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ABSTRACT Complex-valued system identification has the ability to provide the basis for system analysis.
So as to demonstrate the potential and internal mechanism of the complex-valued system, this paper
proposes a novel complex-valued hybrid evolutionary (CSE) algorithm to optimize the complex-valued
expression model (CEM). Complex-valued gene expression programming (CVGEP) is proposed to optimize
the architectures of the CEM. Complex-valued water wave optimization (CVWWO) is first proposed to
optimize complex-valued coefficients and constants of the CEM. The two artificial complex-valued function
approximation problems and non-minimum phase equalization problem are utilized to test the performance
of the proposed algorithm. The results demonstrate that this method could identify complex-valued systems
more correctly than complex-valued neural networks, which could obtain above 90% smaller mean-squared
error (MSE) performance than other complex-valued models. With 10% Gaussian white noise, the CSE
could identify accurate complex-valued structure and parameters containing coefficients and constants. The
CVWWO has better convergence performance than complex-valued particle swarm optimization and crow
search algorithm.

INDEX TERMS Complex-valued expression model, gene expression programming, water wave
optimization.

I. INTRODUCTION
In the fields of engineering technology, economic manage-
ment, natural sciences and social sciences, there are complex
systems and non-linear phenomena that change with time.
When it comes to the complex systems, such issue has been
widely and successfully utilized in several fields, including
price fluctuation, weather change, population growth, etc
[1]–[4]. The reasonable models have been established with
the observation data to provide the basis for system anal-
ysis, design and future state prediction. The understanding
of dynamic behavior of the unknown system has become an
important research topic in this field [5]–[8].

It was pointed that complex-valued system identifica-
tion has been widely utilized in several fields, including
hydrodynamics, aerodynamics, elasticity theory, electro-
static field, circuit theory [9]–[11]. Particularly, black-box

The associate editor coordinating the review of this manuscript and
approving it for publication was Mouloud Denai.

modeling technology based on input-output complex-valued
data is one of the hotspots and has attracted wide atten-
tion. Savitha et al. proposed an improved complex-valued
back propagation (CVBP) algorithm to resolve complex-
valued XOR and synthetic function approximation prob-
lems [12]. Deng et al. proposed complex-valued minimal
radial basis function neural networks to solve nonlinear chan-
nel equalization problems [13]. Cousseau et al. proposed a
two-dimensional simplified canonical piecewise linear filter
to identify complex-valued nonlinear Wiener model [14].
In order to identify complex-valued Wiener system more
accurately, Hong et al. proposed a complex-valued B-spline
neural network method [15]. The black-box modeling meth-
ods of complex-valued systems have some disadvantages,
such as difficult structure design, unclear internal interpre-
tation and so on.

In order to discover and demonstrate the internal mech-
anism of the system deeply and clearly, the essential and
significant rules and theories have been abstracted from
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the intricate external phenomena. Moreover, these can be
demonstrated with the mathematical forms, including equa-
tions or other similar methods. Computational models have
been applied to identify systems in real-valued application
fields [16]. Chen et al. proposed a hybrid evolutionary algo-
rithm based on additive tree model and random search algo-
rithm for linear/nonlinear polynomials identification [17].
Feijoo et al. proposed associated linear equations to identify
the systems of an electrostrictive actuator and a Duffing oscil-
lator [18]. Gennemark et al. proposed parameter optimization
algorithm and model selection to evolve ordinary differential
equation (ODE) to identify metabolic pathway and genetic
network [19]. Kreiberg et al. proposed structural equation
modeling to identify errors-in-variables single-input single-
output (SISO) system [20].

In order to express the internal mechanism of
complex-value system more clearly, a novel hybrid evolu-
tionary algorithm is proposed to optimize complex-valued
mathematical expression model (CEM) in order to identify
nonlinear complex-valued systems. In this hybrid algorithm,
complex-valued gene expression programming (CVGEP) is
proposed to optimize the architectures of CEM. In order
to search the optimal complex-valued coefficients and con-
stants of CEM, complex-valued water wave optimization
(CVWWO) is utilized. The two artificial complex-valued
functions and one real system are utilized to test the perfor-
mance of our proposed algorithm.

II. METHOD
A. COMPLEX-VALUED GENE EXPRESSION
PROGRAMMING
Gene expression programming (GEP) is a structure-based
evolutionary algorithm based on genetic algorithm (GA) and
genetic programming (GP), which owns the advantages of
GA and GP, and has stronger the ability of problem solv-
ing [21]. In GEP, the structure of chromosome is simple,
linear and compact, so it has been applied for function mining
problems [22]. Thus in this paper, as complex-valued ver-
sion of GEP, complex-valued gene expression programming
(CVGEP) is proposed to identify mathematical expression
model of complex-valued system.

