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ABSTRACT Firewalls are located at the front line of the network against outside threats. Performance
modeling and analysis of network firewalls help to better understand their behavior and characteristics.
Moreover, having an analytical model in hand helps firewall designers avoid developing multiple design
alternatives and thus considerably reduce the design costs. Moreover, the network administrators can
proactively identify the performance bottlenecks of the network and fix them before any malicious attack
which targets the network or the firewall itself. In this paper, we propose a novel analytical approach for
performance modeling and analysis of network firewalls based on a discrete-time queuing system in which
the bursty nature of the incoming traffic is taken into account, where traditional queuing models such as
M/M/1 model fails to capture peculiar characteristics of the Internet traffic. Throughput, packet loss, delay,
and firewalls CPU utilization are employed as performance evaluation indicators in our proposed model.
In addition, we introduce a potential DoS attack with a very low rate which can be launched against firewalls
with different burstiness factors.

INDEX TERMS Network firewalls, performancemodeling, discrete-time queuing system, three dimensional
Markov chain, burstiness factor, DoS attack.

I. INTRODUCTION
Firewalls typically are deployed at the entry point of the net-
work and defend against malicious threats and hostile attacks.
Firewalls operate by inspecting incoming and outgoing traffic
flows using a rule-based engine. This engine matches the
packets sequentially with a predefined set of rules, namely
access rules, and decide whether to block the packet or not.

Most of the commercial firewalls, especially those
deployed in industrial networks have a huge rule-base
or Access Control List (ACL) (e.g. Cisco ASA [1]).

Thus, firewalls consume large amounts of resources in
the network and spend a significant time for higher-level
packet assessment. Since firewalls are usually deployed at
the entry point of the network, they can naturally become a
performance bottleneck spot in the network. Firewall perfor-
mance is an important factor in enforcing network security,
especially when the network is under attack. These attacks
are generally distributed denial of service attacks (DDoS)
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launched from botnets. From holding up a simple website,
to blocking access to an application to make a political state-
ment, DDoS is a growing concern for enterprises, and these
threats are expanded in scope and impact. If the firewalls
are not well designed to withstand against the mentioned
attacks, they may jeopardize the overall security of the net-
work in which they are deployed. Performance modelling
and analysis of network firewalls is beneficial for a deeper
understanding of their dynamics and behavior. For instance,
by having a theoretical model in hand, firewall designers can
conduct simulations in order to avoid developing multiple
design alternatives before settling on the implementation of
the system, thus reducing the design cost. As well, network
designers and network administrators can identify the optimal
parameters and resource allocation in order to improve the
overall performance of the network. Furthermore, we can
employ a mathematical model to help the administrators
chose the best reaction against the attack. In this paper,
we propose the following contributions:

• We develop a mathematical performance model for a
network firewall using a discrete-time queuing system.

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 183311

https://orcid.org/0000-0003-3223-1260
https://orcid.org/0000-0001-5681-6445


Y. Shahsavari et al.: Theoretical Model for Analysis of Firewalls Under Bursty Traffic Flows

FIGURE 1. Path of incoming packets from the NIC to the firewall.

To accomplish this, we derive closed-form equations
for throughput, delay, packet loss, and firewall CPU
utilization. This model also considers the correlation
between arriving packets.

• We extend our model to consider multiple flows. This
approach is closer to a realistic scenario where attacks
are conducted using botnets and hence come to the
network with different throughput and trigger different
rules in the firewall’s rule-base.

• We use our proposed model to introduce a potential DoS
attack against the firewalls. This kind of attacks can be
launched with a manipulated burstiness factor in order to
attack the firewall with a low rate of DoS flow. We show
that it can significantly increase the attack efficiency.

• We evaluate the accuracy of our model by simulating
using Matlab and comparing with the results already
reported in [2].

The rest of this paper is organized as follows. Section II
discusses related works. Our analytical model of a queuing
system with correlated packet arrivals which represents the
behavior and dynamics of the network firewall under batch
arrivals is described in Section III. In Section IV, we propose
an analytical solution for performancemodelling and analysis
of thementioned firewall. Section V is dedicated to numerical
results and comparison of DoS attacks that target a certain
rule with different burstiness factors. Finally, Section VI
concludes the paper and discusses our future works.

