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ABSTRACT Effective condition monitoring provides some benefits such as improving safety and reliability.
Roller bearing is the key component of rotating machinery, and a novel roller bearing condition monitoring
method based on rational Hermite interpolation-local characteristic-scale decomposition (RHLCD) and
fusion variable predictive model-based class discriminate method (FVPMCD) is proposed in this paper.
RHLCD can adaptively decompose any complex signal into a sum of rational intrinsic scale compo-
nents (RISCs), whose instantaneous frequency has physical meaning. In addition, targeting the limitation
of variable predictive model-based class discriminate method (VPMCD), FVPMCD is presented. First, four
kinds of common models are used to recognize a sample. Then, the recognition results of each model
are satisfied, and the recognition probability of each state is calculated. Finally, the largest recognition
probability of the state is chosen to recognize categories. The analytical results of experimental signals
indicate that the proposed condition monitoring approach can identify the states of roller bearing effectively.

INDEX TERMS Rational Hermite interpolation-local characteristic-scale decomposition, fusion variable
predictive model-based class discriminate method, roller bearing, condition monitoring.

I. INTRODUCTION
Roller bearing is the key component of the rotating machin-
ery, whose fault is the common fault of mechanical system.
When the failure of roller bearing occurs, it will directly
affect the operation of the entire mechanical system. Effective
condition monitoring can provide some benefits such as the
improved safety and improved reliability, and prevents catas-
trophic failures in rotatingmachinery [1,2]. Therefore, how to
effectively demonstrate the highly relationship between roller
bearing diagnosis inputs and corresponding system health
states has become particularly important [3,4].

Nowadays, vibration signal analysis is the most extended
technique for condition monitoring. However, the measured
vibration signal of roller bearing is nonlinear and non-
stationary signal in general, and vibration measurements are
usually used in conditionmonitoring of roller bearings, which
can be realized by acceleration sensors. When the faults
of the roller bearing occur, the vibration signal of roller
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bearing would be different from the signal under normal state.
Meanwhile, the noise signal and background signal are mixed
in the measured signal, and it is difficult to extract the infor-
mation related with fault effectively from the vibration signal
by traditional time-domain and frequency-domain methods
based on Fourier transform. Obviously, some limitations are
existing in the analysis of non-stationary vibration signal of
roller bearing [5], [6].

Aiming at the shortages of the time-domain and frequency-
domain method based on traditional Fourier transform,
some time-frequency analysis methods have been proposed
to analyze non-stationary signal [7], such as empirical
mode decomposition (EMD) [8], local mean decomposi-
tion (LMD) [9], intrinsic time-scale decomposition method
(ITD) [10] and so on. ITD as a typical adaptive time-
frequency analysis method, which can obtain several proper
rotation components (PRCs) adaptively, whose instantaneous
frequency has physical meaning. Meanwhile, ITD over-
comes some shortcomings of EMD and LMD methods
in computational efficiency, mode mixing and end effect
[11]–[14]. Unfortunately, ITD method does not explain
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the physical meaning of the algorithm itself and PRC.
In addition, the instantaneous amplitude and frequency of
the baseline signal obtained by linear transformation often is
distorted [15].

In view of the shortcomings of ITD, the further application
will be restricted and some scholars have proposed some
improved ITD methods. Cheng et al. used a cubic spline to
envelop signals, and then proposed the local characteristic-
scale decomposition (LCD) [11]. Bouchikhi et al. used the
cubic B-spline interpolation to get a smoother component
signal, and removed the burr phenomenon [16]. The cubic
spline interpolation method shows superiority in convergence
and smoothness, but it is easy to produce the problems of
under-envelope and super-envelope, especially strong impact
non-stationary signals. To solve the problem of cubic spline
interpolation, Li et al. applied the Hermite interpolation to
ITD method [17], which has a characteristic of shape preser-
vation, and this method is superior to the analysis of strong
impact non-stationary signals. However, the cubic Hermite
interpolation is a parametric interpolation method, and it is
impossible to change the shape of the determined curve after
setting parameters. To adjust the shape of the determined
curve and optimize the fitting effect, Li et al. put forward
a rational Hermite interpolation [18]. Compared with the
cubic Hermite interpolation, a shape controlling parameter
is used in the rational Hermite interpolation, and the shape
controlling parameter can control the shape of the interpo-
lation curve, which further improves the curve fitting effect.
Therefore, combining with the advantages of rational Her-
mite interpolation and ITD, a rational Hermite interpolation -
local characteristic-scale decomposition (RHLCD) method
is proposed. In RHLCD, when the rational Hermite inter-
polation is adopted to obtain the envelope signal, the shape
controlling parameter could be varied in the sifting process,
and the ideal single component signals can be obtained.

