
Received June 15, 2019, accepted June 30, 2019, date of publication July 4, 2019, date of current version July 25, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2926782

Matrix Structure Driven Interior Point Method for
Quadrotor Real-Time Trajectory Planning
GUANGTONG XU , TENG LONG, ZHU WANG, AND YAN CAO
School of Aerospace Engineering, Beijing Institute of Technology, Beijing 100081, China
Key Laboratory of Dynamics and Control of Flight Vehicle, Ministry of Education, Beijing 100081, China

Corresponding author: Zhu Wang (wangzhubit@163.com)

This work was supported in part by the National Natural Science Foundation of China under Grant 51675047, and in part by the China
Postdoctoral Science Foundation under Grant 2018M631361.

ABSTRACT Sequential convex programming (SCP) has been recently employed in various trajectory plan-
ning problems, including entry flight, planetary landing, and aircraft formation. In SCP, convex programming
subproblems are sequentially solved to obtain the optimum of original nonconvex problems. For SCP-
based quadrotor trajectory planning, this paper proposes a matrix-structure-driven interior point method
(MSD-IPM) to improve the efficiency of solving search directions in convex programming. In MSD-IPM,
primal-dual systems for solving search directions are derived from the Karush–Kuhn–Tucher (KKT)
conditions of quadrotor trajectory planning subproblems. Then, the successive elimination technique is used
to solve the inverse of large-scale coefficient matrices of primal-dual systems by more efficient operations
on small-scale matrices. In successive elimination, the positive definiteness of several small-scale matrices is
used to enhance the numerical stability of computing search directions, and the specific diagonal structures
of small-scale matrices are exploited to efficiently compute the search directions. The complexity analysis
shows that the efficiency of the proposed method is about one order of magnitude higher than that of the
standard IPM. The comparative studies on simulation experiments demonstrate that the MSD-IPM generally
outperforms several well-known optimizers (e.g., MOSEK, SDPT3, and SeDuMi) in terms of efficiency and
robustness. Finally, the indoor trajectory tracking experiments indicate that the proposedmethod can generate
smooth trajectories for real-world applications.

INDEX TERMS Quadrotor trajectory planning, sequential convex programming, interior point method,
matrix structure exploitation.

NOMENCLATURE

The following symbols are used in this paper:

A equality constraint matrix of convex
programming;

a acceleration vector;
amin, amax acceleration bound;
B bandwidth of banded matrices;
b equality constraint vector of convex

programming;
C inequality constraint matrix of convex

programming;
d inequality constraint vector of convex

programming;
e column vector with all elements set to one;

The associate editor coordinating the review of this manuscript and
approving it for publication was Hao Luo.

G objective function matrix of convex
programming;

g objective function vector of convex
programming;

h search step size of MSD-IPM;
I current iteration number of MSD-IPM;
Imax maximum iteration number of MSD-IPM;
K number of discretized intervals;
L coordinate matrix of primal-dual systems;
l number of equality constraints;
[lb,ub] bound constraint of convex programming;
M number of obstacles;
N number of design variables;
Nc number of control variables;
Ns number of state variables;
nc number of control variables at each discrete point;

VOLUME 7, 2019
2169-3536
 2019 IEEE. Translations and content mining are permitted for academic research only.

Personal use is also permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

90941

https://orcid.org/0000-0003-0683-5992

G. Xu et al.: MSD-IPM for Quadrotor Real-Time Trajectory Planning

ns number of state variables at each discrete
point;

p position vector;
pCm center position of circular obstacles;
p̄ position vector of nominal trajectories;
pmin, pmax position bound;
q number of inequality constraints;
r right-hand side of primal-dual systems;
rCm radius of circular obstacles;
<m obstacle region;
R real;
Rn n dimension column vector;
Rn×n n× n matrix;
Sm scale of coordinate matrix L;
ssta state variable;
s; u; w slack variable of MSD-IPM;
t time of trajectories;
t0 initial time of trajectories;
tf final time of trajectories;
1t discretized step size of trajectories;
v velocity vector;
vmin, vmax velocity bound;
x design variable of convex programming;
X primal-dual solution of convex programming;
1X search direction of MSD-IPM;
1Xaff affine search direction of MSD-IPM;
ε convergence tolerance vector of SCP;
εe convergence tolerance of MSD-IPM;
σ centering corrective parameter of MSD-IPM;
µ complementary measure of MSD-IPM;
λ; ξ ; ϑ ; γ dual variable of MSD-IPM.

I. INTRODUCTION
Due to the attractive features in low-cost, maneuverability,
flexibility, and hovering-ability, quadrotors are appropriate
for various applications including surveillance and recon-
naissance, disaster and crisis management, infrastructure
inspection, agriculture and forestry, and express delivery [1].
Most of these applications require quadrotors to have high-
level autonomous capabilities to execute complex missions
in hazardous environments [2]. Currently, trajectory-based
autonomous control is a common approach to fulfill such
requirements [3]. Real-time trajectory planning is the foun-
dation for trajectory-based control of quadrotors in dynamic
environments [4]–[6].

The developed real-time trajectory planning methods can
be classified into two categories [6]. First, real-time trajectory
planning is solved from a hierarchical planning perspective
[7]–[9]. A geometric path is constructed preliminarily, and it
is then parameterized in time domain subject to dynamic con-
straints to generate smooth trajectories. Hierarchical planning
methods are efficient, but sacrifice the optimality of trajecto-
ries [10]. Second, the trajectory planning is formulated as an
optimal control problem (OCP), which can be solved by indi-
rect and direct methods [11], [12]. OCPs have received great
attentions in a number of research groups [13]–[17] due to

its appealing tradeoffs between computational efficiency and
optimality. Since it is hard to derive the necessary condition
of problems with complex constraints for indirect methods,
the direct method is mostly used to solve OCPs for real-world
problems. The direct method transcribes the infinite dimen-
sional OCP into a finite dimensional parameter optimization
problem [15], which in general is a high-dimensional noncon-
vex problem and is computationally intractable for real-time
implementation. Fortunately, the efficient convex optimiza-
tion method [18] have been successfully used to tackle the
trajectory planning problem for saving computational cost.
By using convexification techniques [19] including equiva-
lent transformation [20], successive linearization [21], and
relaxation [22], the nonconvex trajectory planning problem is
converted into convex optimization problems, which can be
solved efficiently and robustly by the state-of-the-art interior
point method (IPM) [23]. Recently, IPM has been success-
fully applied in various trajectory planning problems, such
as spacecraft rendezvous [24], entry flight [25], guidance of
aircraft [26], and planetary landing [27].

