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ABSTRACT Atrial fibrillation, themost common sustained arrhythmia, is still a big challenge for researchers
in the medical field. Many studies attempt to realize intelligent classification of AF based on deep learning
methods. However, many of the studies focused on investigations of relatively simple datasets collected from
a relatively small number of subjects. On the other hand, sophisticated preprocessing is usually adopted
to analyse the ECG signals. These two factors significantly affect the generalization ability of the trained
models for complicated data sets collected from a large number of subjects. In order to address this problem,
an improved multi-scale decomposition enhanced residual convolutional neural network is proposed. The
proposed method is applied to the large single-lead ECG dataset provided by the PhysioNet/CinC Challenge
2017, and good classification accuracy is suggested by the testing results. In the proposed method, the orig-
inal ECG record with a large difference in length is re-segmented into short samples of 9 s. Then, using
the derived wavelet frame decomposition, the segmented short samples are decomposed and reconstituted
into sub-signal samples of different scales. We trained the fast down-sampling residual convolutional neural
networks (FDResNets) with the original short-signal dataset and the reconstructed dataset of each scale.
The transfer learning technique is then applied to couple the three FDResNets with good performance into
a multi-scale decomposition enhanced residual convolutional neural network (MSResNet). The FDResNet
trained by the [0, 9.375 Hz] reconstruction dataset achieved the best performance. After six-fold cross-
validation, the average test accuracy reached 87.12%, and the average comprehensive F1 score reached
85.29%. The average test accuracy of the multi-scale residual neural network reached 92.1%, and the average
overall F1 score reached 89.9%.

INDEX TERMS Electrocardiogram, atrial fibrillation, wavelet frame, deep learning, residual convolutional
neural networks, transfer learning.

I. INTRODUCTION
Atrial fibrillation (AF), the most common sustained arrhyth-
mia, represents a difficult scientific challenge and remains
enigmatic even after more than one century of research [1].
The mechanisms responsible for AF are still not fully under-
stood and the treatment is very complicated. Physiologically,
the symptoms of AF are abnormal contractions of the upper
atrium; on the electrocardiogram, there is a sinus P wave loss
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and a severe irregularity of the QRS complex sequence [2].
Therefore, ECG analysis has become an important means of
AF diagnosis. An automated analysis and classification sys-
tem for ECG records can provide physicians with diagnostic
recommendations or help patients monitor their own health
status, which is important for improving medical efficiency
and reducing medical costs.

The traditional ECG classification methodology includes
three steps, i.e., signal preprocessing, feature extraction and
classification. The first step aims at eliminating various types
of noises, including artifacts and baseline drift in the signal.
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After noise reduction, the input ECG signal is split into
separate heartbeat waveforms. Then, on the basis of medical
and statistical knowledge, a series of feature indicators are
extracted from the waveforms. Furthermore, feature selec-
tion algorithms such as principal component analysis and
whale optimization algorithm [3] can be employed to gen-
erate a more efficient and compact feature vectors. Kumar
utilized a flexible analytic wavelet transform framework to
decompose the raw ECG into different frequency bands and
extracted the sample entropy of the sub-signals as features to
diagnosis myocardial infarction [4]. Finally, classification is
implemented using machine learning such as support vector
machines (SVM) [5], extreme learning machine (ELM) [6],
and cellular neural networks [7], or threshold algorithm, such
as Kolmogorov–Smirnov test [8] and AF/AT detector [9].

Machine learning techniques have been widely used in
bioinformatics due to their ability to process large datasets
and extract hidden patterns [10]. In recent years, the rapid
growth of deep learning techniques was notable and convo-
lutional neural networks (CNNs) have shown their success in
various applications [11]–[13]. One dimension convolutions
have proven their learning power for time series classification
[14]. Andersen employed the RR intervals for training deep
CNNs to identify AF, and obtained a specificity of 98.96%
on a dataset consisting of 89 subjects [15]. Sellami proposed
a deep convolutional neural network (DCNN) enhanced with
batch-weighted loss function for accurate heartbeat classifi-
cation, achieving 98.83% sensitivity and 96.97% specificity
on the MIT-BIH arrhythmia database [16]. This CNN model
takes single heartbeat waveforms as input and thus does not
use any down-sampling. Tan developed a stacked convo-
lutional and long short-term memory network to diagnose
ECG signals for coronary artery disease with a recogni-
tion accuracy of 99.85% [17]. Faust utilized the heart rate
sequence as the analysis object, and applied deep bidirec-
tional long-short term memory networks to identify whether
the sample had AF phenomenon. The average accuracy
of 10-fold cross-validation reached 98.3% [18]. Erdenebayar
designed a DCNN with an intermediate fully connected layer
to identify atrial fibrillation, with a recognition accuracy
reported at 98.7% [19].