For fault condition monitoring, pattern recognition is
another crucial step in fault diagnosis [19]. Neural network
and support vector machine [20], [21] are frequently-used
pattern recognition methods, and the classification effect
can often be guaranteed. However, some shortcomings in
these two classifications are difficult to overcome [22], [23],
such as the choice of parameters or kernel function, and
the recognition result is greatly affected by the subjectiv-
ity. In addition, it is especially noteworthy that the inher-
ent connections among the extracted features are ignored in
aforementioned pattern recognition methods. However, in the
extracted features of mechanical vibration signals, there are
certain internal relations among the features, and the internal
relations between different systems and categories (the same
system under different working conditions) are obviously
different. Targeting at the inherent relationship among fea-
tures, Raghuraj et al. put forward variable predictive mode
based class discriminate (VPMCD) [24], [25], and VPMCD
has been introduced to some research fields, such as biology
and machinery [26], [27]. The core of VPMCD is that the
best mathematical prediction model is established and chosen

through minimum error square and the mutual interrelation-
ship between the features, and then pattern recognition is
completed. Among them, the VPMCD method contains four
kinds of mathematical models: L (Linear), LI (Linear and
Interaction), Q (Quadratic) and QL (Quadratic and Inter-
action). The four models mentioned are agent models for
the real relationship of features, and the optimal model for
pattern recognition is chosen. However, the best model is
selected in accordance with a single condition and it has a
greater chance of the recognition results at the same time.
Based on this, a fusion variable predictive model based class
discriminate method (FVPMCD) is put forward in this paper,
which applies the probability statistics to VPMCD, and the
discriminant result is no longer recognized by a single mode.
First, four common models are used to recognize a sample
and the recognition results of each model are satiated. Then
the probability of each state recognition is calculated. Finally,
the largest recognition probability of state is chosen to recog-
nize category. When the two or more series have the same
probability, the best prediction model of all models is chosen
to further identify.

In conclusion, a novel roller bearing fault on-line condi-
tion monitoring method based on RHLCD and FVPMCD is
put forward. Firstly, the vibration signals in various states
are decomposed into several RISCs by RHLCD. Secondly,
the features are extracted to construct feature vectors for all
RISCs. Finally, these features are used as input vectors for
FVPMCD classifier. Thus, this study proposes an efficient
way to utilize the benefit of proposed method process to
handle the complexity of vibration signals for the application
of mechanical system health condition monitoring.

The content of this paper can be composed of the following
sections. In section II, A theory of RHLCD algorithm is
proposed. In section III, the FVPMCD algorithm is given and
the corresponding condition monitoring method is proposed.
The proposed method is applied to the fault diagnosis of
roller bearing in section V. Finally, the conclusions are drawn
in section VI.

II. LOCAL CHARACTERISTIC-SCALE DECOMPOSITION
METHOD BASED ON RATIONAL
HERMITE INTERPOLATION
A. RATIONAL HERMITE INTERPOLATION METHOD
The cubic Hermite interpolation is a curve structure inter-
polation method and widely used in engineering. Compared
with cubic spline interpolation, cubic Hermite interpolation
is applied to fit the local extrema, and it can guarantee the
continuity and smoothness of successive points. Meanwhile,
this method has an excellent characteristic of shape preser-
vation and is superior to the analysis of strong impact non-
stationary signals. In addition, the problems of owe envelope
and over envelope are avoided. However, when the interpola-
tion conditions are determined, the curve is also determined.
Although the local feature of the waveform can be changed
during the sifting process, the cubic Hermite interpolation
cannot adaptively control the shape of the curve.
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Therefore, the rational Hermite interpolation is introduced
to fit envelope curves between extrema. Herein, the shape
controlling parameter is introduced to adjust the curve.
By adjusting the shape controlling parameter, the approxi-
mation fitting effect can be further improved and the effective
signal decomposition can be realized. Scholars have proposed
many rational Hermite basic functions, but the parameterized
rational Hermite basis function is optimal. This function with
parameters makes the structure simpler and the calculation
faster. Therefore, when rational Hermite interpolation is used
to fit the envelope signal, the parameter λ could be varied. The
functions of rational Hermite interpolation are as follows:

Fi(t) = 1+ (λi − 3)t2 − (2λi − 2)t3 + λit4

Fi+1(t) = −(λi − 3)t2 + (2λi − 2)t3 − λit4

Gi(t) = t + (λi − 2)t2 − (2λi − 1)t3 + λit4

Gi+1(t) = −(λi + 1)t2 + (2λi + 1)t3 − λit4 (1)

where, Fi(t),Fi+1(t),Gi(t),Gi+1(t) are basic functions of
rational Hermite interpolation, λi is the real number.
The calculation shows that the basic functions satisfy

following property:

Fi(0) = Fi+1(1) = 1,Fi(1) = Fi+1(0) = 0,

F ′i (0) = F ′i (1) = F ′i+1(1) = F ′i+1(0) = 0,

Gi(0) = Gi(1) = Gi+1(1) = Gi+1(0) = 0,

G′i(0) = G′i+1(1) = 1,G′i(1) = G′i+1(0) = 0, (2)

And Fi(t)+ Fi+1(t) = 1,Gi(t) = −Gi+1(1− t)
From Formula (2), the rational Hermite interpolation revert

to the cubic Hermite interpolation when λi = 0. There-
fore, the rational quartic polynomials can be used as a gen-
eralization of the cubic Hermite interpolation. In addition,
the defined basic function has some advantages, such as
simple structure, high computational efficiency and reliable
outcomes. Firstly, the shapes of the envelope signals are pro-
gressively changed when λ varies. Secondly, if the cube Her-
mite has a good effect, the rational Hermite also has a good
effect in the parameter setting range. Lastly, the problems of
over and undershoot would be solved effectively by setting
a proper λ value. Herein, the shape controlling parameter
determining criterion is introduced in the literature [18].

B. THE RHLCD METHOD
Although some defects of EMD and LMD are overcome in
the ITD, the baseline signal in ITDmethod is obtained by lin-
ear transformation on the structure of the signal itself, which
would make the waveform produce burr and distortion, and
significant signal distortion begins with the second compo-
nent (namely energy leakage). In addition, ITD method does
not explain the physical significance of the algorithm itself
and PRC. Therefore, the orthogonality between components
will be inevitably affected, and the accuracy of the decompo-
sition result is affected directly. LCD method can effectively
overcome the above shortcomings of ITD by using cubic
spline interpolation, but it has the continuity of the second

derivative in the nodes and has a good effect on smoothing the
signal. For strong non-stationary signals, the over-envelope
and owe envelope phenomenon will occur, which will lead to
the signal waveform distorted.

Therefore, combining with the advantages of Rational
Hermite interpolation and ITD, the envelope signals can
be obtained by using rational Hermite interpolation, and
the energy leakage does not appear, and the continuity and
smoothness of the decomposed components are better in
the decomposed components. In addition, the application of
Rational Hermite interpolation and cubic spline interpolation
has a certain similarity, and the physical meaning of the
algorithm itself and its components are elaborated theoret-
ically by LCD method. From the idea of LCD, the condi-
tions of defined single component signal can be introduced
in the paper. Therefore, based on the physical significance
of the algorithm itself and the elaborated mono-component,
the rational intrinsic scale component (RISC) could be firstly
defined, which would allow instantaneous frequency to have
the physical significance. The RISC definition satisfies the
two conditions:

(1) For the data set, the marks of any two adjacent extrema
are mutually different.

(2) For the data set, the extrema are Xk , k = 1, 2, . . . ,M
with their respective corresponding moments τk , k =

1, 2, · · · ,M . The section of line formed by connecting any
two maximum (minimum) extrema (τk ,Xk ), (τk+2,Xk+2) is
between them. Therefore, we can obtain the correspond-
ing moment τk+1 of the maximum (minimum) extrema,
and the function value is set to Ak+1 = Xk + ( τk+1−τk

τk+2−τk
)

(Xk+2 − Xk ), of which the ratio to the relative maximum
(minimum) extrema Xk+1 remains unchanged, satisfying the
formula A2

X2
= · · · =

Ak+1
Xk+1
= · · ·µ.

These two conditions ensure that there is a single mode
between any two adjacent extrema of RISC, and the local
curve (curve between extrema and adjacent zero point)
approximate to the standard sine curve, so the instantaneous
frequency has physical significance. The RHLCD algorithm
assumes that any complex signal consists of different RISCs,
and there is independence between any two RISCs, so that
any complex signal can be decomposed into several RISCs,
and the detailed steps can be expressed as follows:
Step 1: Set the extrema Xk (k = 1, 2, · · ·,M ) while the

corresponding moments are τk (k = 1, 2, · · · ,M ). Mean-
while, the appropriate parameter a is selected and the baseline
control points Lk are calculated. Then change the parameters
with the certain length in the range, and get the best baseline
signal by rational Hermite interpolation for all Lk .