In order to create complex-valued chromosome, complex-
valued function set F = {+,−, ∗, /, sin, cos, ln, ex+yi} and
complex-valued terminal set T = {z1, z2, . . . , zn,R} are
defined beforehand. In CVGEP, each chromosome contains
one or more genes. Each gene is represented by a fixed-length
string of symbols, which includes head part and tail part. The
head part could include function symbols and terminal sym-
bols, while the tail part only includes terminal symbols. For
example, an example of complex-valued expression model
z = z2z3

sin(z3)+0.6+1.2 i
is encoded, which is depicted in Fig. 1.

In this gene, the length of head part is 5 and the length of tail
part is set as 6. The length of gene is 11 and the region after
the expression is non-coding.

Scanning the characters in the gene one by one from left
to right, an expression tree (ET) is constructed by hierarchy

FIGURE 1. A gene example of the chromosome in CVGEP. F is set as
{+,−,×, /, sin} and T is set as {z1, z2, z3, z4, 0.6+ 1.2 i }.

FIGURE 2. The decoding expression tree of gene in chromosome.

traversal order, which is shown in Fig. 2. The mathemati-
cal expression is calculated by traversing ET with in-order
traversal.

In CVGEP, many chromosomes constitute the population.
In order to gain the optimal solution of problem, genetic oper-
ators are implemented to make population evolve generation
by generation, which contain selection, mutation and recom-
bination. The flowchart of CVGEP algorithm is depicted
in Fig. 3.

FIGURE 3. The outlines of CVGEP.

B. COMPLEX-VALUED PARAMETERS OPTIMIZATION
1) WATER WAVE OPTIMIZATION
Water wave optimization (WWO) algorithm is a novel evo-
lutionary algorithm based on shallow water wave theory,
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which was proposed by Zheng in 2015 [23]. By simulat-
ing the propagation, refraction, breaking waves and other
water wave motions, the optimal solution is searched in high-
dimensional space [24]. WWO has some advantages, such
as simple structure, less control parameters and less com-
putational overhead, so it performs better than some new
evolutionary algorithms, such as invasive weed optimiza-
tion (IWO), biogeography-based optimization (BBO), crow
search algorithm (CSA), etc [25].

In WWO, one water wave corresponds to a solution and
has two attributes: wave height h and wave length λ. When
the population are initialized, the wavelength and height of
each wave are initialized to the constants (0.5 and hmax). The
fitness value of water wave is inversely proportional to the
distance from sea level. The closer the distance to sea level is,
the higher the fitness of water waves is; otherwise the lower
the fitness is. Propagation, refraction and breaking waves are
utilized to solve the optimization problem.
(1) Propagation
Suppose that the dimension of the problem is D and the

current position of the water wave is X . The new position of
the water wave X is updated as follows.

X ′ = X + r × λL. (1)

where, r is a random number ranges from -1 to 1, λ is the
wavelength of the water wave X and L is the length of the
water wave in the search space. If the length of the new water
wave exceeds the search limit, it needs to be reassigned a
random position in the search space.

After the propagation process, the fitness function f is uti-
lized to calculate the fitness value of the newwater wave (X ′).
If f (X ′) < f (X ), X ′ is utilized to replace X , and the wave
height of X ′ is set as hmax; otherwise, the original wave X
is retained and the wave height is reduced by 1. After each
iteration, the wavelength of each water wave is updated as
follows:

λ = λ× a−
f (X )−fmin+ε
fmax−fmin+ε . (2)

where, a denotes the wavelength attenuation coefficient, fmax
and fmin are the maximum and minimum fitness values of the
current population, respectively. ε is the minimum positive
number.
(2) Refraction
If the wave could not be improved after multiple propa-

gation operations, the height of the water wave decreases to
0, and the wave will stop searching. For such water waves,
refraction can be utilized. For water wave X , refraction oper-
ation is defined as follows.

X ′ = Gaussian(
Xbest + X

2
,
|Xbest − X |

2
). (3)

where, Xbest is the best water wave in the current population.
After refraction, the height of the new water wave X ′ is

reset to hmax and the wavelength is updated as follows.

λ′ = λ
f (X )
f (X ′)

. (4)

(3) Wave breaking operation
According to the theory of water wave, if the energies of

water waves continue to increase, their wave summits become
steeper until they break up into a series of solitary waves in
order to improve the diversity of the population. In WWO,
only the optimal solution (Xbest ) could be broken. Select the
i − th dimension randomly and its wave breaking operation
is defined as follows.