In the field of convex-optimization-based quadrotor real-
time trajectory planning, Auguglizro et al. [28] first proposed
a sequential convex programming (SCP) method to enhance
the computational efficiency. Dueri et al. [29] combined SCP
with inter-sample obstacle avoidance methods to ensure that
the generated trajectories do not cross obstacles between
discrete states. Chen et al. [30] developed an incremental
SCP (iSCP) to incrementally add the collision-avoidance
constraints during the iterative process of SCP, which leads
to significant improvement in computational tractability.
Szmuk et al. [31] implemented real-time on-board trajec-
tory generation using SCP for high-performance quadrotor
flight in indoor flight platforms. Besides the leverage of SCP,
the computational efficiency can also be improved by using
customized convex optimizers [32], [33] which can exploit
the problem structure to automatically generating custom
codes and have been applied to landing guidance fields.
Dueri et al. [34] developed the customized IPM using the
sparsity of the planetary powered-descent guidance (PDG)
problem to reduce the runtime by two to three orders of
magnitude. However, Dueri’s IPM [34] was specifically tai-
lored for PDG problems, which cannot be directly used for
other problems (e.g., quadrotor trajectory planning prob-
lems). To the best of the authors’ knowledge, quite few studies
were reported to customize efficient IPM for quadrotor tra-
jectory planning problems. In this work, we develop a matrix
structure driven interior-point method (MSD-IPM) according
to the unique characteristics of quadrotor trajectory planning
to improve the computational efficiency.

The main contributions of this paper are listed as fol-
lows. I) MSD-IPM is proposed to exploit specific struc-
tures of the equality and inequality constraint matrixes in
the quadrotor trajectory planning problem. II) The algorithm
complexity ofMSD-IPM is analyzed, and the results illustrate
that MSD-IPM costs only about one-tenth CPU time of the
standard IPM (i.e., Mehrotra’s IPM) [35]. III) The appealing

90942 VOLUME 7, 2019

G. Xu et al.: MSD-IPM for Quadrotor Real-Time Trajectory Planning

performance of MSD-IPM is demonstrated on comparative
simulation experiments and trajectory tracking experiments
in an indoor flight platform.

The paper is organized as follows. The formulation of
quadrotor trajectory planning problem is given in section II.
In section III, convex quadratic programming subproblems
of quadrotor trajectory planning are established and SCP is
introduced. The proposed MSD-IPM method is presented
in section IV. In section V, comparative studies between
MSD-IPM and several convex optimization toolboxes are
performed on simulation experiments. In section VI, indoor
flight experiments are implemented. Finally, conclusions are
given in section VII.

II. PROBLEM FORMULATION
Quadrotor trajectory planning can generate flight trajectories
for optimizing specific performance index (e.g., minimizing
the flight time orminimizing energy consumptions) subject to
initial and final state, state/control bound, quadrotor dynamic,
and obstacle-avoidance constraints. Figure 1 illustrates a sce-
nario of quadrotor trajectory planning where the generated
trajectory guides the quadrotor to reach its destination and
avoid multiple obstacles.

FIGURE 1. Illustration of quadrotor trajectory planning problem.

In this paper, the fixed-time obstacle-avoidance trajectory
planning problem for quadrotors is formulated as a noncon-
vex optimal control problem (NOCP) shown in Eq. (1). The
quadrotor trajectory planning aims at minimizing the sum of
the total thrust [28].

Problem−I (NOCP) :

min
p(t), v(t),a(t)

J =
∫ tf

t0
‖a(t)‖22

subject to ṗ(t) = v(t)

v̇(t) = a(t)

p(t0) = p0, v(t0) = v0
p(tf) = pf , v(tf) = vf
pmin ≤ p(t) ≤ pmax, t ∈ [t0, tf]

vmin ≤ v(t) ≤ vmax, t ∈ [t0, tf]

amin ≤ a(t) ≤ amax, t ∈ [t0, tf]

p(t) /∈ <m, m = 1, 2, . . . ,M (1)

where p = (px , py)T, v = (vx , vy)T, and a= (ax , ay)T. (p0; v0)
and (pf ; vf) denote the initial and final state respectively. pmin,
pmax, vmin, vmax, amin, and amax denote the bound constraints
on states and controls. Only circular obstacles are considered
in this paper, and domain of obstacles <m can be expressed
as

<m =

{
p|
∥∥∥p− pCm∥∥∥2 < rCm

}
, m = 1, 2,,M (2)

where ‖·‖2 represents the 2-norm.

III. SEQUENTIAL CONVEX PROGRAMMING FOR
TRAJECTORY PLANNING
In this section, the NOCP of quadrotor trajectory planning
is transcribed into a series of convex quadratic programming
subproblems via discretization and successive convexifica-
tion. And SCP is introduced to solve the trajectory planning
problem.

A. CONVEX QUADRATIC PROGRAMMING FORMULATION
The direct collocation method [11] is applied to reformu-
late the Problem-I as a parameter optimization problem.
The flight duration is uniformly divided into predefined K
intervals with a constant step size 1t = (tf − t0)/K . Then
the trajectory is approximated with K+1 points at tk , where
tk = t0 + k1t , k = 0, 1, . . . ,K . The state and control
variables are discretized as p[k] = p(tk), v[k] = v(tk), and
a[k] = a(tk). The kinematics of quadrotors are discretized
using the trapezoidal method [11]. The obstacle-avoidance
constraints p(t) /∈ <m are discretized as p[k] /∈ <m, which
are still concave constraints [29].

To reformulate the Problem-I as convex optimization prob-
lems, concave constraints p[k] /∈ <m is tackled via suc-
cessive convexification method [17]. The obstacle-avoidance
constraints p[k] /∈ <m can be approximated with affine
constraints at discrete time in Eq. (3) [17]. In addition, the
inter-sample obstacle-avoidance constraint in Eq. (4) [17]
is introduced to enhance the safety of quadrotors between
discrete time.

||p̄[k]− pCm|| +
(p̄[k]− pCm)

T

||p̄[k]− pCm||
· (p[k]− p̄[k]) ≥ rCm

m = 1, 2, . . . ,M (3)

where p̄[k] denotes the nominal position of quadrotors at time
tk .

||p̄[k − 1]− pCm|| +
(p̄[k − 1]− pCm)

T

||p̄[k − 1]− pCm||

·(p[k]− p̄[k − 1]) ≥ rCm m = 1, 2, . . . ,M , k = 1, . . . ,K

(4)

Through discretization and convexification, the convex
optimization subproblem of the quadrotor trajectory plan-
ning is formulated as Problem-II in Eq. (5). The obstacle-
avoidance trajectories are acquired by iteratively solving the

VOLUME 7, 2019 90943

G. Xu et al.: MSD-IPM for Quadrotor Real-Time Trajectory Planning

Problem-II. The detailed iterative method is described in
section III-B.
Problem-II
(Convex quadratic optimization sub−problem) :

min
p[k],v[k],a[k],k=0,1,...,K

J ′ =
K∑
k=0

‖a[k]‖22

subject to p[k + 1]=p[k]+
1t
2
· (v[k]+v[k+1])

v[k + 1] = v[k]+
1t
2

· (a[k]+ a[k + 1])

p[0] = p0, v[0] = v0
p[K] = pf , v[K] = vf
pmin ≤ p[k] ≤ pmax, k = 0, 1, . . . ,K

vmin ≤ v[k] ≤ vmax, k = 0, 1, . . . ,K

amin ≤ a[k] ≤ amax, k = 0, 1, . . . ,K

Eqs.(3) and (4) (5)

B. SEQUENTIAL CONVEX PROGRAMMING
The conservative convexification of obstacle-avoidance con-
straints may lead to an infeasible problem [36]. Thus, SCP is
developed to alleviate the over-conservative approximations
and successively improve trajectory results in an iterative
framework [17]. The procedures of SCP for quadrotor tra-
jectory planning are shown in Algorithm 1 [17].