II. RELATED WORKS
To the best of our knowledge, there are few works on theoret-
ical modeling and analysis of network firewalls. Particularly
there are few models for analyzing network firewalls under
DoS attacks. The most related work to our contributions is [2]
in which a two-dimensional Markov model for network fire-
wall is proposed. In this work, it is assumed that packets arrive
in the firewall with a Poisson distribution. But the nature
of traffic in today’s Internet is bursty with correlated packet
flows. Moreover, in [3] it is shown that packet inter-arrival
times are not exponentially distributed and are not suitable
for modeling as a Poisson process. In a most recent work [4],
a performance model for firewalls within a mobile network
using queuing theory is proposed. But it suffers from a defect
similar to [2]. Without giving an explicit model for the entire
firewall system, works such as [5]–[9] discuss optimizing

FIGURE 2. Single server, finite capacity queuing system with multiple
stages of service.

the firewall performance using different approaches. In [10],
bottlenecks for system resources such as CPU and memory
usage that affect the firewall’s performance were studied.
An analytical model based on queuing theory and Markov
chains for cloud-based firewalls is presented in [11]. As a vir-
tual network function (VNF), the performance of the network
firewall for selection of cloud instance is evaluated in [12].
However, to the best of our knowledge, there is no research
work which considers the batch arrival of packets.

In this paper, we propose a discrete-time queuing model
with constant service time and correlated arrivals. The math-
ematical logic of such a queuing model is fully described
in [13]. Discrete-time queue with Bernoulli bursty source
arrival and generally distributed service times is presented
in [14].

Our analytical model is suitable for analyzing the perfor-
mance of network firewalls when those are subjected to nor-
mal traffic flows as well as DoS traffic with different values
of correlation between arriving packets. It is useful to analyze
the resiliency of firewalls when those encounter worst-case
DoS attacks. In [15], it has been shown how outside attackers
can remotely discover firewall rules located at the bottom
of a rule-base. Thus, they will be able to launch complex
algorithmic DoS attacks [16] targeting the bottom rules in
order to efficiently decrease the performance of the firewall
rapidly. This methodology allows attackers to do their attack
with a very low rate of DoS traffic flow.

III. SYSTEM MODEL
In this section, we present an analytical model for perfor-
mance modeling and analysis of network firewalls which
considers the bursty nature of traffic flows, especially under
DoS attacks.

A. RULE-BASED NETWORK FIREWALL
Incoming packets that arrive in the firewall’s RxNIC (Receiv-
ing Network Interface Card) will be queued in the sys-
tem buffer to be processed in multiple stages. Specifically,
in Linux systems, packet processing is done in three stages.
As shown in Figure 1, arriving packets are first copied from
the NIC to a ring buffer via DMA (Direct Memory access).
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FIGURE 3. Mean arrival rate and Burstiness factor versus α and β.

Secondly, after IP and TCP/UDP processing, packets are
copied from the ring buffer to a socket receive buffer. Finally
packets are copied from the socket receive buffer to the
firewall’s rule-base application.

B. QUEUING MODEL
This section describes our proposed discrete-time queuing
system with correlated packet arrivals, referred to as bursty
packet arrivals, and constant service times of arbitrary length.
The system is illustrated in Figure 2.

M × L =
m
r
+

1
µ

(1)

In this system, incoming packets arrive in a stochastic man-
ner with a mean arrival rate of I packets/time-slot from a
Bernoulli bursty source according to a first-order Markovian
process. As depicted on the left side of Figure 2, the source
alternates between On periods in which there is a packet
arrival and Off periods in which there is no packet arrival.
This source is called Bernoulli bursty source. Table 1 presents
some of the notations needed for understanding this paper.
The system has a buffer with a size of S+1 packets and queue
size of S. An incoming packet is first queued in the buffer and
then served by the first stage consisting of the kernel’s packet
processing. In this stage, the mean service time is 1/µ. In the
next stage, the packet will encounter the firewall rule-base.
In this stage, rules are interrogated one by one until there is
a matching rule with number m. Then a certain action, either
allow or block, is performed. The mean time of interrogation
for each rule is 1/r . Packets are served FCFS (First Come,
First Served). We assume each packet requires a constant
service time of M time-slots in such a way that:
where L is the time length of each time-slot. During an arbi-
trary time-slot, there can be one packet arrival or no packet
arrival. The number of packet arrivals during a time-slot is a
random variable dependent on the number of arrived packets
during the immediately preceding time-slot. We define two
independent parameters α and β as follows:

α(t) = Prob[N (t) = 1|N (t − L) = 1] (2)