Lk = a
[
xk−1 + (

τk − τk−1

τk+1 − τk−1
)(xk+1 − xk−1)

]
+ (1− a)xk

(3)

Step 2: Subtract baseline L1 from the signal x(t) and getP1.
Ideally, P1 is a RISC, which is the first decomposition com-
ponent. Herein, the ideal RISC should satisfy the condition
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that Lk+1 equals zero. Practically, the variation 1 can be set
and the iterative is ended when |Lk+1| ≤ 1.
Step 3: If P1 does not meet the conditions of RISC, P1

should be used as the original signal. Then the P1 is intro-
duced into steps 1 and 2, and the k times are recycled to obtain
Pk . Therefore, Pk is the first component (RISC1).
Step 4: Separate the RISC1 from x(t) to obtain the signal r1.

Then, r1 is taken as the original signal to repeat step 1–3.
Thus, the RISC2 is obtained which satisfies the conditions of
the RISC. Repeat it for n times until rn becomes a monotonic
function, and n components which satisfy the conditions of
RISC could be got. Now, x(t) is decomposed into n rational
intrinsic scale components (RISCs) and a monotonic func-
tion rn, namely

x(t) =
n∑

p=1

RISCp(t)+ rn(t) (4)

Similar to EMD, the iterative termination criterion of
RISC has a great influence on decomposition effect. There-
fore, an appropriate criterion must be chosen to obtain
the desired RISC. The standard deviation method and the
three-parameter method are two commonly used iterative
termination methods, which have been proved to have good
application effect [27]. Because the algorithm of stan-
dard deviation is independent of definition, three-parameter
method is applied to set the variation 1.

C. SIMULATION ANALYSIS
To verify the decomposition performance of RHLCDmethod,
the simulation signal should be constructed, which can be
expressed as:

x(t) = cos(60π t+0.5 sin(30π t))(1+0.2sin(15π t))

+sin(240π t) (5)

FIGURE 1. The waveform of original simulation signal.

FIGURE 2. The FFT spectrum and power spectral density of simulation
signal.

The waveform of x(t) is shown in Figure 1. Figure 2 is the
FFT spectrum and power spectrum of x(t), and the frequency
of component can be clearly found in Figure 2. Meanwhile, in

order to verify the performance of the RHLCD, ITD, LCD
and RHLCD are used for decomposition after eliminating end
effect respectively. Herein, the mirror symmetry extension
method [27] is used to eliminate the influence of the end
effect.

FIGURE 3. The decomposition results of ITD.

FIGURE 4. The decomposition results of LCD.

FIGURE 5. The decomposition results of RHLCD.

Firstly, the original signal is processed by a mirror sym-
metry extension method, and then the extension signal is
decomposed by ITD, LCD and RHLCD. Finally, some sin-
gle component signals are achieved. As it is shown in
Figure 3 - Figure 5, some single components can be sepa-
rated completely by the three methods. In Figure 3, obvious
burr phenomenon is shown in the PRCs, which makes PRCs
be distorted. LCD method overcomes the burr phenomenon
of ITD decomposition, but it still has obvious distortion.
In Figure 5, the mono-components of RHLCD show smooth-
ness and avoid burrs, since Rational Hermite interpolation is
adopted in RHLCD algorithm instead of linear transforma-
tion, and the RISCs have less distortion. Meanwhile, when
rational Hermite interpolation is adapted to adjust the enve-
lope signal, the shape controlling parameter could be varied.
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FIGURE 6. The instantaneous envelope amplitude and instantaneous
frequency of PRC.

FIGURE 7. The instantaneous envelope amplitude and instantaneous
frequency of ISC.

FIGURE 8. The instantaneous envelope amplitude and instantaneous
frequency of RISC.

As shown in the above decomposition, the results of
RHLCD have obvious advantages. The instantaneous fre-
quency and amplitude of the three components shown in
Figures 6 to 8 are used to further verify the superiority of the
proposed method. From the Figures 6 to 8, the results of ITD,
LCD and RHLCD methods have a great effect on the instan-
taneous envelope amplitude and instantaneous frequency of
the first component, but the effect of RISC1 is much better
than PRC1 and ISC1. Compared with the second component,
the effect of RISC2 is more accurate than PRC2, which can
be found whether it is the instantaneous frequency or the
instantaneous envelope amplitude, the less volatile is shown
in the waveform while the difference is more obvious. There-
fore, the analysis results of the instantaneous frequency and
amplitude proves that RHLCD is a more effective and reliable
decomposition method than ITD and LCD.