In general, there have been many studies on ECG clas-
sification. However, most of the research is based on rel-
atively simple datasets. There are few subjects or the data
has undergone rigorous preprocessing, so the generaliza-
tion ability of the algorithm is not ideal. The 2017 Phy-
sioNet/CinC Challenge releases a large dataset containing
8528 short single-head ECG records [20]. Each ECG record
in the dataset was collected from an individual subject. The
durations of the ECG records are relatively short in duration,
which range from 9 seconds to 60 seconds.

Many contestants have reported their classification results
based on deep learning models. Warrick used this dataset to
train a 13-layer convolutional neural network with an average
F1 score of 0.83. The neural network directly processes the
ECG record for 60 seconds without any pre-processing, and

if the sample is small, it takes a repeated fill extension. The
model uses batch normalization and random dropout tech-
niques on a large scale to improve the training performance
and generalization of the model [21]. Chandra trained two
shallow CNNs with only one convolutional layer to identify
ECG signals for atrial fibrillation. The former CNN is used
to locate the R-peak in the ECG signal, and then divides
the heartbeat waveform centered on the R-peak. The second
CNN uses the 8-channel heartbeat vector as input to identify
the ECG record category. The F1 scores for the Normal and
AF signals are 86% and 73%, respectively [22]. Zihlmann
trained the deep convolution residual neural network with the
Logarithmic spectrogram of the ECG segment. The model
employs a large number of convolutional layers to extract
feature values, and uses the long-short term memory (LSTM)
modules to further enhance the recognition after flatten layer.
However, the cross-validation shows that the enhancement of
LSTM is not obvious. Except improving the accuracy of AF
samples on the augmented dataset, the overall accuracy and
F1 scores decreased [23].

This paper presents a robust method capable of detecting
AF from a single short ECG lead recording. First, the orig-
inal ECG records are decomposed and reconstructed into
sub-ECGs of different scales via derived wavelet framework.
Then, a multi-scale residual convolutional neural network
is constructed to classify the reconstructed sub-ECGs. The
three sub-networks of this multi-scale convolutional neural
network each learn features from a single-scale reconstructed
ECG record, thereby bypassing the feature engineering and
prior knowledge. Finally, through migration learning, a small
fully connected neural network couples the three subnet-
works into a parallel multi-scale residual convolutional neural
network. Finally, applying transfer learning, a small fully
connected neural network couples these sub-networks into
a parallel multi-scale residual convolutional neural network.
The effectiveness of the method was validated on public
dataset from the PhysioNet/Computing in Cardiology Chal-
lenge 2017, achieving 92.1% and 89.9% for test accuracy and
overall F1 score, respectively.

II. DATASET AND METHODS
In this study, the investigated dataset, from the PhysioNet
Challenge 2017, is contributed by AliveCor, a manufac-
turer of single-channel ECG device. The dataset consists
of 8528 single short ECG lead recordings of different lasting
time, each of which is from individual customer of AliveCor.
After expert identification, the recordings are divided into
four categories: normal rhythm (N), AF rhythm (A), other
rhythm (O) and noisy recordings (∼). The detailed data acqui-
sition procedures can be found in [24], and the general profile
are shown in Table 1.

A. RECORDING INTERCEPTION
The sampling frequency of all recordings is 300 Hz, but
the lasting time of each record and the number of samples
in each category are very different. To balance the dataset,
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TABLE 1. Units for magnetic properties.

we re-segmented the samples by 9 seconds. It should be noted
that some normal rhythm also have serious noise disruption
at the beginning. For the entire record, experts can make
accurate judgments based on the main high signal-to-noise
ratio segments in the records. However, if a smaller sample
is intercepted from the beginning, its label needs further
identification. To balance the dataset and maintain sample
diversity, only one secondary short sample is intercepted from
the middle of each normal class record. For other rhythm
those last less than 20 seconds, we intercept a short sample
from the middle. For those last longer than 20 seconds,
we intercept two samples randomly and without overlapping
from the middle part. For AF rhythm and Noisy rhythm
with fewer samples, we increase the numbers by overlapping
interception. The overlap length of the former is 6 second, and
the overlap length of the latter is 8 second. A more balanced
secondary short-record dataset containing 19188 sampleswas
eventually established.