β(t) = Prob[N (t) = 0|N (t − L) = 0] (3)

where N (t) is the number of packet arrivals during each time-
slot. Both of the On period and Off period are geometrically

TABLE 1. Notations used in this paper.

distributed. Therefore, they have mean values of 1/(1 − α)
and 1/(1− β). We also define the mean arrival rate in steady
state I (packet/slot) and burstiness factor B as

I =
E[Ton]

E[Ton]+ E[Toff ]
=

1− β
2− α − β

(4)

B =
E[Ton]E[Toff ]

E[Ton]+ E[Toff ]
=

1
2− α − β

(5)

For uncorrelated arriving packet flows, B equals 1. Given
the I , B varies between Max(I , 1 − I ) and ∞. Figure 3
illustrates the diagram of I and B as functions of α and β.

When the burstiness factor B approaches to infinite,
the denominator in Equation (5) approaches 0. Therefore:
2 − α − β = 0 and 2 = α + β. Since α ≤ 1 always and
β ≤ 1, we can conclude β = α = 1. Also, 1 − α = 0 and
1 − β = 0. This implies that when the state of the system
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FIGURE 4. The time axis is divided into several time-slots with equal
lengths.

is On, it remains On and when the state of system is Off,
it remains Off. In such conditions, the result of Equation (4)
approaches the indeterminate value of 0/0.
This situation will be very sensitive to a slight difference

between α and β. Consider a very small real positive number
of ε. Let us assume {α, β|α > β, α = β+ε}, then the result of
the fraction of Equation (4) and the steady state probability of
having a packet arrival during an arbitrary slot approaches 1.
On the other hand, if {α, β|β > α, β = α + ε}, then the
result of the fraction of Equation (4) and the steady state
probability of having a packet arrival during an arbitrary slot
approaches 0. This fact is readily visible in Figure 3a. Another
interesting case is when the burstiness factor B = 1. This case
occurs when α+ β = 1. This situation refers to uncorrelated
packet arrivals with exponential distribution.

IV. MODEL ANALYSIS AND SOLUTION
In this section, we propose an analytical solution based on a
Markov model for performance modeling and analysis of the
network firewall.

A. MARKOV MODEL FOR A RULE-BASED NETWORK
FIREWALL
Suppose the time axis is divided into time-slots with equal
length ad depicted in Figure 4. We define the random vari-
able sk as the buffer occupancy (i.e. the total number of
packets stored in the buffer including the packet which is
under service) at the beginning of time-slot k . We also define
the random variable ak as the number of packets entering the
system buffer during time-slot k . Moreover, let the random
variable rk denote the number of time-slots taken for servic-
ing the packet (i.e. the packet which is currently under service
in the buffer) so far. We call rk the delivered service time at
the beginning of time-slot k . Note that if sk = 0, then rk = 0.
Since the service time is assumed constant, rk can be at most
M−1 time-slots. After receivingM−1 time-slots of service,
the packet will leave the buffer at the end of next time-slot.
Suppose at the beginning of the time-slot k , the system is
not empty and the delivered service time is less than M − 1.
Therefore, there is no departure at the end of this time-slot.
Also, buffer occupancy is increased by the number of arriving
packets during this slot (zero or one) and the delivered service
time is increased by one.

As well, suppose the packet which is under service has
already received service forM−1 time-slots at the beginning
of time-slot k . Hence, there will be one departure at the

FIGURE 5. State transition for a rule-based network firewall with finite
buffer capacity S + 1.

end of time-slot k . If the leaving packet is the last packet
in the system and no packet arrival occurres during slot k ,
the system becomes empty.

If the buffer is empty at the start of time-slot k , the buffer
occupancy at the beginning of the next slot equals to the
packets arrived during this slot. Also, rk+1 = 0.