X ′best,i = Xbest,i + Guassian(0, 1)× βLi. (5)

where, β is the breaking wave coefficient. k wave break-
ing operations are implemented repeatedly and k sub-waves
could be obtained. If the fitness values of k sub-waves are
better than that of the optimal solution Xbest , the optimal
solution in the population is replaced by the optimal solution
in sub-waves.

2) COMPLEX-VALUED WWO
As a new evolutionary algorithm, the convergence speed of
WWO is related to the diversity of the initial population. It is
unstable and easy to fall into the local optimum. Fig. 1 shows
that chromosome in CVGEP may contain complex-valued
constants. And the optimized expression model could include
complex-valued coefficients. In order to optimize complex-
valued coefficients and constants of CEM, complex-valued
water wave optimization (CVWWO) algorithm is proposed.
In CVWWO, each water wave is encoded by complex num-
bers containing two parts: real part and imaginary part. Real
and imaginary parts could be optimized in parallel. The
pseudo code of CVWWO is described in Algorithm 1.

C. SUMMARY OF LEARNING COMPLEX-VALUED
EXPRESSION MODEL
(1) Create an initial CEM population randomly, which

contain complex-valued chromosomes in CVGEP and
their corresponding complex-valued coefficients and
constants.

(2) Structure optimization by selection, recombination and
mutation in CVGEP.

(3) At some iterations, complex-valued coefficients and
constants are optimized by complex-valued water wave
optimization. In this process, the structure of CEM is
fixed.

(4) If the maximum iteration is reached, learning process
is stopped; otherwise go to step (2).

III. EXPERIMENT
The two artificial complex-valued function approximation
problems and non-minimum phase equalization problem are
utilized to test the performance of our proposed algorithm.
The parameters in CVGEP andCVWWOare listed in Table 1.
Mean squared error (MSE) is utilized to evaluate the perfor-
mance of methods.

MSE =
1
N

N∑
i=1

E2
i (6)
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Algorithm 1 Pseudo Code of CVWWO
Initialize N complex-valued water waves
[X1,X2, . . . ,XN ](Xk = x1,Rk +x

1,I
k i, x2,Rk +x

2,I
k i, . . . xn,Rk +

xn,Ik i)) with the n dimension and parameters (α, β, tmax
and hmax)
while t< tmax do
for k = 1; k< N-k ++ do

Calculate the fitness
end for
Search the optimal wave Xbest ;
for i = 1: i ≤ N ; i++ do
X iR(t + 1)← X iR(t)+ r ∗ λi ∗ L

I
R;

X iI (t + 1)← X iI (t)+ r ∗ λi ∗ L
I
I ;

if f (Xi(t + 1)) < fi(X (t)) then
hi← hmax
if f (Xi(t + 1)) < f (Xbest ) then
for j = 1; j ≤ k; j++ do
s← select a dimension;
ORj,s← XRbest,s + Guassian(0, 1) ∗ β ∗ L

R
i

OIj,s← X Ibest,s + Guassian(0, 1) ∗ β ∗ L
I
i

end for
if f (O1) < f (Xbest) and (O2) < f (Xbest)
and .... and (Ok ) < f (Xbest) then
Xbest ← the optimal solution of
O1,O2, . . . ,Ok ;

end if
end if

else
Xi(t + 1)← Xi(t)
hi← hi − 1;
if hi == 0 then
XRi (t + 1)

← Guassian
(
XRbest +X

R
i (t)

2 , |
XRbest −X

R
i (t)

2 |

)
X Ii (t + 1)

← Guassian
(
X Ibest+X

I
i (t)

2 , |
X Ibest−X

I
i (t)

2 |

)
λi = λi ∗

f (Xi(t+1))
f (Xbest )

end if
end if
λRi ← λRi ∗ α

−
f (Xi(t+1))−fmin+ε

fmax−fmin+ε

λIi ← λIi ∗ α
−
f (Xi(t+1))−fmin+ε

fmax−fmin+ε

end for
end while
Store the best solution obtained;

where Ei is the error between the i − th actual and predicted
data.

A. PREDICTION RESULTS
1) SYNTHETIC EXAMPLE 1
The first complex-valued system is a synthetic problem,
which is descried as follows [12].

Z = Z2
1 + Z

2
2 (7)

TABLE 1. Parameters in CVGEP and CVWWO.