B. SIGNAL DECOMPOSITION VIA DERIVED
WAVELET FRAMES
The ECG signal is a non-stationary signal with strong
impact characteristics. In order to ensure the integrity of
the waveform, the sampling frequency is set to 300 Hz.
In the frequency domain, the features are concentrated in
the lower frequency band, and Afonso assert that the effec-
tive frequency band does not exceed 25 Hz [25]. From the
perspective of signal processing, algorithms such as wavelet
transform and local mean decomposition [26] show good
performance for such mode mixing caused by intermittent
impact superposition. Wavelet transform is an effective time-
frequency analysis tool, which has achieved good results
in baseline wandering elimination, QRS complex analysis
and feature extraction [27]–[29]. Lacking shift-invariance,
the traditional wavelet transform has a weak ability to identify
repeated transient impacts [30]. Limited by the edge leakage
of the filter, the ability of the dual-tree complex wavelet
packet to decompose the information at the intersection of
the band is not satisfactory.

In this paper, we apply derived wavelet frames (DWFs).
It is based on the dyadic dual-tree complex wavelet pack-
ets (DDCWPs) and further enhances its ability to extract
information in the transition band with additional deriva-
tive non-dyadic implicit wavelet packets. Dual-tree complex
wavelet packet decomposition is constructed based on dual-
tree complex wavelet basis, which consists of two scaling

FIGURE 1. DWFs composed of DDCWPs and IDCWPs.

functions and two wavelet functions. There are many mature
wavelet bases, but their frequency response functions are
mostly attenuated at both ends, not ideal rectangles. Thus
there is information loss or overlap at the band boundaries
of the reconstructed sub-signals. In order to address this
problem, as showed in figure 1, implicit dual-tree complex
wavelet packets (IWPs) are constructed based on DDCWPs,
and the two form the derived wavelet frames.

Assuming {x(n)} is the input ECG signal; the following
algorithm can derive the implicit wavelet packets (IWPs):

Step 1) Perform multi-scale decomposition based on dual-
tree wavelet packet decomposition on the input signal.
Assume that k is the number of decomposition layers and j
is the sequence number of the sub-signal, such that {x(n)} is
transformed into a set of sub-signals:

Dk = {D
j
k (n) |j = 1, 2, . . . , 2k} (1)

Step 2) Rearrange the elements in the set Dk according to
the central frequency of wavelet packet. Let the generated set
be Rk = {R

j
k (n)| j = 1, 2, . . . , 2k}, the mapping between Djk

and Rjk can be described as below:
For Rjk , let the binary coding of the index j be

j =
∑k−1

m=0
2mnm + 1 (2)

Construct a new index as follows

j′ =
∑k−1

m=0
2mn′m + 1 (3)

where the parameters n′m is defined as

n′m =

{
nm, m = k − 1
mod(nm + nm+1, 2), m = 0, 1, . . . , k − 2

(4)

Step 3) Generate the implicit wavelet packet using the
following equation

iwpjk (n) = R2jk (n)+ R
2j+1
k (n), 1 ≤ 2k−1 − 1 (5)

The frequency-scale topology of the derived wavelet
packet frame is shown in Figure 2. It can be seen that the
center frequency of the derived wavelet packet is the band
boundary of the traditional binary wavelet packet, thereby
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FIGURE 2. Frequency-scale paving of DWFs.

improving the ability of the algorithm to extract the infor-
mation of the transition band. Referring to the sampling
frequency and bandwidth of the original record, the number
of decomposition layers is set to 4. The reconstructed sub
signal is then normalized to the [0, 1] interval, eliminating
interference at the recorded baseline position. Figure 3 shows
samples representing each type.