Algorithm 1 Sequential Convex Programming for Trajectory
Planning
Input : initial/final states and control (p0, v0, pf , vf , a0, af)

obstacle regions <m(m = 1, . . ., M)
bounds (pmin, pmax, vmin, vmax, amin, and amax)
number of intervals K , j← 0
time step size 1t , tolerance vector ε

Output: optimized trajectory of quadrotors
1: (p0,v0,a0)← initializeStraightLine(p0, v0, pf , vf , 1t ,

K)
2: (p̄, v̄, ā)← (p0,v0,a0)
3: while constraints in Eq. (5) are not satisfied or

convergence criteria in Eq. (6) are not satisfied do
4: j← j+1
5: Problem-II← formConvexproblem(p̄, v̄, bound, and
<m)

6: (pj,vj,aj)← solve(Problem-II)
7: (p̄, v̄, ā)← (pj,vj,aj)
8: end while
9: return(pj,vj,aj)

The initial trajectories (p0, v0, a0), i.e., straight lines con-
necting the initial position and final position of quadrotors,
are generated without considering obstacle/collision avoid-
ance constraints (line 1). And (p0, v0, a0) are utilized as
nominal trajectories (p̄, v̄, ā) for the next iteration (line 2).
In the iterative process, a series of convex programming

subproblems are constructed and solved considering all the
constraints (lines 4-7). The iterative process terminates when
all of the trajectory constraints and the convergence criterion
in Eq. (6) [31] are satisfied (lines 3 and 8).

∣∣∣sjsta − sj−1sta

∣∣∣
∞

≤ ε (6)

where ssta = (p[0]; v[0]; p [1]; v [1]; . . . , p[k]T; v[k]; . . . ,
p[K]; v[K]); j denotes the index of iterations; ε represents the
tolerance vector.

IV. MATRIX STRUCTURE DRIVEN INTERIOR POINT
METHOD
This section presents MSD-IPM to solve Problem-II. The
procedure of MSD-IPM is provided, and then the details
including KKT condition derivation, primal-dual system con-
struction, and search direction solver are described. The algo-
rithm complexity analysis is conducted to demonstrate the
effectiveness of MSD-IPM.

A. PROCEDURE OF MSD-IPM
MSD-IPM utilizes predictor-corrector algorithm [37] to iter-
atively refine the solutions of Problem-II. The flowchart
of MSD-IPM is illustrated in Fig. 2. And the procedure is
described as follows.

FIGURE 2. Flowchart of MSD-IPM. The differences between MSD-IPM and
Mehrotra’s IPM are highlighted.

90944 VOLUME 7, 2019

G. Xu et al.: MSD-IPM for Quadrotor Real-Time Trajectory Planning

Step (1): Initialization. The initial parameters (Imax and εe)
of MSD-IPM are configured. The design variables are initial-
ized to be zeros.

Step (2): Derivation of KKT conditions. The KKT con-
ditions of Problem-II in Eq. (14) is derived from the primal
problem in Eq. (7) and the corresponding dual problem in
Eq. (13).

Step (3): Construction of primal-dual systems. Based on
current solution X I , nonlinear KKT conditions are converted
into linear primal-dual systems in Eq. (15) to solve the search
direction.

Step (4): Predictor step. The primal-dual systems are
solved to obtain the affine search direction1Xaff by our cus-
tomized search direction solver, which is the unique technical
contribution of this paper and will be detailed in section IV-C.
And the affine search step size haff is acquired by line search.

Step (5): Corrector step. A corrected primal-dual system
is constructed by updating τ1, τ2, and τ3 with Eq. (18) and
solved to generate the search direction 1X using the cus-
tomized solver. And search step size h is obtained by line
search.

Step (6): Solution update. The current solution X I is
updated as X I+1 = X I + h1X.
Step (7): Convergence check. If the number of iterations

I exceeds Imax or complementary measure µ satisfies the
convergence error εe, the iterative process terminates and the
current best solution is output as the optimized trajectory.
Otherwise, the process returns to Step 3.

B. KKT CONDITIONS OF PROBLEM-II
Problem-II in Eq. (5) can be rewritten as the following form
for simplification.

min
1
2
xTGx+ gT x

s.t. Ax = b

Cx ≤ d

lb ≤ x ≤ ub (7)

where x=(p; v; a)∈ RN and N = (ns + nc) · (K+1). The
objective function is a quadratic polynomial, where G ∈
RN×N and g ∈ RN are expressed in Eq. (8).

G =
[
0Ns×Ns 0

0 INc×Nc

]
, g = 0n×1 (8)

where Ns = ns(K+1) and Nc = nc(K+1).
Constraint conditions include l = ns(K+3)+2nc equality

constraints (A ∈ Rl×N and b ∈ Rl), q = 2KM inequality con-
straints (C ∈ Rq×n and d ∈ Rq), and 2N bound constraints
(lb ∈ RN and ub ∈ RN).

In equality constraints, the forms of coefficient matrix
A and right-hand side b are given in Eq. (9). The super-
scripts ‘‘ini’’, ‘‘fin’’, and ‘‘kin’’ denote the matrices and vec-
tors of initial state, final state, and kinematic constraints,
respectively. The subscripts of matrices inside and outside
parentheses denote the matrix index and matrix dimension

respectively. Note that A is a block banded matrix, as shown
in Eq. (10).

A =

 (Aini)n×N
(Akin)(Ns+ns)×N
(Afin)n×N

 , b =

 (bini)n×1
(bkin)(Ns+ns)×1
(bfin)n×1

 (9)

where n = ns + nc denotes the number of design variables at
each discrete point.

A=



(
Aini

)
ns×n(

Akin0,0
)
ns×n

. . .(
Akin1,0

)
ns×n

(
Akin1,1

)
ns×n

. . .

0
(
Akin2,1

)
ns×n

(
Akin2,2

)
ns×n

. . .

. . .
. . .

. . .
. . .

. . .
. . .

. . . 0
. . .

. . .
(
AkinK ,K

)
ns×n

. . .
(
AkinK+1,K

)
ns×n(

Afin
)
ns×n


(10)

In inequality constraints, structures of coefficient matrix C
and right-hand side d are shown in Eq. (11). The subscript
‘‘obs’’ denotes obstacle avoidance constraints. Note that
matrix Cobs,i has the block diagonal properties as shown in
Eq. (12).

C =

 (Cobs
1)K×N
...

(Cobs
2M)K×N

 , d =

 (dobs1)K×1
...

(dobs2M)K×1

 (11)

where,

(Cobs
i)K×N =


(Cobs

i,0)1×n
(Cobs

i,1)1×n
. . .