Whatever we mentioned above, can be summarized in
Equations (6) and (7) as follows.

sk+1 =


min(sk + ak , S + 1) sk > 0 & rk 6= M − 1
min(sk + ak , S + 1)− 1 sk > 0 & rk = M − 1
ak sk = 0 & rk = 0

(6)

and also,

rk+1 =


rk + 1 sk > 0 & rk 6= M − 1
0 sk > 0 & rk = M − 1
0 sk = 0 & rk = 0

(7)

From the terms and equations we described above, we can
claim that the vector (rk , ak , sk ) is a 3D (three dimensional)
Markovian state description of the system at the start of time-
slot k . Now, it is helpful to define p(i, n, j) as the equilibrium
probabilities of the Markovian chain {(rk , ak , sk )}. The state
transition diagram is depicted in Figure 5. The diagram con-
sists of two planes, each referring to On and Off periods. The
state (0, 0, 0) represents the special case when the system is
empty. Dashed arrows denote state transitions, at which the
state changes from On to Off (with probability 1−α) or from
Off to On (with probability 1 − β). In such conditions,
the system state moves from one plane to another. For the
other state transitions, when the system remains On (with
probability α) or when Off (with probability β), the state
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transitions are shown by solid lines. We define:

p(i, n, j) , lim
k→∞

Prob[rk = i, ak−1 = n, sk = j]

0 ≤ i ≤ M − 1

0 ≤ j ≤ S + 1 (8)

Now let us define the partial probability generation func-
tion of

Qi,n(z) ,
S+1∑
j=0

p(i, n, j)zj

0 ≤ i ≤ M − 1

n = 0, 1 (9)

Also, we define the function Rn(y, z) as

Rn(y, z) ,
M−1∑
i=0

Qi,n(z)yi (10)

Appendix describes an analytical approach to calculate
Qi,n(z) and Rn(y, z).

B. KEY PERFORMANCE MEASURES
The above equations and definitions enable us to compute
the buffer content probability generating function (PGF) S(z)
as:

S(z) =
S+1∑
j=0

Prob[s = j]zj =
S+1∑
j=0

M−1∑
i=0

1∑
n=0

p(i, n, j)zj

=

M−1∑
i=0

1∑
n=0

(
S+1∑
j=0

p(i, n, j)zj) =
M−1∑
i=0

1∑
n=0

Qi,n(z)

= R0(1, z)+ R1(1, z) (11)

where
∑M−1

i=0
∑1

n=0 p(i, n, j) yields the marginal probability
of p(i, n, j). Regarding the Equations (A.12)-(A.18), the S(z)
can be calculated as follows:

S(z) =
p0(z− 1)
N (z)

{z(
ξM+11 − ξM+12

ξ1 − ξ2
)

− zξ1ξ2(
ξM1 − ξ

M
2

ξ1 − ξ2
)− (ξ1ξ2)M }

+
(z− 1)zS+1

IN (z)

M−1∑
1

pi{ξ1ξ2[I + (1− I )z]

×(
ξM−i−11 − ξM−i−12

ξ1 − ξ2
)

+
1
z
[I + (1− I )z](ξ1ξ2)M−i(

ξ i+11 − ξ i+12

ξ1 − ξ2
)

− z(
ξM−i1 − ξM−i2

ξ1 − ξ2
)

− (ξ1ξ2)M−i(
ξ i1 − ξ

i
2

ξ1 − ξ2
)} +

1
I

M−1∑
i=1

pizS+1 (12)

where ξ1 and ξ2 are eigenvalues of the matrix F

F ,

[
β 1− α

(1− β)z αz

]
(13)

And M unknown parameters of pi (0 ≤ i ≤ M − 1) are
defined as follows:

pi = lim
k→∞

Prob[rk = i, ak = 1, sk = S + 1] (14)

Note that the parameter p0 is defined as the steady state
probability of having an empty buffer at the start of any
arbitrary time-slot. N (z) in Equation (12) is given by Equa-
tion (A.13). We find unknown parameters of pi (0 ≤ i ≤
M−1) as follows. It can be seen that the denominator and the
numerator of Q0,n(z) are polynomial in z. Also, both of them
disappear for z = 0 and z = 1. The denominator of Q0,n(z),
i.e.N (z), is a polynomial degreeM+1, which guarantees that
it has exactlyM + 1 zeros inside the complex plane. Also we
know that Q0,n(z) is an analytic function of z in the whole
complex plane. Therefore each zero of the denominator of
Q0,n(z) is also a zero of the numerator. Since both of them
disappear for z = 0 and z = 1, we obtain only M − 1 linear
equations forM unknowns. From the Equation (11) and using
the normalization condition for S(1) = 1, we obtain theM -th
linear equation:

p0 −M
M−1∑
i=1

pi = 1−MI (15)

Consequently, we obtain a linear system of equations
withM independent linear equations andM unknowns. Now
the system can be solved to obtain the parameters pi (0 ≤ i ≤
M − 1). Substituting these parameters in Equation (12) yield
S(z) in terms of known values. This enables us to compute the
mean buffer occupancy E[s] at the beginning of any arbitrary
slot:

E[s] = S ′(1) =
1

1−MI
{
I
2
((M + 1)p0 −M + 1)

+
1− I − p0
2− α − β

−

M−1∑
i=1

pi[M (S + 1)− i− 1]} (16)

When an incoming packet encounters a full buffer, it will
be dropped. Let Ploss denote the ratio of dropped packets.
A packet will be lost if it arrives at the beginning of a time-
slot at which the system is full. Therefore we obtain a strict
expression for the packet loss ratio:

ploss =
1
I

M−1∑
i=1

pi (17)

Ploss is independent of the buffer size S. According to
Little’s result, we can claim:

E[d] =
E[s]

I (1− ploss)
(time− Slots) (18)

where E[d] is the average packet delay. Note that, to obtain
average packet delay in seconds W , we calculate:

W = E[d]× L (Seconds) (19)
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where L is the length of each time-slot in seconds. One of the
key performance measures is the system throughput and can
be estimated as:

γ =
I
L
(1− ploss) (20)

Since the length of each time-slot equals to L seconds,
the mean service time can be represented as:

X = ML =
m
r
+

1
µ

(Seconds) (21)

Another performance measure which we are interested in
to estimate is the firewall’s CPU utilization:

CPUutil = γX = IM (1− Ploss) (22)

As well, the offered load can be expressed as:

ρ = IM (23)

C. MULTIPLE FLOWS
In practice, packet flows are not originated from a singular
source but rather come from multiple sources. Moreover,
modernDoS attacksmay be launched frommultiple networks
and nodes (e.g., botnets). Therefore, we need to adapt the
presented analytical model with realistic conditions. Suppose
there are multiple flows arriving in the firewall and trigger
some of the rules. Without loss of generality, we can assume
that each flow triggers only one rule. In the situation where a
flow triggers multiple rules, we can decompose it to multiple
flows that each of them triggers one rule. Incoming flows are
indicated by Iφ {Iφ : 1 ≤ φ ≤ Q} such that any of the
flows triggers a specific rule {Rψ : 1 ≤ ψ ≤ V } in the
rule-base, whereQ denotes the total number of arriving flows
and V denotes the total number of rules in the firewall rule-
base. This process is depicted in Figure 6 . To find a solution,
we follow the presented approach below. Let us define the
aggregated flow I as follows:

I =
Q∑
φ=1

Iφ (24)

The average number of time-slots taken to service the pack-
ets belonging to each individual flow (position of triggered
rules) can be calculated as:

M = 1+ d
Q∑
φ=1

Iφ
I
×Mφe (25)

In the equation above, the two added expressions are con-
sist of the kernel processing time (1/µ) considered equal
to one time-slot and the time taken for rule inspection.
Consequently,

γφ =
Iφ
I
γ (26)

where,

γ =

Q∑
φ=1

Iφ
L
(1− ploss) (27)

FIGURE 6. Generalized model for multiple flows when each flow triggers
a different rule.

Now the CPU utilization of each flow can be calculated as:

CPUutil,φ = IφMφ(1− ploss) (28)

Note that the average packet delay for each of the flows
is equal to the total average packet delay for overall flows.
Hence,

E[d] =
E[s]

I (1− ploss)
(Slots) (29)

or,

Wφ = W =
E[s]

I (1− ploss)
× L (Seconds) (30)

D. INFINITE BUFFER CAPACITY
Given the special case of a queuing system with infinite
buffer capacity, when S approaches infinity (i.e. S = ∞) the
following expression can be obtained for Q0,n(z):

lim
S→∞

=
p0Ln(z)
N (z)

n = 0, 1 (31)

The expression contains only one unknown parameter of
p0. This case is a good approximation for a queuing system
with a large buffer size (e.g. S ≥ 100000).

E. LIMITATIONS
In this paper, it is assumed that arriving packets have a fixed
size. The impact of this assumption is that bigger packets may
cause the queue buffer to overflow faster than smaller packet
sizes and yield less throughput. In a practical setting, network
packets do not have a fixed size. Despite this limitation,
results obtained from our analytical model closely match to
experimental results reported in [2] for B = 1 (Poisson
arrivals).