C. PROPOSED CONVOLUTIONAL NETWORKS
This paper proposes two convolutional neural networkmodel.
One is the fast down-sampling residual convolutional neural
network (FDResNet), as shown in Figure 4. The other is
a multi-scale decomposition enhanced fast down-sampling
residual convolutional neural network (MSResNet), as shown
in Figure 5. FDResNet is mainly composed of a fast
down-sampling module, a residual convolution module, and
a classification module. Two convolutional layers with a
stride of 3 are the principle part of the fast down-sampling
module, which are followed by a random dropout layer and
a batch-normalization layer to enhance the generalization
of the model. The input sample length is 2700. The fast
down-sampling module effectively reduces the calculation of
subsequent deep networks, and on the other hand reduces data
redundancy and facilitates model learning. Three residual
convolution modules consisting of convolutional layers in
series and residual short circuit follow this. The width of the
three residual convolution modules is gradually increased,
but all of them use the max-pooling layer to down-sample
the feature vectors. The classification module consists of 1
flatten layer, 2 full connection layers and a softmax classifier.
Before flatten layer, a convolution layer with a filter length
of one is used to reduce the dimension of the feature vectors.
After flatten layer, a random dropout layer is used to prevent
overfitting.

The multis-cale residual neural network consists of three
parallel FDResNets coupled by a small neural network.
The three FDResNets have the same structure, but are
independently trained by reconstructed samples of differ-
ent scales. The trained weight matrix is directly transferred

FIGURE 3. Examples of short ECG recordings representing normal, AF,
other, noisy rhythms and their reconstructed sub recordings.

toMSResNet. Each of the three sub-networks has learned dif-
ferent features, and the independent classification capabilities
are different. After the prediction vectors of the three sub-
networks are connected into one feature vector, a small neural
network learns the end-to-end characteristics of the three, and
higher recognition accuracy can be obtained.
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FIGURE 4. The structure of the proposed fast down-sampling ResNet.

III. EXPERIMENTAL RESULTS
In order to optimize the neural network, extensive experi-
ments were conducted using the shot single lead ECG dataset.

FIGURE 5. The structure of the proposed Multi-scale FDResNet.

Each different structure or combination of parameters is
cross-validated by 6 fold. The experiment runs on a PC with
16GB of memory and 16GB of GPU memory.

A. PERFORMANCE EVALUATION OF DIFFERENT
DOWN-SAMPLING MODULE IN FDRESNET
The down-sampling mode mainly undertakes two functions:
first, quickly reducing the dimension of the feature vector
and reducing the calculation of the entire model; second,
concentrating the waveform features of the electrocardio-
gram to remove redundant details. The results of the six-fold
cross-validation of the FDResNets using down-sampling
modules containing different number of wide-stride convolu-
tion (WSConv) layer are shown in Figure 6, and the number of
epoch is 75. The down-sampling module significantly speeds
up training and improves test accuracy. It is particularly
noteworthy that if the sample is directly processed by the
residual convolution module, large-scale data redundancy is
not conducive to the improvement of accuracy, but rather
the over-fitting problem is exacerbated, and the loss value is
quickly diverged. Regardless of the number ofWSConvs, var-
ious down-sampling modules effectively improve accuracy
and reduce loss values. Moreover, the moreWSConv, the less
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FIGURE 6. Performance of different fast down-sampling convolutional
module.

the total calculation of the model, the faster the training.
When only one WSConv is used or three WSConvs are used
continuously, the cross-validation results of the model are
scattered and the model is not stable enough. The cross-
validation results of the four WSConv models are more con-
centrated, but the overall accuracy is lower. In summary, the
fast down-sampling module containing twoWSConvs is used
herein.

B. PERFORMANCE EVALUATION OF DIFFERENT SHORT
CIRCUITS IN FDRESNET
Adding layers can improve the learning ability of convolu-
tional neural networks. However, feature map information
and error gradients are gradually weakened as they continue
to pass through deep networks. It almost disappears when
it reaches the end or the initial point, and it is difficult for
the model to train. In recent years, there have been many
public papers focusing on this issue, in which the ResNets
effectively solves this problem by using short-circuit paths
[31]. Besides, several models use similar mechanisms. Liao Z
introduced a competitive multi-scale CNN using a series-
parallel hybrid structure in which parallel modules are jointed
at the end with a maximum output unit [32]. Gao Huang
introduced a densely connected CNN [33]. Each layer in
the model is connected to each other, and the feature maps
accumulate during the forward transmission of information.