(Cobs
i,K)1×n

 ,
i = 1,,m (12)

where Cobs
i,k ∈ R1×n, k = 0, . . . ,K denotes the inequality

constraints for ith obstacle at discrete time tk .
The dual form of Problem-II is generally used to derive the

KKT conditions in IPM [37]. By introducing dual variables
(λ ∈ Rl , ξ ∈ Rq, ϑ ∈ RN , and γ ∈ RN) and slack variables
(s ∈ Rq, u ∈ RN , and w ∈ RN), the dual form of primal
problem is formulated in Eq. (13).

maxλT b+ ξT d − ϑT lb+ γ Tub

s.t. ATλ− Gx− g− CT ξ + ϑ − γ = 0

ξT s = 0

ϑTu = 0

γ Tw = 0

(s,u,w, ξ ,ϑ, γ) ≥ 0 (13)

VOLUME 7, 2019 90945

G. Xu et al.: MSD-IPM for Quadrotor Real-Time Trajectory Planning

where ξT s, ϑTu, and γ Tw represent the complementary con-
ditions.

According to the primal problem in Eq. (7) and dual prob-
lem in Eq. (13), the KKT conditions ofProblem-II are derived
in Eq. (14) [18].

ATλ− Gx − g− CT ξ + ϑ − γ = 0

Ax− b = 0

Cx+ s− d = 0

x− u− lb = 0

x+ w− ub = 0

SEe1 = 0

UQe2 = 0

WYe3 = 0

(s, u,w, ξ ,ϑ, γ) ≥ 0 (14)

where S ∈ Rq×q, E ∈ Rq×q, U ∈ RN×N , Q ∈ RN×N ,
W ∈ RN×N , andY ∈ RN×N are the diagonal matrices, whose
diagonal elements are the corresponding elements of s, ξ , u,
ϑ , w, and γ respectively; e1 ∈ Rq, e2 ∈ RN , and e3 ∈ RN are
column vectors with all elements set to one.

C. PRIMAL-DUAL SYSTEM
The first order Taylor approximation of the KKT conditions
in Eq. (14) near current solutions (x; λ; ξ ; ϑ ; γ ; s; u; w) is
performed to construct the primal-dual systems in Eq. (15)
[35], which is used to solve search direction 1X = (1x;1
λ; 1 ξ ; 1ϑ ; 1 γ ; 1s; 1u; 1w).

L ·1X = r (15)

where matrix L ∈ RSm×Sm and vector r ∈ RSm are the
coefficient matrix and the right-hand side of the primal-dual
system respectively. The expressions of L and r are given in
Eqs. (16) and (17), where Sm = 5N + 2q+ l.

LSm×Sm =



−G AT −CT I −I 0 0 0
A 0 0 0 0 0 0 0
C 0 0 0 0 I 0 0
I 0 0 0 0 0 −I 0
I 0 0 0 0 0 0 I
0 0 S 0 0 E 0 0
0 0 0 U 0 0 Q 0
0 0 0 0 W 0 0 Y


(16)

rSm×1 =



Gx + g− ATλ+ CT ξ − ϑ + γ

b− Ax
d − Cx− s
lb− x+ u
ub− x− w
τ1 − SEe1
τ2 − UQe2
τ3 −WYe3


(17)

In predictor step, auxiliary variable τ1, τ2, and τ3 are set
to be zero and affine search direction 1Xaff

= (1xaff; 1
λaff; 1 ξ aff; 1 ϑaff; 1 γ aff; 1saff; 1uaff; 1waff) is obtained

by solving Eq. (15). In the corrector step, τ1, τ2, and τ3 are
updated according to Eq. (18) [35]. And the updated primal-
dual system is solved again with renewed right-hand side r to
determine the correctional search direction 1X.

τ1 = (σµ−1Saff1Eaff)e1
τ2 = (σµ−1Uaff1Qaff)e2
τ3 = (σµ−1Waff1Yaff)e3

(18)

where σ ∈ (0, 1) and µ denote the centering corrective
parameter and the complementarymeasure, respectively [35].
The expressions of σ and µ are shown in Eqs. (19) and (20).

σ = (µaff /µ)3

µaff =
(ξaff)T saff + (ϑaff)Tuaff + (γ aff)Twaff

2n+ l
(19)

µ =
ξT s+ ϑT u+ γ Tw

2n+ l
(20)

D. CUSTOMIZED SEARCH DIRECTION SOLVER
To improve the efficiency of solving the primal-dual systems
in Eq. (15), this subsection presents the customized search
direction solver incorporated with successive elimination and
matrix structure exploitation. The algorithm complexity of
the customized search direction solver is analyzed via flop
counts. A flop is defined as one addition, subtraction, mul-
tiplication, or division operation of two floating-point num-
bers. The total number of flops is counted as a function (i.e.,
a polynomial) of the dimensions of matrices and vectors.
Ref. [18] summarized the costs of basic matrix and vector
operations, as shown in Table 1.

TABLE 1. Flop count of matrix and vector operations [18].

1) SUCCESSIVE ELIMINATION FOR SOLVING SEARCH
DIRECTION
Generally, the primal-dual system in Eq. (15) is solved by
directly using matrix inversion, i.e., 1X = L−1 · r. In this
paper, successive elimination in Yan’s IPM [38] is extended
to solve search directions of general convex programming
problems in Eq. (5) subject to bound and equality/inequality
constraints. Using the successive elimination, the primal-dual
system in Eq. (15) is solved via substituting step by step,
as shown in Eq. (21). For instance, 1λ can be calculated in
terms of the first line of Eq. (20), which is then substituted
into the second line of Eq. (20) to solve 1x. According
to the conclusion in Ref [38], the successive elimination is

90946 VOLUME 7, 2019

G. Xu et al.: MSD-IPM for Quadrotor Real-Time Trajectory Planning

numerically more stable because of the positive definiteness
of matrix D and ADA−1.

1λ = (ADAT)−1(b− Ax+ ADη)

1x = D(−AT1λ+ η)

1s = d − C(1x+ x)− s,

1u = 1x+ rlb
1w = −rub −1x

1ξ = S−1τ1 − S−1E1s− ξ

1ϑ = U−1τ2 − U−1Q1u− ϑ

1γ = W−1τ3 −W−1Y1w− γ (21)

where,

D = (G+ CTS−1EC + U−1Q+W−1Y)−1

η = ρ + CTS−1τ1 − U−1τ2 +W−1τ3
ρ = Gx+ g− ATλ

+ CTS−1E(s− d + Cx)+ U−1Qrlb +W
−1Yrub

rlb = −lb+ x− u

rub = −ub+ x+ w (22)

Flop counts of generating search direction via successive
elimination are shown in Table 2. The expression of flop
counts for obtaining1X shown in the last row of Table 2 only
involves the leading (i.e., highest order or dominant) terms
of polynomials for simplification. The flop counts of solving
search direction by successive elimination are smaller than
that of directly solving 1X = L−1 · r, i.e., 2.67S3m =
2.67(5N + 2q+ l)3.
Remark 1: Successive elimination for solving primal-

dual systems considering equality/inequality constraints and
bounds is an extension of that in Yan’s IPM, which cannot
address inequality constraints.
Remark 2: Successive elimination has higher computa-

tional efficiency compared with direct inversion operation,
i.e., 1X = L−1 · r in terms of the flop counts.
Remark 3: Through successive elimination, coefficient

matrix L of the primal-dual system is split into several small-
scale matrices including G, A, C, S, E, U, Q, W, and Y.
Hence, the unique diagonal structures, i.e., diagonal, block
diagonal, and block banded diagonal of these small-scale
matrices shown in Table 3 can be exploited to further reduce
the computational consumptions. See next subsection for
details.