In order to compare the performance fairly, the setting
of experiment are as the same as the Ref [26]. Complex-
valued variables Z1 and Z2 are selected randomly from the
interval [−2.5− 2.5i,2.5+2.5i]. 4000 samples are created ran-
domly, in which 3000 samples and 1000 samples are uti-
lized as training and testing datasets, respectively. Through
30 runs, the optimal complex-valued system is obtained as
Eq.(8). Compared Eq.(7) and Eq.(8), it could be clearly
seen that these two systems have the same structures and
complex-valued coefficients are very close, which reveal
that our proposed hybrid evolutionary algorithm could iden-
tify complex-valued system accurately from complex-valued
dataset.

Z = (0.999997+ 0 i)Z2
1 + (0.999999− 0.000004 i)Z2

2 (8)

The predicted error distributions of real and imaginary
parts are depicted in Fig. 4. From the results, we can see
that the predicted errors are extremely small and concentrate
mainly around zero. The predicted performance results with
seven methods are listed in Table 2. From Table 2, it could be
clearly shown that our proposedmethod has the smallestMSE
performance among seven complex-valuedmethods. And our
method could improve at least 99% predicted accuracy.

In order to test the ability of noise tolerance of our method,
we add 1%, 5%, 10%, 15% and 20% Gaussian white noise
into complex-valued resampling data. The optimal CEMs
obtained are listed in Table 3. Compared Table 3 with Eq.(7),
it could be clearly seen that when the noise rate reaches
20%, our method could identify the same structure as the
standard complex-valued system by ignoring the items with
the smaller complex-valued coefficients. When the noise rate
is between 1% and 10%, the coefficients of CEMs obtained
are close to those of standard model. But when the noise rate
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FIGURE 4. Prediction error distributions of real parts (a) and imaginary
parts (b) for the first complex-valued system.

TABLE 2. The testing MSE performances of seven methods for the first
complex-valued system.

exceeds 15%, the errors between the coefficients of models
optimized and standard model are very large.

Training and testing performance of our method and CNN
with different noise rates are listed in Table 4, which reveal
that our method has better training and testing performances
than CNN with noise data on the whole. With different noise

TABLE 3. CEMs of our method with different noise rates for the first
complex-valued system.

TABLE 4. Training and testing performance of our method and CNN with
different noise rates for the first complex-valued system.

FIGURE 5. Evolutionary curves of our method with different noise rates
for the first complex-valued system.

rates, CNN has similar MSE values. However our method has
worse performances along with the increment of noise rate.

Evolutionary curves of our method with different noise
rates are depicted in Fig. 5. The maximum generation is set
as 100. From Fig. 5, it could be seen that our method could
gain the optimal solutions with different noise rates when the
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FIGURE 6. Prediction error distributions of real parts (a) and imaginary
parts (b) for the second complex-valued system.

evolutionary generation achieves 50. It could be proved that
our method could converge with few generations.

2) SYNTHETIC EXAMPLE 2
The second complex-valued system is synthetized by our
team, which is more complex than the first complex-valued
system, and contains complex-valued division and sine
functions.

Z = (1.2+ 0.8i)
Z1
Z2
+ (1+ i) sin(Z3) (9)

Complex-valued variables Z1, Z2 and Z3 are created ran-
domly. 3000 samples and 1000 samples are utilized as
training and testing datasets, respectively. Through 30 runs,
the optimal complex-valued system is searched (Eq.(10)).
Compared Eq.(9) and Eq.(10), two systems are very close and
the coefficients are nearly the same.

Z = (1.200074+ 0.799879i)
Z1
Z2
+(1.000014

+ 1.000007i) sin(Z3)+(0.000033−0.00002i)Z1 (10)

The predicted error distributions of real and imaginary
parts are depicted in Fig. 6. The predicted errors manly con-
centrate in the interval [−0.0002, 0.0002], which reveal that

TABLE 5. The testing MSE performances of CNN, CRBF and our method
for the second complex-valued system.

our method could predict accurately complex-valued data.
The predicted MSE performances of CNN, CRBF and our
method are listed in Table 5. Compared the performances of
three methods, our method has better performance than CNN
and CRBF models.

We also add 1%, 5%, 10%, 15% and 20% Gaussian white
noise into the data from the second complex-valued system.
The optimal CEMs gained are listed in Table 6. Compared
with standard model (Eq.(9)), our method could identify the
accurate structures when the noise rate reaches 20%. And our
method could identify accurate complex-valued coefficients
when the noise rate reaches 10%.

TABLE 6. CEMs of our method with different noise rates for the second
complex-valued system.

Training and testing performances of our method and CNN
with different noise rates are listed in Table 7. As the noise
rates increase, CNN has similar MSE values and our method
has worse performances. In all, our method has smaller MSE
values than CNN when noise rates vary from 1% to 20%.
Evolutionary curves of our method with different noise rates
are depicted in Fig. 7, which reveals that our method could
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TABLE 7. Training and testing performance of our method and CNN with
different noise rates for the second complex-valued system.