After analyzing the instantaneous envelope amplitude
and instantaneous frequency of single component signal,
the time-frequency distribution is compared with the above
several decomposition methods. Firstly, the decomposition

FIGURE 9. The time-frequency distribution with ITD.

FIGURE 10. The time-frequency distribution with LCD.

FIGURE 11. The time-frequency distribution with RHLCD.

results through the above several kinds of time-frequency
analysis methods are made to achieve Hilbert transform,
and then the time-frequency spectra are obtained as shown
in Figures 9 and 11. Because the linear transformation is
used by ITD decomposition, the obtained time-frequency
distribution appears larger distortion. As a result, the origi-
nal physical meaning of the corresponding spectrum is lost,
and instantaneous amplitude and the frequency of original
signal changing along with time cannot be reflected accu-
rately. In Figure 10, the time-frequency distribution of LCD
improves the larger distortion of ITD, but the high-frequency
component still suffers serious distortion. The time-frequency
distribution obtained by RHLCD can present the basic infor-
mation of the original simulation signal well, and there is no
large deviation. Therefore, compared with other decomposi-
tion methods, RHLCD has obvious advantages.

III. FVPMCD PATTERN RECOGNITION METHOD
In the mechanical condition monitoring, the working states
and fault types are often discriminated by extracting the
feature of raw vibration signal. However, compared with the
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feature of normal bearing, that of faulty bearing is not very
apparent, the fault type is often contained in the relationship
among the features, and one-to-one relationship or one-to-
multiple relationship could exist among features. Assuming
that a category can be represented by p different features,
which is X = [X1,X2 · · · ,Xp], and the potential relation-
ship is X1 = f (X2) or X1 = f (X2,X3, · · · ). From the
above relations, X1 is not an unrelated independent value
with other features, and the different change of X1 would
occur under the influence of other features in different fault
categories. In order to recognize fault type of mechani-
cal system, the mathematical models should be established
through mutual interrelationship between the features. The
variable prediction model VPMi may be a linear or non-linear
regression model (four regression models are proposed in
reference [24]). To illustrate the classification problem with
p features, the variable Xi can be predicted by any of the four
models, which is defined as follows:

Xi = f (Xj, b0, bj, bjj, bjk )+ e (6)

where, Formula (6) is the variable prediction model VPMi
of Xi. Herein, Xi is the predicted variable, and Xj(j 6= i) is
the predictive variable. e is the prediction error. bo, bj, bjj and
bjk are the model parameters.
The statistical probability is introduced into the VPMCD

in this paper, and the pattern recognition is performed by
using four kinds of regression model instead of the single best
model, then contingency and one-sidedness are avoided. The
probability of each state appears is calculated by using four
best models by the statistics, and the maximum probability of
state is regarded as a recognition result. Therefore, the contin-
gency and one-sidedness are greatly weakened, which would
make the recognition results more objective. The steps of
FVPMCD method are as follows:
Step 1: For g sates, n training samples are collected,

and the number of samples of each class is n1, n2, · · · , ng.
The feature vectors of all samples are extracted as X =
[X1,X2, · · · ,Xp], and the feature set of all samples can be
expressed as n1 × p, n2 × p, · · · , ng × p.
Step 2: Make the type of model m = 1 (four kinds of

models are signed by 1, 2, 3 and 4 respectively).
Step 3:Let themodel order be r = 1(0 < r < p), k training

samples are selected for modeling and analysis. Any feature
is chosen as the predictive variable Xi (i = 1, 2, · · · , p), and
p − 1 features Xj (j 6= i) are selected as prediction variables.
Therefore, Cr

p−1 VPMs are established for the feature Xi.
Step 4:For each variable predictionmodel, nk equations for

feature Xi can be established. Meanwhile, the least-squares
regression is used to obtain model parameter, and then the
prediction variables Xj are back to VPMs to get the predicted
value Xipred of the feature Xi.
Step 5: The prediction error sum of squares SSEl =∑nk
v=1

(
Xiv − Xivpred

)2 of Cr
p−1 VPMs are obtained respec-

tively, where l = 1, 2, · · · ,Cr
p−1, and v is the vth training

sample. The VPMs corresponding to the minimum value of
SSEl are selected as the VPM k

i (i = 1, 2, · · · , p) of the feature

Xi(i = 1, 2, · · · , p) in the k class training samples, and the
corresponding model parameters and variables are retained.
Step 6: Let k = k + 1, and repeat step 3 ∼ 5 until k = g.