2) MATRIX STRUCTURE EXPLOITATION
The specific structures of small-scale matrices shown
in Table 3 are utilized to improve the computational efficiency
of solving search directions.

(I) Computational cost reduction in generating S−1,
U−1, and W−1. Since matrices S, U, and W are diagonal,
the inversion of these matrices only costs q, N , and N flop
counts respectively. Comparedwith ordinarymatrix inversion
(2.67q3, 2.67N 3, and 2.67N 3) in Table 2, the inversion of
diagonal matrix is more efficient.

TABLE 2. Flop count of solving the search direction via successive
elimination and ordinary matrix and vector operations [18].

TABLE 3. Unique structure of small-scale matrices.

(II) Computational cost reduction in generating
CTS−1EC. According to the block diagonal feature of matrix
C in Eqs. (11) and (12), matrix CTS−1EC can be rewritten as
the summation form in Eq. (23), where S−1obs,i and Eobs,i are
diagonal matrices. Thus, CTS−1EC is factorized as the prod-
uct of a serial of low-dimensional block diagonal matrices.

CTS−1EC =
M∑
i=1

(
CT
obs,iS

−1
obs,iEobs,iCobs,i

)
(23)

The flop counts of computing CT S−1EC by Eq. (23),
i.e.,N 2q/(K+1)2+2q, aremuch fewer comparedwith general
matrix-matrix product (2N 2q+4Nq2) shown in Table 2.
(III) Computational cost reduction in generatingU−1Q

and W−1Y. The diagonal feature of matrices U−1, Q, W−1,
and Y is exploited to reduce the computational burden of
generating U−1 Q and W−1 Y. By using diagonal matrix
multiplication, the flop counts are decreased from 2N 3 to N .

(IV) Computational cost reduction in generatingD. The
inversion of nonsingular symmetric matrix can be computed
by LDLT factorization [18] to reduce the computational cost.

VOLUME 7, 2019 90947

G. Xu et al.: MSD-IPM for Quadrotor Real-Time Trajectory Planning

Thus, the computational cost of generatingD is reduced from
2.67N 3

+3N 2 to 0.33N 3
+3N 2 using LDLT factorization.

(V) Computational cost reduction in generating
(ADAT)−1. Since matrix A in Eq. (10) is a block banded
matrix, ADAT is also a block banded matrix. Thus, inversion
of matrix ADAT can be obtained via LDLT factorization
to reduce the computational cost from 2.67l3 to lB2, where
B = 4n denotes the bandwidth of matrix ADAT.
By utilizing matrix structure exploitation, the flop counts

for solving search directions in Eq. (21) are reduced
to (0.33N 3

+ N 2q/(K+1)2+4N 2l+16N 2l/(K+1)2+2Nl2).
Since N /(K+1)<< N , the trivial terms N 2q/(K+1)2 and
16N 2l/(K+1)2 can be ignored compared with the leading
terms. For the quadrotor trajectory problem in this paper,
the number of state variables ns and the number of control
variables nc are set to be 4 and 2 respectively. The relationship
of N and l is expressed as follows.

l
N
=

ns (K + 3)+2nc
(ns+nc) · (K + 1)

=
4 (K + 3)+ 4
6 (K + 1)

≈ 0.67, K � 1

(24)

Besides, the relationship ofN and q is expressed as follows.

q
N
=

2KM
(ns+nc) · (K + 1)

=
2KM

6 (K + 1)
≈
M
3
, K � 1 (25)

We assume that there are three obstacles in the environ-
ment, i.e., the number of obstacles M = 3. Then, we can
replace q and l with N and 0.67N , respectively. Thus, the
flop count of solving search directions by customized search
direction solver is rewritten as 3.91N 3. Note that the Mehro-
tra’s IPM solves Eq. (15) using LDLT factorization to obtain
the search direction with the flops 0.33(5N+2q + l)3 ≈
74.54N 3.
Remark 4: The complexity analyses indicate that the com-

putational efficiency of MSD-IPM is about one order of
magnitude higher than that of the Mehrotra’s IPM. Although
the current MSD-IPMmethod is developed for quadrotor tra-
jectory planning, the idea of matrix structure exploitation can
be used to quadrotor swarm, fixed-wing UAV, and spacecraft
trajectory planning.

E. SEARCH STEP SIZE
Once search direction 1X = (1x; 1 λ; 1 ξ ; 1ϑ ; 1 γ ; 1s;
1u;1w) is determined, search step size h can be obtained by
line search as shown in Eq. (26) [35].

h = max{h ∈ [0, 1] : (s′,u′,w′, ξ ′,ϑ ′, γ ′) ≥ 0}

s′ = s+ h1s,u′ = u+ h1u

w′ = w+ h1w, ξ ′ = ξ + h1ξ

ϑ ′ = ϑ + h1ϑ, γ ′ = γ + h1γ (26)

V. NUMERICAL SIMULATIONS
In this section, numerical simulations are performed on sev-
eral obstacle-avoidance scenarios to demonstrate the effec-
tiveness of MSD-IPM. And the robustness tests of MSD-IPM
on stochastic obstacle-avoidance cases are also conducted.

The runtime of MSD-IPM is compared with four representa-
tive methods to show its appealing computational efficiency
for real-time trajectory planning. Numerical simulations are
implemented in MATLAB R2017a on a desktop computer
equipped with Intel Core i7-6700 3.40 GHz and 8GB RAM.

Parameters of four scenarios are listed in Table 4. The
information of obstacles is listed in Table 5. The initial states
and final states are set to be [0m, 0m, 0m/s, 0m/s] and [3m,
1m, 0m/s, 0m/s] respectively. The bounds of flight zones,
velocities and accelerations are provided in Eq. (26).

pmin = [−1m,−1m], pmax = [4m, 2m]

vmin = [−1m/s,−1m/s], vmax = [1m/s, 1m/s]

amin = [−2.5m/s2,−2.5m/s2], amax = [2.5m/s2, 2.5m/s2]

(27)

TABLE 4. Parameter setting of simulation scenarios.

TABLE 5. Information of obstacles.

The tolerance vector ε in Algorithm 1 is set to be (0.01,
0.01, 0.01, 0.01)T. The convergence error εe and maximum
number of iterations Imax of MSD-IPM are set to be 10−6 and
100 respectively.