V. NUMERICAL RESULTS AND COMPARISON
To validate our model and accuracy checking, we simulated
it using MATLAB [17] and compare the results with those
reported in [2]. We set all of the numerical values and inputs
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FIGURE 7. The hypothetical testbed used for model validation.

identical to the values already used in the aforementioned
paper. To accomplish this, we also consider a hypotheti-
cal testbed (similar to what used in [2]) as depicted in the
Figure 7. In this paper, we assume a firewall rule-base con-
tains 10000 rules.

According to the values of parameters considered in [2],
average processing time per rule (i.e. 1/r) is 0.05 µs. The
estimated time for kernel processing in addition to the IP pro-
cessing time (i.e. 1/µ) is considered to be 2.65µs. As already
discussed, the time taken to service a packet is equal toM and
is always greater than 1. Now suppose the length of each time-
slot equals L seconds. The most accurate value to be assigned
to L is the shortest time interval assigned to the parameters of
the experimental work. In practice, 1/r < 1/µ [2]. Hence in
this paper, we should take L = 0.05 µs but for convenience
and to avoid excessive computational overhead, we employ
L = 1/µ = 2.65 µs. Thus, approximately 53 rules will be

interrogated during a specific time-slot. In this case, when the
rule number 1000 is triggered,M can be calculated as follows:

M = 1+ d
1000
53
e = 20

where d e refers to the ceiling of the quantity inside it. The
calculatedM is equivalent to the rule number 1007. In such a
case, the average delay is calculated 0.35µsmore than reality.
However, it is a good approximation for this work.

A. MEAN ARRIVAL RATE I
As already discussed, The mean arrival rate in steady state,
I , is the steady state probability of having a packet arrival
during an arbitrary time-slot. This parameter can be used
to describe the packet arrival rate to the system. But in [2],
packet arrivals are described using λwhich is themean packet
arrivals per second. One can easily convert λ and I together
using the following equation:

λ =
I
L

(32)

B. BURSTINESS FACTOR
In uncorrelated arrivals, the burstiness factor equals 1.
Therefore:

2− α − β = 1

α + β = 1

FIGURE 8. Results for different rules targeted by different attack rates and uncorrelated flows.
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FIGURE 9. Results for rule no. 1000 targeted by different attack rates of correlated flows and four values of burstiness factor.

C. MAXIMUM QUEUE CAPACITY
Since the maximum capacity of both Tx and Rx DMA rings
in [2] are set to 512, we set S = 512. This implies that both
of the works have the same buffer capacity.

D. NUMBER OF SERVICE TIME SLOTS M
The time needed to service an individual packet is equal
to ML seconds. We set up three experiments. We set the
normal traffic to trigger the first rule in the firewall rule-
base. In each experiment, the DoS flow targets the rules posi-
tioned around the ranks 1000, 5000, and 10000, respectively.
As the minimum value for M is 2, we set M = 2 for the
normal traffic (one for kernel processing plus IP processing
time and one for the first approximately 53 rules at the
beginning of the rule-base). We set M equal to 20, 96 and
190 as the number of time-slots required to grant service to
the packet which triggers the rules number 1000, 5000 and
10000 respectively. The attacks which target the rule 1000
can be considered equivalent to a traditional DoS attacks but
attacks which target rule 5000 and 10000 can be considered
as complex DoS attacks that target last-matching rules. All

of these experiments are done with a rate of λ = 10000
packet/seconds for normal traffic. To validate our analytical
model, we compare our results for B = 1 to the empirical
results reported in [2]. Our results are depicted in Figure 8.
As it can be seen, for throughput, packet loss, CPU utilization,
and average packet delay (all v.s. DoS attack rate), our results
closely match the empirical results already reported in the
mentioned reference. But for the average packet delay, we got
better results than the mentioned reference. In other words,
our results still follow the empirical results closely while their
model has a considerable deviation from the empirical results.

If the arriving packets are not independent, the burstiness
factor B will not be equal to 1 and takes on various values.
To evaluate the impact of different values for the burstiness
factor B on firewall performance and behavior, particularly
under DoS attacks, we set a test similar to the experiment
already discussed above. We changed the burstiness factor
B while we kept the values of the other parameters constant
and observed the impact of it on the firewall performance.
The results for the four different amounts of burstiness fac-
tor B = 1, 10, 100, 1000 are depicted in Figure 9. All
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of these experiments are done with a rate of λ = 10000
packets/second for normal traffic which triggers the rule
number 1. As well, DoS traffic targets the rule number 1000.