Thus, so far, it is the case that the type of regression model
is m and the type of correlation model is r , g categories
of all the features establishing on VPM k

i separately, where
k = 1, 2, · · · , g denote different categories, i = 1, 2, · · · , p
denote different features. These variable predictive models
compose a VPM matrix whose size is g×p. Then let r = r+1
and cycle above steps until r = p − 1. Thus p − 1VPM
matrices can be obtained under each model and order. All
training samples are taken back to each VPM matrix as test
samples for classification test respectively. When the classi-
fication accuracy is the highest, the model type and model
order corresponding to VPM will be taken as the type and the
order of optimal variables prediction model.
Step 7: Then make m = m + 1, and cycle steps 2 ∼ 6

until m = 4. At the same time, each type of model has a best
prediction model. Therefore, the type, order, parameter and
variable prediction of four optimal various prediction models
of all features are determined under various categories.
Step 8: For test samples, the same features as training

samples are extracted X = [X1,X2, · · · ,Xp]. In order to
obtain predicted value, variables prediction models are used
to predict features of the test samples, where k = 1, 2, · · · , g
denotes different categories, and i = 1, 2, · · · , p denotes
different characteristics.
Step 9: Under the same category, the prediction error sum

of squares values of four optimal various prediction models

of all the features SSEk =
p∑
i=1

(Xi − X kipred )
2 are obtained,

and the minimum value of SSEk is used as the discriminant
function to classify the test samples. Accordingly, when the
prediction error sum of squares values in g class is the low-
est, the test samples are identified as kth class. Thus, four
kinds of the same or different recognition results of four
optimal various prediction models can be obtained. Then the
probability of each recognition result appeared is counted,
if the probability of recognition results of k type is maximum,
the test sample will be identified as the k type eventually.

IV. THE ROLLER BEARING CONDITION MONITORING
ALGORITHM BASED ON RHLCD AND FVPMCD
Firstly, the roller bearing vibration signal is decomposed by
RHLCD, and several RISCs without end effect are obtained.
Then, the feature of each component is extracted and the
feature matrix is made up. However, different types of fea-
tures have a direct influence on the diagnosis results, and
the selection of feature is particularly important. Generally,
singular values with good diagnostic results are used as
fault features to diagnose roller bearing faults. Therefore,
the singular value is used for fault diagnosis as the feature.
Finally, FVPMCD classification method is used to identify
the operation condition and fault type of roller bearing. The
main steps of the roller bearing fault diagnosis based on the
HRLCD and FVPMCD are as follows:
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Step 1: Under a certain speed, four kinds of roller bearing
states (normal, inner race fault, outer race fault and ball fault)
are sampled in sampling rate fs, and N groups of samples are
collected in each state.
Step 2: The vibration signals are decomposed by RHLCD,

and i RISCs are obtained. For each RISC, the singular value
is extracted as feature, and each sample can get i features and
form feature vectors, so that the N × i order matrix can be
obtained in each state.
Step 3: In each state, N samples are selected as training

samples and the remaining n − N samples are selected as
test ones. Firstly, the four types of prediction models are
established for each state through the FVPMCD training, and
then the best model of each type is selected through a certain
criterion. Finally, the four best models are used to classify
the test sample, and the probability statistics are made to
determine the fault types of roller bearing.

FIGURE 12. The experimental platform of roller bearing.

TABLE 1. Experimental parameters of roller bearing.

V. APPLICATION
A. CASE#1
The good decomposition performance of RHLCD has been
verified by simulation signal and in the following, we apply
the proposed RHLCD method to the signal of roller bearing
with local fault at outer ring (Anhui University of Technol-
ogy). Figure 12 is the experimental platform of roller bearing,
and SKF6205 type roller bearing is selected. The experimen-
tal parameters of roller bearing are shown in Table 1. Based
on the parameters, the fault vibration signal of the roller
bearing outer ring is collected, and its time domain waveform
is shown in Figure 13. From Figure 13, the fault character-
istic frequencies of roller bearing with outer ring fault are
flooded, and the amplitude modulation information cannot be
reflected from time domain waveform. Further, the envelope
spectrum is used to reflect the fault feature frequencies of
the roller bearing signal, which is shown in Figure 14. From
Figure 14, we can find that the outer ring of roller bearing
is faulty, but there are more interference frequencies in the
envelope spectrum.

FIGURE 13. The time domain waveform of roller bearing outer ring fault.

FIGURE 14. The envelope spectrum of roller bearing outer ring fault.

FIGURE 15. The decomposition results of ITD.