A. TRAJECTORY PLANNING RESULTS
The trajectory results for different scenarios are shown in Fig.
3. MSD-IPM succeeds in generating feasible and optimized
trajectories for all simulations. The initial trajectory is gen-
erated as a straight line connecting the initial and end points,
illustrated as the dashed line. Generated feasible trajectories
shown as dash-dotted lines satisfy initial/final state, bound,
kinematic, and obstacle-avoidance constraints, but have an
inferior performance index. In contrast, optimal trajectories
shown as the lines with circle marks are solved for the best
performance index at the expense of more computational
time.

B. ROBUSTNESS TEST
Robustness tests are conducted to verify the numerical stabil-
ity of MSD-IPM based on the four scenarios in Section V-A.

90948 VOLUME 7, 2019

G. Xu et al.: MSD-IPM for Quadrotor Real-Time Trajectory Planning

FIGURE 3. Simulation result of the obstacle-avoidance trajectory
planning for (a) Scenario-I, (b) Scenario-II, (c) Scenario-III, and (d)
Scenario-IV. The ‘square’ and ‘star’ denote the start point and end point
respectively. The feasible trajectory is planned in the first iteration. It is
needed 15, 16, 21, 21 iterations for obtaining optimal trajectory for these
four scenarios, respectively. The local zoom-in figures show trajectories
(as denoted by blue lines) generated in iterative process.

FIGURE 4. Optimized trajectories of the robustness test for (a) Scenario-I,
(b) Scenario-II, (c) Scenario-III, and (d) Scenario-IV. The ‘‘red circles’’
denote obstacles. The ‘‘solid lines’’ represent the optimized trajectories.
The dashed rectangles in the left and right sides restrict the areas of
initial and end positions respectively.

VOLUME 7, 2019 90949

G. Xu et al.: MSD-IPM for Quadrotor Real-Time Trajectory Planning

FIGURE 5. Average runtime of generating feasible trajectories by
MSD-IPM, Mehrotra’s IPM [35], SeDuMi [41], MOSEK [39], and SDPT3 [40].
Each algorithm is run on 50 randomly generated test cases for these four
scenarios. Error bars indicate the standard deviation.

FIGURE 6. Average runtime of generating optimized trajectories. Error
bars indicate the standard deviation.

For each scenario, 50 different test cases are generated with
randomly initial and final positions selected in predefined
areas. Therefore, MSD-IPM is run on 200 randomly gen-
erated test cases and the simulation results are illustrated
in Fig. 4. According to the planning results, MSD-IPM can
generate optimized trajectories without violating any con-
straints in all the simulations.

C. ALGORITHM RUNTIME COMPARISON
In this subsection, we analyze the efficiency of generating
feasible and optimized trajectories by MSD-IPM based on
the randomly generated cases shown in the robustness tests
(section V-B). Comparative numeric simulations are con-
ducted between MSD-IPM and a number of convex opti-
mizers, i.e., MOSEK [39], SDPT3 [40], SeDuMi [41], and
Mehrotra’s IPM to verify the computational efficiency of the
proposed method.

The runtime statistic results of finding feasible and opti-
mized trajectories are illustrated in Figs. 5 and 6 respectively.
For these four scenarios, the average runtime of generat-
ing feasible and optimized trajectories by MSD-IPM are

TABLE 6. Standard deviation of runtime for solving feasible/optimized
trajectories.

FIGURE 7. Illustration of the indoor flight experiment testbed. (a)
Illustration of the experiment testbed. (b) Illustration of the trajectory
tracking experiment.

always fewer than those by MOSEK, SDPT3, SeDuMi, and
Mehrotra’s IPM. For instance, simulations of 50 random
cases on the scenario-I show that the runtime of generat-
ing feasible trajectories by MSD-IPM (0.06s) are generally
90.0%, 91.8%, 89.7%, and 79.9% lower than that of MOSEK
(0.63s), SDPT3 (0.77s), SeDuMi (0.61s), and Mehrotra’s
IPM (0.313s) respectively. For generating optimized trajecto-
ries,MSD-IPM cost average 0.12s, 0.35s, 0.64s, and 0.99s for
these four scenarios, which is approximately one-fifth of the
runtime byMehrotra’s IPM (0.50s, 1.90s, 3.20s, 4.90s). More
importantly, the comparison results ofMSD-IPM andMehro-
tra’s IPM in simulations are consistent with the algorithm
complexity analysis results, i.e., the algorithm complexity of

90950 VOLUME 7, 2019

G. Xu et al.: MSD-IPM for Quadrotor Real-Time Trajectory Planning

FIGURE 8. Feasible trajectory tracking result of different scenarios. (a)
Tracking trajectory. (b) Tracking error.

MSD-IPM is about one order of magnitude lower than that
of IPM.

Moreover, the generation of feasible trajectories (average
runtime: 0.06s, 0.12s, 0.21s, and 0.37s) costs one-third run-
time of generating optimized trajectories (average runtime:
0.12s, 0.36s, 0.65s, and 1.00s) in the four scenarios. There-
fore, for some emergency situations, the feasible trajectories
can be generated immediately and used to adapt the dynamic
environments.

In addition, the standard deviations of the runtime for solv-
ing feasible and optimized trajectory are shown in Table 6,
where the bold text represents the smallest standard deviation.
The data in parentheses represent the standard deviations of
the runtime for solving optimized trajectory. The standard
deviation of runtime by MSD-IPM is always the best except
for generating feasible trajectories in scenario-IV. The statis-
tic results indicate that MSD-IPM is more robust thanMehro-
tra’s IPM, SeDuMi, SDPT3, and MOSEK. Thus, MSD-IPM
can provide appealing numerical stability for solving quadro-
tor trajectory planning problems.

FIGURE 9. Optimized trajectory tracking result of different scenarios.
(a) Tracking trajectory. (b) Tracking error.

VI. HARDWARE EXPERIMENTS
In this section, hardware experiments are conducted with
physical quadrotors. We establish the indoor flight testbed in
a rectangular area of approximately 6m×3m and 2.5m height
shown in Fig. 7(a). The quadrotor utilized in the experiments
is based on QAV260 frame equipped with PX4. The position
and velocity information of quadrotors is measured by an
OptiTrack motion capture system.

In the hardware experiments, the planned trajectories are
uploaded to QAV260 before the quadrotor launching. In the
trajectory tracking process, ground control center broad-
casts the location messages to quadrotors via WIFI com-
munications. Figure 7(b) shows a snapshot of the execution
when the quadrotor heading for the end point. The sup-
plemental video shows the full trajectory execution of
scenario-IV.

The generated feasible and optimized trajectories in
section V-A are tracked to guide the quadrotor to reach its
destination safely. The tracking results for different scenar-
ios are illustrated in Figs. 8(a) and 9(a) respectively. The
planned trajectories almost coincide with the actual flight

VOLUME 7, 2019 90951

G. Xu et al.: MSD-IPM for Quadrotor Real-Time Trajectory Planning

trajectories. The trajectory tracking error profiles for feasi-
ble and optimized trajectories are shown in Fig. 8(b) and
Fig. 9(b) respectively. The maximum trajectory tracking
error is less than 30 cm, which is acceptable for practical
applications.