Figure 9a shows the impact of increasing in burstiness
factor B on system throughput. For B = 1 and B = 10, both
of the curves are almost identical. For both of the mentioned
curves, a downswing starts at the DoS rate of 18 Kpps. For
B = 100, a downswing commences considerably sooner
with a lower rate and downward concavity that represents a
positive increase in the rate of packet wastage. For B = 1000,
a faster downswing commences sooner than for B = 100
with significantly less amount of throughput (a.e. 7000 Kpps)
and upward concavity that indicates decrements in packet
wastage rate. Figure 9b exhibits the packet loss percentage
and follows a similar trend. Figure 9c shows the CPU utiliza-
tion. By increasing B, the CPU utilization keeps decreasing
since the throughput decreases and the service time remains
constant. Figure 9d shows the average packet delay. For
B = 1, the average packet delay is comparatively less than
others. But around the convergence point of the four curves,
it experiences a sudden increase. For B = 10, it happens in
a slower manner. For B = 100 and B = 1000, the curves
increase almost monotonically. The convergence point is an
interesting point since the order of curves is inverted and is
the point that the throughput curve for uncorrelated arrivals
(B = 1) breaks down.

VI. CONCLUSION
In this paper, we propose a novel analytical approach for per-
formancemodeling and analysis of rule-based firewalls based
on a discrete-time queuing system. We obtain closed-form
expressions for performance metrics consist of throughput,
packet loss, CPU utilization and delay while considering
correlated packet arrivals. This model can be used for ana-
lyzing the behaviour of firewalls in normal conditions as
well as when the firewall is under DoS attacks launched
from different sources or any individual attackers that aim
to waste the firewall resources and consequently cause a
considerable disturbance using low-rate traffic flows.We also
present a method in which the bursty nature of network traffic
is exploited to create a bottleneck at the firewall. Since the
firewall is located at the edge of the network, this disturbance
can affect the experienced performance of the internal users.
In this paper, we show that when these kinds of attacks are
coupled with an increase in burstiness factor, they may cause
serious hazards. To defend against these attack, we recom-
mend weight allocation for rules, where the weight of each
rule is based on the number of previous matches. The rule-
base should then be reordered periodically based on their
weight.

APPENDIX
In this section, we present an approach for calculatingQ0,n(z)
and Rn(y, z). A complete version of this approach is already
presented in [13], but for the sake of completeness and adap-
tion with our model, we present it in this section. Both of the

functions Q0,n(z) and Rn(y, z) that already defined in Equa-
tions (9) and (10) can be calculated as follows: According
to Equations (9) and (10) and supposing that the On periods
and Off periods have geometrical distribution, the following
relations between Qi,n(z) and Qi−1,n(z) can be obtained:(

Qi,0(z)
Qi,1(z)

)
=

(
β 1− α

(1− β)z αz

)(
Qi−1,0(z)
Qi−1,1(z)

)
+ pi−1zS+1(1− z)

(
0
1

)
2 ≤ i ≤ M − 1

(A.1)(
Q1,0(z)
Q1,1(z)

)
=

(
β 1− α

(1− β)z αz

)(
Q0,0(z)
Q0,1(z)

)
− p0

(
β

(1− β)z

)
(A.2)

where p0 is the steady-state probability of having an empty
buffer at the start of any arbitrary time-slot. The parameters
pi are defined as follows:

pi , lim
k→∞

Prob[rk = i, ak = 1, sk = S + 1]

1 ≤ i ≤ M − 1 (A.3)

Similarly, from the set of Equations (6) and (7), the follow-
ing expressions for Q0,n(z) and QM−1,n(z) can be obtained:

z
(
Q0,0(z)
Q0,1(z)

)
=

(
β 1− α

(1− β)z αz

)(
QM−1,0(z)
QM−1,1(z)

)
+ p0z

(
β

(1− β)z

)
+ PM−1zS+1(1− z)

(
0
1

)
(A.4)

where

pM−1 , lim
k→∞

Prob[rk = M−1, ak = 1, sk = S+1] (A.5)

The Equations (A.1), (A.2) and (A.4) can be used to
derive a set of linear equations with the unknown functions
of Q0,0(z) and Q0,1(z). After some repeated substitutions,
we reach:

(zÎ − FM )
(
Q0,0(z)
Q0,1(z)

)
= (zÎ − FM−1)

(
β

(1− β)z

)
p0

+

M−1∑
i=1

pizS+1(1− z)FM−i−1
(
0
1

)
(A.6)

where

Î =
(
0 1
1 0

)
and the matrix FM is defined as follows:

Fm ,

(
β 1− α

(1− β)z αz

)m
0 ≤ m ≤ M (A.7)
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If we consider ξ1(z) and ξ2(z) as the two eigenvalues of the
matrix F , these eigenvalues are the solutions of the charac-
teristic equation ξ2− (αz+β)ξ + (α+β − 1)z = 0, In other
words:

ξ1(z) = u(z)+ v(z) and ξ2(z) = u(z)− v(z) (A.8)

where

u(z) =
1
2
(αz+ β) and [v(z)]2

=
1
4
[(αz+ β)2 − 4(α + β − 1)]z (A.9)

We obtain:

ξ1(z)+ ξ2(z) = αz+ β and ξ1(z)ξ2(z) = (α + β − 1)z

(A.10)

The matrix Fm, 0 ≤ m ≤ M can be expressed as:

Fm =
1

ξ1 − ξ2[
ξm+11 − ξm+12 −αz(ξm1 − ξ

m
2 ) (1− α)(ξm1 − ξ

m
2 )

(1− β)z(ξm1 −ξ
m
2 ) ξm+11 −ξm+12 −β(ξm1 −ξ

m
2 )

]
(A.11)

Therefore, we obtain the functionsQ0,0(z) andQ0,1(z) from
the Equations (A.6)

Q0,n(z) =
1
Z (z)
{p0Ln(z)+

M−1∑
i=1

PizS+1(1− z)Ti,n(z)}

n = 0, 1 (A.12)

where the functions N (z), Ln(z) and Ti,n(z) are expressed in
terms of ξ1(z) and ξ2(z) as follows:

N (z) = z[z− (ξM1 + ξ
M
2 )+ (α + β − 1)M zM−1] (A.13)

L0(z) =
1

ξ1 − ξ2
{[βz2 + (ξ1ξ2)M ](ξ1 − ξ2)

+ (1+ β)zξ1ξ2(ξ
(
1M − 1)− ξ (2M − 1))

− (β + ξ1ξ2)z(ξM1 − ξ
M
2 )} (A.14)

L1(z) =
(1− β)Z2

(ξ1 − ξ2)
{ξ1ξ2(ξ

M−1
1 − ξM−12 )

− (ξM1 − ξ
M
2 )+ z(ξ1 − ξ2)} (A.15)

Ti,0(z) =
(1− α)
(ξ1 − ξ2)

{z(ξM−i−11 − ξM−i−12 )

+ (ξ1ξ2)M−i−1(ξ
i+1
1 − ξ i+12 )} (A.16)

Ti,1(z) =
1

(ξ1 − ξ2)
{−βz(ξM−i−11 − ξM−i−12 )

+ (ξ1ξ2)M−i(ξ i1 − ξ
i
2)+ z(ξ

M−i
1 − ξM−i2 )

−β(ξ1ξ2)M−i−1(ξ
i+1
1 − ξ i+12 )} (A.17)

In the Equation (A.12), theM unknown probability p0 and
pimust be calculated. From the Equations (A.8) and (A.9),it is
clear that ξM1 +ξ

M
2 is a polynomial in z of degreeM . Similarly,

(ξm1 − ξ
m
2 )/(ξ1− ξ2) for m ≥ 1 is a polynomial in z of degree

m − 1. Consequently, the denominator N (z) of Q0,n(z) is a

polynomial in z of degree M + 1. Therefore it has exactly
M+1 zeroes inside the complex z-plane. Also, the numerator
of (A.12) is a polynomial in z. It can be demonstrated that
N (0) = N (1) = 0 and Ln(0) = Ln(1) = 0 which causes
both the numerator and denominator of Q0,n(z) to disappear
for z = 1. Finally, using the definition in Equation (10) and
Equations (A.1) and (A.2), we can calculate linear expres-
sions for R0(y, z) and R1(y, z) as follows:(
R0(y, z)
R1(y, z)

)

=

(
1− αyz (1− α)z
(1− β)yz 1− βy

)
[(1− βy)(1− αyz)− (1− β)(1− α)y2 z]

×{(1− yM z)
(
Q0,0(z)
(Q0,1(z)

)
− (y− yM z)p0

(
β

(1− β)z

)
+

M−1∑
i=1

piyi+1zS+1(1− z)
(
0
1)

)
} (A.18)
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