In this paper, the experimental research on these three
short-circuit methods is carried out. The experimental results
of the six-fold cross-validation are shown in Figure 7 below.
It can be seen that if the shorting path is not used, the
training result of the model may be poor. As shown in the
lower right corner of the picture, the test accuracy is only
slightly higher than 0.76. On the other hand, all three short-
circuit paths effectively improve the trainability of the model.
For the study subjects, there is no significant difference in
the applicability of the test in terms of test accuracy and
test loss values. However, the concatenate unit increases
the computational complexity of the model and reduces the

FIGURE 7. Performance of different short circuit.

FIGURE 8. Performance comparison of FDResNets trained by
reconstructed dataset of different sub-band.

computational efficiency. The test accuracy of the Add unit
is slightly higher than that of the Max unit, and considering
the optimization theory of the residual neural network, this
paper finally adopts the typical residual unit.

C. PERFORMANCE EVALUATION OF RECONSTRUCTED
DATASETS FROM DIFFERENT SUB-BAND IN TRAINING
FDRESNETS
Different frequency bands of the ECG recordings carry
different message. The derived wavelet frames can fidelity
decompose the information of each frequency band, making
the features of various ECGs more recognizable in each
frequency band. In this paper, the performance of training
CNN with reconstructed sub-signals in different frequency
bands are studied experimentally. The results of the ten-fold
crossover experiment are shown in Figure 8.

Deep convolutional neural networks can be trained using
raw ECG records, resulting in an average accuracy of 85.83%
in six-fold cross-validation. In contrast, the reconstructed
ECG dataset ofwp13 ([0, 18.75 Hz]) achieves a better accuracy
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TABLE 2. Test precision of the FDResNet trained with different
reconstructed ECG dataset.

and a lowest loss value. In addition, the difference of loss
value is extremely small, indicating that the performance
of the neural network is more stable. In terms of accu-
racy, the reconstructed ECG dataset of wp14 ([0, 9.375 Hz])
achieves the best training results. Overall, the performance
of the reconstructed sub-signal with lower frequency is better
than the higher frequency.

The training results of the top three datasets for test accu-
racy are shown in Table 2. The reconstructed dataset obtained
the best overall F1 score. In terms of the precision of Normal
and Other samples, the training result of is better than the
other two. In terms of the precision of the AF samples,
the training result of the raw signal is best. At the same time,
for the Noisy sample, FDResNet trained with the dataset
has the highest recognition accuracy. This paper hypothe-
sizes that the features of different types of ECG records
are located in different frequency bands. In the raw record,
various features interfere with each other, which increases
the learning difficulty of the neural network model. The data
features are sparser in datasets reconstructed from different
frequency bands. For several types of ECG records, the neural
networkmodel has the potential to achieve higher recognition
accuracy.

D. PERFORMANCE EVALUATION OF DIFFERENT
COUPLING METHODS OF FDRESNETS IN MSRESNET
Asmentioned earlier, FDResNet trained using datasets recon-
structed from different frequency bands has its own advan-
tages and disadvantages in identifying different types of ECG
records. In this paper, multiple FDResNets independently
trained by reconstructed datasets of different scale are cou-
pled into one MSResNet for higher recognition capabilities.
The cross-validation results of different coupling modes are
shown in Figure 9.

A simple coupling method is that the three sub-networks
vote on the label of the sample by the mechanism of predic-
tion vector summation or maximum. As shown in Figure 9,
the coupling method of unweighted summation has achieved
a accuracy that is significantly better than that of the
single-scale FDResNet in three validations, but the loss
value increases significantly. The performance of unweighted
extremes is relatively stable, and a certain performance
improvement has also been achieved. Another coupling
method is to process the predictions of three FDResNets
using a small, fully connected neural network (NN). The three
FDResNets use the weight matrix transferred from indepen-
dent training. Only the weights of the last two fully connected

FIGURE 9. Performance of different coupling method of sub-FDResNet.

layers are updated during MSResNet training. This paper
speculates that this coupling NN can autonomously learn the
end-to-end output law of three single-scale FDResNet. As can
be seen from Figure 9, this coupling method achieves the
highest performance gains. Subsequent research can further
optimize the coupling NN using algorithms such as PSO [34].