FIGURE 16. The decomposition results of LCD.

FIGURE 17. The decomposition results of RHLCD.

In order to highlight the superiority of RHLCD method,
ITD and LCD methods are used for comparative analysis.
The decomposition results are shown in Figures 15 to 17.
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FIGURE 18. The envelope spectrum of first component after ITD.

FIGURE 19. The envelope spectrum of first component after LCD.

FIGURE 20. The envelope spectrum of first component after RHLCD.

From Figures 15 to 17, compared with ITD and LCD meth-
ods, the first decomposition component of RHLCD method
has obvious amplitude modulation information. Since the
first component has amplitude modulation information,
the envelope spectra are obtained for the first decompo-
sition component of above three decomposition methods,
which are shown in Figures 18 to 20. As can be seen from
Figures 18 to 19, the fault characteristic frequencies are more
obvious in the envelope spectrum decomposed by ITD and
LCD. However, there are still many interference frequencies
in the envelope spectrum. Figure 20 is the envelope spectrum
of first component obtained by RHLCD. Compared with the
envelope spectrum of ITD and LCD, the fault frequencies
obtained by RHLCD are more obvious and the interference
frequencies are smaller in the envelope spectrum of the first
component after RHLCD than that of ITD and LCD. This
is because the control parameter is used to adjust the fitting
curve in RHLCD, which makes the signal decomposition
better than the original LCD. At the same time, the envelope
spectrum obtained can highlight the fault characteristic fre-
quency more clearly.

B. CASE #2
Although RHLCD can realize the fault diagnosis of roller
bearings, it cannot complete the intelligent diagnosis of roller
bearing. To verify the intelligent diagnosis effectiveness of
the proposed FVPMCD method in mechanical fault diagno-
sis, the actual data of roller bearings in Hunan University

FIGURE 21. Roller bearing fault test rig.

are selected to test the intelligent fault diagnosis effect of
RHLCD and FVPMCD. The 6307E deep groove ball bearing
is selected to slot on the inner and outer rings of roller bear-
ings respectively. Herein, the groove width is set to 0.15 mm,
and the groove depth is set to 0.13 mm. Meanwhile, the
experimental conditions are that the rotation speed is kept
at 680 r/min and the sampling rate is 4096 Hz. Due to the
limitation of experimental conditions, the roller fault cannot
be set. Roller bearing fault test rig is shown in Figure 21 (the
vibration signal is obtained by the acceleration sensor on the
bearing seat.).

The vibration signals of three states (normal, inner fault
and outer fault) are collected, and 200 samples are collected
in each state. In reality, it is difficult to get abundant known
samples, especially the fault samples. Accordingly, random
samples of 40 groups of data are regarded as training samples,
and the rest of 160 groups are test Samples. The theoreti-
cal roller bearing fault vibration signal should have a char-
acteristic of periodic pulse, but the periodic pulse is actually
not obvious. Due to the interference of background noise and
the limitation of the acquisition condition, the characteristics
of fault vibration signal is not obvious than normal state.

Firstly, the original signal for each sample is decomposed
byRHLCD and the RISCswithout end effect are got. Because
the fault information of roller bearing is mainly concentrated
on high-frequency band, the first four RISC components
would be selected. Therefore, singular values of each compo-
nent could be calculated, denoting as X1,X2,X3,X4 respec-
tively, and 200 groups of singular values can be extracted
from each kind of data. And then 40 sets of training sam-
ples are used to establish the FVPMCD prediction models,
and four FVPMCD prediction models are established for
each state. Finally, the prediction models are used to iden-
tify the test data under four states, and the test samples are
identified. In order to illustrate the superiority of FVPMCD
method, VPMCD, RBF network, SVM, sparse support vector
machine (SSVM) [28] and FVPMCD classifiers are com-
pared. At the same time, in order to highlight the intelligent
diagnostic effect of RHLCD and FVPMCD, the combi-
nation of LCD and FVPMCD is chosen for comparison.
The classification performance comparison results are shown
in Table 2 and Table 3.
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TABLE 2. The classification performance comparison results of the five classification methods based on LCD.

TABLE 3. The classification performance comparison results of the five classification methods based on RHLCD.