FIGURE 7. Evolutionary curves of our method with different noise rates
for the second complex-valued system.

gain the optimal solutions with few generations for noise
complex-valued datasets.

3) REAL-WORLD PROBLEM: NON-MINIMUM
PHASE EQUALIZATION PROBLEM
The complex-valued non-minimum phase channel problem
is utilized to test our method, which is three-order with
nonlinear distortion for 4-QAM signaling [31]. The model is
described as follows [26].

zn = on + 0.1o2n + 0.05o3n + vn, vn ℵ(0, 0.01), (11)

on = (0.34− 0.27i)sn + (0.87+ 0.43i)sn−1
+ (0.34− 0.21)sn−2. (12)

where ℵ(0, 0.01) is white Gaussian noise with mean 0 and
variance 0.01. Complex-valued input variable sn is selected
randomly from the interval [−7.5-7.5i, 7.5+7.5i]. 3000 sam-
ples and 1000 samples are utilized as training and testing
datasets, respectively. Through 30 runs, we gain the optimal
complex-valued model as follows.

zn = (0.018569+ 0.077476 i) sn−1 + (0.331945

− 0.204832 i)× (sn + sn−2)

+ (0.832976+ 0.468700 i)sn−1 (13)

The predicted error distributions of real and imaginary
parts for real-word problem are shown in Fig. 8, which reveal
that most of predicted errors concentrate around zero and

FIGURE 8. Prediction error distributions of real parts (a) and imaginary
parts (b) for the real-word problem.

our method could predict accurately complex-valued data
from real-word problem. The predicted MSE performances
of seven complex-valued methods are listed in Table 8. From
the results, we can see that in terms of MSE, our method
is 10.5% smaller than CNN, 98.56% smaller than CRBF,
99.34% smaller than CMRAN, 98.5% smaller than CELM,
97.9% smaller than FC-RBF and 97.52% smaller than
FC-RBF with KMC. Our method greatly improves the pre-
diction accuracy of complex-valued data.

B. OPTIMIZATION ABILITY INVESTIGATION OF CVWWO
In order to investigate the optimization ability of CVWWO,
we make the comparison experiments with the complex-
valued versions (CVPSO [32] and CVCSA [33]) of classical
swarm intelligent algorithm (particle swarm optimization)
and new evolutionary algorithm (crow search algorithm).
The maximum iteration is set as 100 and population size is
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TABLE 8. The testing MSE performances of seven methods for the
real-word problem.

FIGURE 9. The training curves of CVPSO, CVCSA and CVWWO for the first
complex-valued system.

FIGURE 10. The training curves of CVPSO, CVCSA and CVWWO for
the second complex-valued system.

set as 20. The fitness curves against generations with three
complex-valued problems are plotted in Fig. 9, Fig. 10 and
Fig. 11, respectively. Fig. 9 reveals that three optimiza-
tion methods have similar performance and CVWWO has a
slightly better convergence performance, which is because
complex-valued coefficients are very simple in the first
complex-valued system identification problem. As shown
in Fig. 10 and Fig. 11, it could be obviously seen that

FIGURE 11. The training curves of CVPSO, CVCSA and CVWWO for the
real-word problem.

CVWWO has better convergence performance than CVPSO
and CVCSA.

IV. CONCLUSIONS
This paper proposes a novel complex-valued system identi-
fication method based on mathematical expression. In this
approach, complex-valued gene expression programming is
utilized to search the optimal architectures of expressions
and complex-valued water wave optimization is proposed to
optimize complex-valued coefficients and constants. The two
artificial complex-valued function approximation problems
and non-minimum phase equalization problem are utilized to
test the performance of our proposed algorithm. The experi-
ment results reveal that our method could identify complex-
valued systems more correctly than complex-valued neural
networks (CNN and CRBF) and complex-valued methods
(CMRAN and CELM).

In order to test the ability of noise tolerance of ourmethods,
our method is utilized to identify complex-valued systems
with noise data. Our method could identify the accurate
structures when the noise rate reaches 20%. And our method
could identify accurate complex-valued coefficients when
noise rate reaches 10%. When the noise rate is between 1%
and 10%, the coefficients of models obtained are very close
to those of standard models. The experiment results with
noise data show that our method is noise-robust. In order to
investigate the optimization ability of CVWWO, we make
the comparison experiments with CVPSO and CVCSA. The
experiments show that CVWWO has better convergence per-
formance than CVPSO and CVCSA.

In the future, parallel methods will be applied for improv-
ing the identification speed of our proposed method. Our
method will be utilized to identify more complex systems.
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