase as an example. P4 will send the
messages it has collected at Level 1 to P1 (i.e. val(P1),
val(P2), val(P3), val(P4), val(P5), val(P6), val(P7), val(P8)
in Fig. 6(b)). P1 will stores the received message from proces-
sor P4, denoted as val(P1P4), val(P2P4), val(P3P4), val(P5P4),
val(P6P4), val(P7P4), val(P8P4) in vertex P1P4, P2P4, P3P4,
P5P4, P6P4, P7P4, P8P4 of its ECP-tree (Fig. 6(c)). To help
readers better understand the operation of the proposed pro-
tocol, we highlight the ECP-tree of P1 after the 2nd round
of Msg_Collecting Phase (Fig. 6(c)) that is received from P4
(Fig. 6(b)).
It should be noted that if any processor receives ηj (0 ≤ j ≤

(b(n−1)/3c) from other processors, it will change it into ηj+1

as val(P5P1) = η0+1 = η1 as shown in Fig. 6(c). In the third
round of theMsg_Collecting Phase of ECPAP, each processor
will send the messages stored at Level 2 of its ECP-tree to
other processors and store the messages it has collected at
Level 3 of its ECP-tree. An example with the ECP-tree of P1
after 3 rounds of message exchange is shown in Fig. 6(d).
After 3 rounds of message exchange, each processor will

enter the Dec_Making Phase. Finally, each processor will use
the voteAC function to calculate the common values from the
leaf nodes to the root. In this example, correct processor P1
obtains τ as the final common value and is confident that
this value matches with the values obtained by other correct
processors. Below is a portion of the computation process.

V. CORRECTNESS AND COMPLEXITY
In this section, the correctness of the ECPAP in solving the
Consensus (n, m) with alternative plans problem is proved,
and the complexity of the ECPAP is evaluated. Moreover,
whether the number of rounds of message exchange required
is minimal is also examined.

A. CORRECTNESS
In proving the correctness of the proposed protocols,
we define that a vertex α is called common [33] if the
values stored at α of all the correct processors’ ECP-trees
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FIGURE 6. An example of executing ECPAP .

are identical. That is, if each correct processor has a common
value stored at its root, then a consensus is reached since
the root is common. Besides, if every root-to-leaf path of an
ECP-tree contains a common vertex, and then the collection
of the common vertices forms a common frontier [33]. Sub-
sequently, by using the same vote function (i.e. voteAC ) to
compute the root value of the tree structure, every correct
processor can obtain the same root value because the same
input (i.e. common frontier) and the same computing function
(i.e. voteAC ) generate the same output (i.e. a common good
plan). The following lemmas and theorems are proposed to
prove the correctness of the proposed ECPAP.

Lemma 1: All the correct vertices of an ECP-tree are
common if the number of Byzantine processors fb ≤t, where
t = b(n− 1)/3.

Proof: To prove that a common value can be obtained by
the ECPAP, we define two terms, ‘‘correct vertex’’ and ‘‘true
value’’, as follows:(1) Correct vertex: Vertex αi of a tree is
considered a correct vertex if processor Pi (the last processor
name in vertex αi, where α is a sequence of processor ID
and i is a single processor id) is correct. In other words,
a correct vertex stores the value from a correct processor.
(2) True value: For a correct vertexαi in the tree of a correct
processor Pj, val(αi) is the true value of vertex αi. In other
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words, if processor Pj is correct, then the stored value of
correct vertex αi is called the true value. There are no vertices
with repeated names in an ECP-tree. At Level t+ 1 or above,
the correct vertex α has at least 2t + 1 children, of which
at least t + 1 children are correct. The true values of these
t + 1 correct vertices are in common, and the majority value
of vertex α is common. The correct vertex α is common in
the ECP-tree if the level of α is lower than t + 1. As a result,
all the correct vertices of the ECP-tree are common.
Lemma 2: The common frontier exists in the ECP-tree.
Proof: There are t + 1 vertices along each root-to-leaf

path of an ECP-tree in which the root is labeled by root,
and the others are labeled by a sequence of processor names.
Since at most t Byzantine processors are likely to fail, there is
at least one correct vertex along each root-to-leaf path of the
ECP-tree. By Lemma 1, the correct vertex is common, and the
common frontier exists in each correct processor’s ECP-tree.
Lemma 3: Let α be a vertex; α is common if there is a

common frontier in the sub-tree rooted at α.
Proof: If the height of α is 0 and the common frontier

(α itself) exists, then α is common. If the height of α is
r , the children of α are all in common under the induction
hypothesis with the height of the children being r-1.
Corollary 1: The root is common if the common frontier

exists in the ECP-tree.
Theorem 1: The root of a correct processor’s ECP-tree is

common.
Proof: By Lemma 1, Lemma 2, Lemma 3, and Corol-

lary 1, the theorem holds.
Theorem 2: The proposed ECPAP protocol can solve the

Consensus(n,m) with alternative plans problem if the num-
ber of Byzantine processors f b is smaller than t, where
fb = b(n− 1)/3c.