IV. DISCUSSION
A. THE EFFECTIVENESS OF THE PROPOSED METHOD
This paper aims at classifying the short single lead electro-
cardiogram arrhythmia, especially to identify whether the
subject has atrial fibrillation based on their ECG recording.
A multi-scale residual neural network is constructed by com-
bining advanced deep learning techniques such as residual
connection, random dropout, batch normalization and trans-
fer learning. To verify the validity of the proposed method,
a six-fold cross-validation is implemented after the model
structure was completely determined. In each experiment,
firstly, FDResNet is trained independently with training sets
of different scales, then the trained weight matrix is migrated
to MSResNet, and finally MSResNet is trained with these
training sets. The sum of the six confusion matrices obtained
by cross-validation is shown in Figure 10.

It can be seen from Figure 10 that the precision and
recall rate of the model for AF and Noisy ECG records
are significantly higher than the other two categories. One
of the possible reasons is data imbalance. In fact, these
two types of samples in the training set are augmented
from a small number of original samples. In contrast, each
of the Normal and Other samples comes from individual
ECG collection objects. The Other class sample has the
lowest recall, while some of them are recognized as the
Normal record. Compared with Normal and AF electrocar-
diogram, Other ECG is undoubtedly the most diverse, and
the recognition is the most difficult. Subdividing the Other
class into multiple subclasses, or increasing the number of
samples, will help improve the classification accuracy of
the model.
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TABLE 3. Comparison of previous study of ECG based on the PhysioNet/CinC Challenge 2017 public dataset.

FIGURE 10. Confusion matrix.

B. COMPARISON WITH PREVIOUS STUDIES
To evaluate the proposed method, comparisons are also per-
formed with previous studies. Table 3 lists some of the pub-
lished research results of ECG classification based on the
same dataset. There are both algorithms that take feature
extraction plus machine learning strategies, as well as algo-
rithms based on deep learning.

Overall, the classification model using the a priori feature
extraction algorithm achieves higher recognition accuracy
for the Normal ECG record. For example, Teijeiro used a
large amount of expertise to extract 79 features from each
individual heartbeat waveform in the ECG record, and then
the recursive feature elimination is used to select 42 out of
them. These single beat features are further fused into the
global features of the sequence and then classified using the

XGBoost algorithm. In parallel, ECG timing sequences are
also classified using LSTMs. Finally, the ensemble algorithm
achieves 95.3% recognition accuracy onNormal ECG record.
On the other hand, the method of autonomously learning
the characteristic law from ECG records using deep neural
networks is also quite effective. The method proposed in
this paper obtains the classification results comparable to
the best research results without involving the professional
knowledge of electrocardiogram. It is foreseeable that with
the further accumulation of datasets, especially the increase
of abnormal ECG samples and pattern subdivision, the deep
learning model can achieve a more powerful classification
ability.

V. CONCLUSION
This paper proposes an ECG record classification method
based on the derived wavelet decomposition and the deep
residual convolutional neural network. With the derived
wavelet decomposition, the original ECG records are decom-
posed and reconstructed into sub-signals of different fre-
quency scales. The fast down-sampled residual convolutional
neural networks are trained using different scales of recon-
structed datasets. Finally, multi-scale residual convolutional
neural networks are trained using transfer learning. The pro-
posed method was validated on the public short single lead
ECG dataset from the 2017 PhysioNet/CinC Challenge with
a test accuracy of 92.1% and an F1 score of 89.9%. The main
findings of this study can be summarized as follows:

The one-dimensional deep residual convolutional neural
network can learn effective classification features from the
time domain ECG waveform. Wide-stride convolution can
improve the stability of themodel while greatly improving the
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learning speed of the model. The residual short-circuit path is
critical to the learning ability of the model.

In the frequency domain, the feature information of the
ECG signal is mainly concentrated in the low frequency
band. With the derived wavelet packet frame, the ECG signal
can be decomposed into sub-signals of different scales with
translation invariance. The model trained in the reconstructed
dataset of the [0, 9.375 Hz] band obtains the highest recogni-
tion accuracy.

The waveform feature learned by neural networks trained
using different scale reconstruction datasets are not the same.
The multi-scale residual neural network trained by transfer
learning outperforms any single-scale FDResNet. Compared
with the previous research results, the proposed method has
improved the comprehensive accuracy and F1 score, espe-
cially the F1 score of the AF ECG record is significantly
improved.
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