VII. CONCLUSION
In this paper, MSD-IPM is developed for SCP-based
quadrotor real-time trajectory planning. The optimal control
problem of trajectory planning is translated into a series of
convex quadratic programming subproblems via discretiza-
tion and successive convexification. The efficient search
direction solver is customized to improve the efficiency
of convex quadratic programming. According to the algo-
rithm complexity analysis results, the runtime of MSD-IPM
is reduced by approximately one order of magnitude with
respect to Mehrotra’s IPM. The numerical simulation results
demonstrate the effectiveness of MSD-IPM via the compar-
ison with Mehrotra’s IPM, SDPT3, SeDuMi, and MOSEK
in several scenarios. And a number of random tests illus-
trate the numerical stability of the proposed method. Finally,
the trajectory tracking experiments verify the feasibility of the
trajectories planned by MSD-IPM for practical engineering
applications. In future work, the proposed MSD-IPM will be
extended to solve cooperative trajectory planning problems
for quadrotor swarms.

REFERENCES
[1] F. Kendoul, ‘‘Survey of advances in guidance, navigation, and con-

trol of unmanned rotorcraft systems,’’ J. Field Robot., vol. 29, no. 2,
pp. 315–378, 2012.

[2] M. G. Mohanan and A. Salgoankar, ‘‘A survey of robotic motion plan-
ning in dynamic environments,’’ Robot. Autom. Syst., vol. 100, no. 2018,
pp. 171–185, Feb. 2018.

[3] C. Goerzen, Z. Kong, and B. Mettler, ‘‘A survey of motion planning
algorithms from the perspective of autonomous UAV guidance,’’ J. Intell.
Robot. Syst., vol. 57, pp. 65–100, Jan. 2010.

[4] W. Dong, Y. Ding, J. Huang, X. Zhu, and H. Ding, ‘‘An efficient approach
of time-optimal trajectory generation for the fully autonomous navigation
of the quadrotor,’’ J. Dyn. Syst., Meas., Control, vol. 139, no. 6, Apr. 2017,
Art. no. 061012.

[5] M. W. Mueller, M. Hehn, and R. D’Andrea, ‘‘A computationally efficient
algorithm for state-to-state quadrocopter trajectory generation and feasibil-
ity verification,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
Nov. 2013, pp. 3480–3486.

[6] M. Hehn and R. D’Andrea, ‘‘Real-time trajectory generation for quadro-
copters,’’ IEEE Trans. Robot., vol. 31, no. 4, pp. 877–892, Aug. 2015.

[7] J. A. Preiss, W. Hönig, N. Ayanian, and G. S. Sukhatme, ‘‘Downwash-
aware trajectory planning for large quadrotor teams,’’ in Proc. IEEE/RSJ
Int. Conf. Intell. Robots Syst. (IROS), Sep. 2017, pp. 250–257.

[8] W. Hönig, J. A. Preiss, T. K. S. Kumar, G. S. Sukhatme, and N. Ayanian,
‘‘Trajectory planning for quadrotor swarms,’’ IEEE Trans. Robot., vol. 34,
no. 4, pp. 856–869, Aug. 2018.

[9] S. Liu, M. Watterson, K. Mohta, K. Sun, S. Bhattacharya, C. J. Taylor, and
V. Kumar, ‘‘Planning dynamically feasible trajectories for quadrotors using
safe flight corridors in 3-D complex environments,’’ IEEE Robot. Autom.
Lett., vol. 2, no. 3, pp. 1688–1695, Feb. 2017.

[10] S. Liu, N. Atanasov, K. Mohta, and V. Kumar, ‘‘Search-based motion
planning for quadrotors using linear quadratic minimum time control,’’
in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS), Sep. 2017,
pp. 2872–2879.

[11] J. T. Betts, Practical Methods for Optimal Control and Estima-
tion Using Nonlinear Programming. Philadelphia, PA, USA: SIAM,
2010.

[12] M. Hehn and R. D’Andrea, ‘‘Quadrocopter trajectory generation
and control,’’ IFAC Proc. Volumes, vol. 44, no. 1, pp. 1485–1491,
Jan. 2011.

[13] X. Liu and P. Lu, ‘‘Solving nonconvex optimal control problems by con-
vex optimization,’’ J. Guid. Control Dyn., vol. 37, no. 3, pp. 750–765,
Feb. 2014.

[14] M. Turpin, N. Michael, and V. Kumar, ‘‘Trajectory design and control
for aggressive formation flight with quadrotors,’’ Auto. Robots, vol. 33,
nos. 1–2, pp. 143–156, 2012.

[15] W. Van Loock, G. Pipeleers, and J. Swevers, ‘‘Time-optimal
quadrotor flight,’’ in Proc. Eur. Control Conf. (ECC), Jul. 2013,
pp. 1788–1792.

[16] D. Mellinger, A. Kushleyev, and V. Kumar, ‘‘Mixed-integer quadratic pro-
gram trajectory generation for heterogeneous quadrotor teams,’’ in Proc.
IEEE Int. Conf. Robot. Autom. (ICRA), May 2012, pp. 477–483.

[17] Z. Wang, G. Xu, L. Liu, and T. Long, ‘‘Obstacle-avoidance trajectory
planning for attitude-constrained quadrotors using second-order cone pro-
gramming,’’ in Proc. AIAA Aviat. Technol., Integr., Oper. Conf., Jun. 2018,
pp. 1–10.

[18] S. Boyd and L. Vandenberghe,Convex Optimization. NewYork, NY, USA:
Cambridge Univ. Press, 2004.

[19] X. Liu, P. Lu, and B. Pan, ‘‘Survey of convex optimization for aerospace
applications,’’ Astrodynamics, vol. 1, no. 1, pp. 23–40, Sep. 2017.

[20] B. Açikmeşe and L. Blackmore, ‘‘Lossless convexification of a class of
optimal control problems with non-convex control constraints,’’ Automat-
ica, vol. 47, no. 2, pp. 341–347, Feb. 2011.

[21] Y. Mao, M. Szmuk, and B. Açikmeşe, ‘‘Successive convexification of non-
convex optimal control problems and its convergence properties,’’ in Proc.
IEEE Conf. Decis. Control (CDC), Dec. 2016, pp. 3636–3641.

[22] X. Liu, ‘‘Fuel-optimal rocket landing with aerodynamic controls,’’ J. Guid.
Control Dyn., vol. 42, no. 1, pp. 65–77, Nov. 2018.

[23] E. D. Andersen, C. Roos, and T. Terlaky, ‘‘On implementing a primal-dual
interior-point method for conic quadratic optimization,’’ Math. Program.,
vol. 95, no. 2, pp. 249–277, 2003.

[24] P. Lu and X. Liu, ‘‘Autonomous trajectory planning for rendezvous and
proximity operations by conic optimization,’’ J. Guid., Control, Dyn.,
vol. 36, no. 2, pp. 375–389, 2013.