Proof: The value of the correct vertices for the ECP-tree
of all the correct processors is v. As a result, each correct
vertex of the ECP-tree is common (Lemma 2), and its true
value is v. By Theorem 1, this root is common. The computed
value voteAP(ECP-tree)= v is stored in the root for all the
correct processors. Therefore, the validity is confirmed.

B. COMPLEXITY
The complexity of the ECPAP protocol is evaluated by two
criteria, including (1) the number of rounds of message
exchange (i.e. time complexity), and (2) the number of mes-
sages required (i.e. space complexity). The following the-
orems are used to evaluate the complexity of the ECPAP
protocol.
Theorem 3: The proposed ECPAP protocol solves the Con-

sensus(n,m) with alternative plans problem by using a mini-
mum number of rounds (t+1 rounds) of message exchange.

Proof: In message exchange, oral messages (non-
encrypted message) are used; in estimating the frequency of
message exchange, the operation is counted by round [16].
Fischer and Lynch [16] point out that when the failure type
of processors in the network is the worst Byzantine fault,

for a network consisting of n processors and relying on oral
messages for message exchange, the network can tolerate
a maximum of b(n − 1)/3c Byzantine processors. In such
network, the number of rounds of message exchange is
t + 1 (t = b(n − 1)/3c). Moreover, Fischer and Lynch
also prove that the minimum number of rounds of message
exchange is t + 1. In this paper, a similar setting as used by
Fischer and Lynch is adopted. Because the number of rounds
of message exchange of ECPAP is t + 1, and this number is
the minimum as shown by Fischer and Lynch, the number of
rounds required by the ECPAP protocol is also the minimum.
Theorem 4: The number of messages required by the pro-

posed ECPAP is minimum ((t + 1) ∗ n2).
Proof: According to Theorem 3, the number of rounds

of message exchange is t + 1. In each round, each processor
sends its message (the value stored at the last level of its
ECP-tree tree) to all the other processors in the network. The
total number of processors in the network is n, so at most n2

messages will be generated in each round. Therefore, the total
number ofmessages required by ECPAP protocol is (t+1)∗n2.
By Theorem 3, t + 1 rounds is the minimum number of
rounds of message exchange. Hence, (t + 1) ∗ n2 is also the
minimum number of messages required. That is, the number
of messages required by the ECPAP protocol is the minimum.

Further, the performance of the ECPAP protocol in terms of
the number of allowable Byzantine processors, the number
of rounds required, and the number of messages required
are evaluated. The number of allowable Byzantine proces-
sors depends on the number of processors in the network.
The number of allowable Byzantine processors with varied
numbers of processors in the network (30∼80 processors) is
shown in Fig. 7. As shown in Fig. 7, with the increase of
the number of processors, the number of allowable Byzan-
tine processors also increases. This is because the ECPAP
protocol takes advantage of the distributed feature of the sys-
tem. It relies on adequate cooperation between processors to
overcome the attacks from Byzantine processors. Therefore,
when there is a greater number of processors in the system,
the number of Byzantine processors that can be tolerated

FIGURE 7. The number of allowable Byzantine Processors.
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FIGURE 8. The number of rounds of message exchange.

FIGURE 9. The number of messages required.

can be greater. For instance, given the number of processors
n = 10, the number of allowable Byzantine processors by
ECPAP protocol is 3. Given the number of processors n = 80,
the number of allowable Byzantine processors by ECPAP
protocol grows to 26.

The number of rounds of message exchange is shown
in Fig. 8. As shown in this figure, with the increase of the
number of processors, the number of rounds of message
exchange also increases. This is because when the number
of processes increases, the number of allowable Byzantine
processors will also increase. To eliminate possible inter-
ference from Byzantine processors, there should be more
rounds of message exchange. However, when the number of
rounds of message exchange becomes greater, the number
of messages required will grow relatively. Fig. 9 shows the
number of messages required given varied numbers of pro-
cessors in the network. The number of messages required is
also equal to the storage cost. For instance, given the number
of processors n = 10, the number of messages required is
400 units. Given the number of processors n = 80, the num-
ber of messages required grows to 172,800 units. As can be
observed in Fig. 9, the number of messages required grows
rapidly.

VI. CONCLUSION
In this paper, the traditional Consensus problem is extended
to the Consensus (n, m) problem with alternative plans. The
main contributions of this paper are summarized as follows:
(1) The number of processors that are allowed to have an
initial value is relaxed; (2) The proposed protocol makes all
the correct processors in the network obtain the same set
of good plans and the same set of bad plans. This is very
important to the Consensus problem with alternative plans,
because Correia et al. [22] have pointed out that when correct
processors have possibly different good plans and possibly
different bad plans (i.e. Variation 4 in Table 1), the Consensus
problem with alternative plans cannot be solved; (3) ECPAP
does not take advantage of the reliable broadcast protocol
to transmit messages. Thus, Byzantine senders can send
inconsistent messages to different processors. Nevertheless,
the proposed ECPAP can still solve the Consensus (n,m) with
alternative plans problemwithout using the reliable broadcast
protocol.
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