Table 2 and Table 3 show the recognition rates of the
five classification methods, and the classification perfor-
mance of FVPMCD is better than the other four methods.
As for the diagnosis results of the normal state, all the five
methods have good recognition performance. In the other
states, the classification effect of the four methods are inferior
to FVPMCD, because the contingency and one-sidedness
are greatly weakened in the FVPMCD, which would make
the recognition results more objective. In FVPMCD, four
kinds of common models are used to recognize a sample,
and the recognition results of each model are satiated. Then,
the probability of each state recognition is calculated, and
the largest recognition probability of state is chosen to rec-
ognize category. Therefore, we use the internal relations
between different categories to establish a suitable predic-
tion model and obtain satisfactory recognition results. Mean-
while, the recognition results of five methods after LCD
and RHLCD decomposition methods are analyzed respec-
tively. From Table 2 and Table 3, it can be seen that the
features obtained by RHLCD have higher recognition per-
formance. In addition, while FVPMCD can accurately rec-
ognize the state, part of test samples cannot be recognized
by using VPMCD, and the part sample of recognition errors
by using VPMCD are listed in Table 4 (1, 2 and 3 repre-
sent normal, inner-race fault state and outer-race fault state
respectively).

From Table 4, due to some existing reasons, the best
selected model may not be the most appropriate model, lead-
ing to contingency and one-sidedness of VPMCD recognition
results. Based on this, four kinds of models are used to
identify in FVPMCD, and not all of the four models can be
identified accurately. Therefore, the statistical probability is
introduced to fuse several recognition results, making recog-
nition results right maximally.

In addition, in order to eliminate the accidental factors,
three kinds of test methods (Re-Substitution (RS) method,
K-fold cross-validation (K-CV) method and Jack-knife (JK)
method) are adapted to verify the effect of FVPMCD in this
paper. The RSmethod can be used to verify self-compatibility
of test algorithm, and the K-CV can test the objective recogni-
tion rate of the classification algorithm. JK test is performed
for a machine learning algorithm, which can reflect the gen-
eralization ability. Therefore, the recognition performance of
FVPMCD is analyzed by the above test methods and it is also
compared with VPMCD in the recognition rate. 200 groups
of data are all verified, and the results are shown in Table 5.

Table 5 shows the discrimination results of two classi-
fication methods under the three tests, and the recognition
performance of FVPMCD is better than that of the VPMCD
by three test methods. The classification performance of
VPMCD is inferior to FVPMCD because the single model is
used in the VPMCD, and the multi-model fusion technology

VOLUME 7, 2019 96761



H. Pan et al.: Novel Roller Bearing Condition Monitoring Method Based on RHLCD and FVPMCD

TABLE 4. The part sample of recognition errors by using two methods.

TABLE 5. The recognition performance comparison of VPMCD and improved FVPMCD under three kinds of test methods.

(statistical probability) is used in FVPMCD to overcome the
shortcomings of single model and weaken the influence of
the ‘‘contingency and one-sidedness’’ effectively. Therefore,
the superiority of the FVPMCD method is confirmed.

In summary, the recognition results of VPMCD and
FVPMCD methods are listed in Tables 2 to 4, which prove
that FVPMCD has high recognition rate and can accu-
rately judge the state (VPMCD cannot recognize accurately).
Meanwhile, it is proved that the signal decomposition by
RHLCD has better recognition effect. Table 5 shows that
the recognition rate of FVPMCD is much better than the
VPMCD method under different test methods. Therefore,
the experimental analysis results of roller bearings indicate
that the proposed condition monitoring approach can identify
states of roller bearing effectively.

VI. CONCLUSION
In view of the shortcomings of previous decomposition meth-
ods, a rational Hermite interpolation—local characteristic-
scale decomposition (RHLCD) method is put forward, which
can effectively decompose arbitrary non-linear or non-
stationary signals, and some continuity and smoothness of
RISCs are obtained without energy leakage. Moreover, pat-
tern recognition also play an important role in fault diagno-
sis of roller bearings. VPMCD, as a classification method
suitable for non-linear problems, has achieved good classi-
fication results in classification problems. However, the best

agent model is chosen for pattern recognition in the original
VPMCD method, and it has a greater chance of the recogni-
tion results by selecting the best model. Meanwhile, the mod-
els established by a small number of samples cannot cover
the complicated relations among the features. Therefore,
based on the relationship among features, and combined
with the advantages of VPMCD and probability statistics,
a fusion variable predictive model based class discriminate
(FVPMCD) method is proposed in this paper. The analysis
results show that the proposed method improves the fault
diagnosis performance of rolling bearings and provides a
new method for condition monitoring of rolling bearings.
In addition, the recognition results are obtained directly from
the output of the FVPMCD classifiers, and the proposed con-
dition monitoring method provides the possibility to fulfill
an automatic health recognition for roller bearing state and
could be successfully integrated in industrial equipment for
condition monitoring.
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