[25] X. Liu, Z. Shen, and P. Lu, ‘‘Entry trajectory optimization by second-order
cone programming,’’ J. Guid. Control Dyn., vol. 39, no. 2, pp. 227–241,
Aug. 2015.

[26] X. Liu, Z. Shen, and P. Lu, ‘‘Exact convex relaxation for optimal flight of
aerodynamically controlled missiles,’’ IEEE Trans. Aerosp. Electron. Syst.,
vol. 52, no. 4, pp. 1881–1892, Aug. 2016.

[27] U. Eren, D. Dueri, and B. Açikmeşe, ‘‘Constrained reachability and con-
trollability sets for planetary precision landing via convex optimization,’’
J. Guid. Control Dyn., vol. 38, no. 11, pp. 2067–2083, Mar. 2015.

[28] F. Augugliaro, A. P. Schoellig, and R. D’Andrea, ‘‘Generation of collision-
free trajectories for a quadrocopter fleet: A sequential convex program-
ming approach,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst. (IROS),
Oct. 2012, pp. 1917–1922.

[29] D. Dueri, Y. Mao, Z. Mian, J. Ding, and B. Açikmeşe, ‘‘Trajectory
optimization with inter-sample obstacle avoidance via successive con-
vexification,’’ in Proc. IEEE Conf. Decis. Control (CDC), Dec. 2017,
pp. 1150–1156.

[30] Y. Chen, M. Cutler, and J. P. How, ‘‘Decoupled multiagent path planning
via incremental sequential convex programming,’’ in Proc. IEEE Int. Conf.
Robot. Autom. (ICRA), May 2015, pp. 5954–5961.

[31] M. Szmuk, C. A. Pascucci, D. Dueri, and B. Açikmeşe, ‘‘Convexification
and real-time on-board optimization for agile quad-rotor maneuvering and
obstacle avoidance,’’ in Proc. IEEE/RSJ Int. Conf. Intell. Robots Syst.
(IROS), Sep. 2017, pp. 4862–4868.

[32] D. Dueri, J. Zhang, and B. Açikmeşe, ‘‘Automated custom code generation
for embedded, real-time second order cone programming,’’ IFAC Proc.
Volumes, vol. 47, no. 3, pp. 1605–1612, Aug. 2014.

[33] J. Mattingley and S. Boyd, ‘‘CVXGEN: A code generator for embedded
convex optimization,’’ Optim. Eng., vol. 13, no. 1, pp. 1–27, 2012.

[34] D. Dueri, B. Açikmeşe, D. P. Scharf, and M. W. Harris, ‘‘Customized
real-time interior-point methods for onboard powered-descent guidance,’’
J. Guid. Control Dyn., vol. 40, no. 2, pp. 197–212, Oct. 2016.

[35] T. R. Kruth, ‘‘Interior-point algorithms for quadratic programming,’’ M.S.
thesis, Inform. Math. Model., Tech. Univ. Denmark, Lyngby, Denmark,
2008.

90952 VOLUME 7, 2019

G. Xu et al.: MSD-IPM for Quadrotor Real-Time Trajectory Planning

[36] D. Morgan, S.-J. Chung, and F. Hadaegh, ‘‘Spacecraft swarm guid-
ance using a sequence of decentralized convex optimizations,’’ in Proc.
AIAA/AAS Astrodyn. Spec. Conf., Aug. 2012, pp. 1–16.

[37] J. Nocedal and S. Wright, Numerical Optimization. New York, NY, USA:
Springer, 2006.

[38] X. Yan and V. H. Quintana, ‘‘An efficient predictor-corrector interior
point algorithm for security-constrained economic dispatch,’’ IEEE Trans.
Power Syst., vol. 12, no. 2, pp. 803–810, May 1997.

[39] The MOSEK Optimization Toolbox for MATLAB Manual, Version 7.1
(Revision 35), MOSEK ApS, København, Copenhagen, Denmark, 2015.

[40] K. C. Toh,M. J. Todd, and R. H. Tütüncü, ‘‘SDPT3—AMATLAB software
package for semidefinite programming, version 1.3,’’ Optim. Methods
Softw., vol. 11, nos. 1–4, pp. 545–581, Jan. 2008.

[41] J. F. Sturm, ‘‘Using SeDuMi 1.02, a MATLAB toolbox for optimiza-
tion over symmetric cones,’’ Optim. Methods Softw., vol. 11, nos. 1–4,
pp. 625–653, Jan. 2008.

GUANGTONG XU received the B.Sc. degree in
flight vehicle design and engineering from the
Beijing Institute of Technology, Beijing, China,
in 2015, where he is currently pursuing the Ph.D.
degree in aeronautical and astronautical science
and technology. His research interests include
path and trajectory planning, optimal control, and
numerical optimization.

TENG LONG received the B.Sc. degree in flight
vehicle engine engineering and the Ph.D. degree
in flight vehicle design from the Beijing Institute
of Technology, Beijing, China, in 2004 and 2009,
respectively.

He is currently a Professor with the School
of Aerospace Engineering, Beijing Institute
of Technology. His research interests include
multidisciplinary design optimization theories
and applications for flight vehicles, cooperative
control, and decision-making.

ZHU WANG received the B.Sc. degree in flight
vehicle design and engineering and the Ph.D.
degree in aeronautical and astronautical science
and technology from the Beijing Institute of
Technology, Beijing, China, in 2011 and 2017,
respectively, where he is currently a Postdoctoral
Researcher. His research interests include intel-
ligent mission planning, numerical optimization,
and multi-agent cooperation.

YAN CAO received the B.Sc. degree in flight
vehicle design and engineering from the Beijing
Institute of Technology, Beijing, China, in 2017,
where he is currently pursuing the Ph.D. degree in
aeronautical and astronautical science and technol-
ogy. His research interests include swarm intelli-
gent and cooperative mission planning.

VOLUME 7, 2019 90953

	INTRODUCTION
	PROBLEM FORMULATION
	SEQUENTIAL CONVEX PROGRAMMING FOR TRAJECTORY PLANNING
	CONVEX QUADRATIC PROGRAMMING FORMULATION
	SEQUENTIAL CONVEX PROGRAMMING

	MATRIX STRUCTURE DRIVEN INTERIOR POINT METHOD
	PROCEDURE OF MSD-IPM
	KKT CONDITIONS OF PROBLEM-II
	PRIMAL-DUAL SYSTEM
	CUSTOMIZED SEARCH DIRECTION SOLVER
	SUCCESSIVE ELIMINATION FOR SOLVING SEARCH DIRECTION
	MATRIX STRUCTURE EXPLOITATION

	SEARCH STEP SIZE

	NUMERICAL SIMULATIONS
	TRAJECTORY PLANNING RESULTS
	ROBUSTNESS TEST
	ALGORITHM RUNTIME COMPARISON

	HARDWARE EXPERIMENTS
	CONCLUSION
	REFERENCES
	Biographies
	GUANGTONG XU
	TENG LONG
	ZHU WANG
	YAN CAO

