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ABSTRACT Kinematic calibration of manipulators is an efficient and fundamental way to ensure reliability
and high performance of robots. Research on kinematic calibration has a long tradition, and a common
strategy used for calibration is to guarantee the least errors in the sense of root-mean-square deviation.
However, the absolute positioning accuracy is determined by the maximum error of manipulators, and it
is a key indicator for evaluating performance. For example, using manipulators to print machine elements,
obviously where the error is the most, may likely cause inaccurate fit. Hence, it is crucial to study a robust
calibration strategy. Considering the calibration problem, both positioning and orientation accuracy are
ensured by minimizing the maximum positioning errors of three spherical mounted retro-reflectors (SMRs)
on the end effector ofmanipulators. Unfortunately, traditional optimizationmethods based on gradient cannot
be directly employed to solve the minimax problem. Due to the recent progress on optimization, researchers
found that the minimax can be transformed into sequence quadratic programming problems under inequality
conditions, thus providing solutions for solving the robust calibration. This paper applied this method to
convert the calibration problem into constrained quadratic subproblems, and the subproblems can be solved
through the primal-dual subgradient method. Then, convexity and robustness analysis is given to prove that
these subproblems can quickly converge to a local minimum. Finally, to verify the validity of the proposed
algorithm, the experiments are conducted on an IRB 2600 manipulator, and the results show that, with the
minimax search algorithm, both the positioning and orientation accuracy is enhanced by 67.34% and 73.14%,
respectively, which is significantly higher than the performance of the single-SMR calibration algorithm
widely used in the field of industry.

INDEX TERMS Robot manipulators, kinematic calibration, robustness, pose accuracy.

I. INTRODUCTION
As critical components of modern manufacturing, indus-
trial manipulators have been comprehensively applied in
many fine-processing fields, such as precision assembling
and operations [1]–[3], robotic machining [4], and vision-
guided grasping [5], [6], which requires ultra-high preci-
sion of manipulators. However, due to the mechanical and
geometrical reasons such as zero offset of joint angles and
manufacturing deviation of rod lengths, the pose errors
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approving it for publication was Yangming Li.

are unevenly distributed in the working space. Fortunately,
the pose accuracy can be improved by kinematic calibra-
tion of robotic structural parameters. The field of kinematic
calibration is maturing, with a wealth of well-understood
methods and algorithms. Generally, kinematic calibration
can be divided into two categories: self-calibration using
redundant information and calibration with external sensors.

By constraining partial degrees of freedom (DOFs) of
manipulators, self-calibration can realize the identification
of structural parameters only through internal encoders of
manipulator joints [7]–[9]. However, the parameter errors
associated with constrained DOFs cannot be identified.
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TABLE 1. Comparisons among different methods for kinematic calibration.

Worse still, a large number of manual operations during the
measurement process lead to inefficiency and inferior pre-
cision. Compared with the aforementioned self-calibration
method, calibration with external sensors achieves higher
accuracy and global volumetric error convergence since it
directly optimizes the pose error of the points measured in
the working space. Up to now, with the development of mea-
surement technology, poses of manipulators can be attained
by a lot of equipments, like laser tracker systems [10],
vision systems with charge-coupled device (CCD)
cameras [11], [12], 3-D laser scanner systems [13], [14]
and so on. In [10], the authors identified joint errors and
compensated the parameters to improve positioning accuracy
through a laser tracker. Reference [15] compared the effects
of kinematic calibration on the improvement of positioning
accuracy based on different robot models. Similar researches
in allusion to positioning accuracy can be found in [16]–[19].

Due to the lack of convenient measurement methods,
less attention has been paid to orientation accuracy of
manipulators than positioning accuracy in previous studies.
Nevertheless, with a large orientation error, the positioning
accuracy of manipulators will be significantly reduced when
the end-effector is away from the calibrated point. Therefore,
adding orientation information to the calibration process is
of importance for improving performance of manipulators.
In [20], a differential kinematics model of both position
and orientation for calibration was proposed and established.
Later in [21], the authors measured three points at the end-
effector through a measurement arm, and calculated orien-
tation errors for calibration. The positioning accuracy was
found out to be worse than calibration with only position.
Reference [22] similarly estimated orientation errors through
pictures captured by two cameras, but there were still slightly
large pose errors after calibration. In all of the three meth-
ods, a differential kinematics model of both position and
orientation was established, and the calibration problem was
described as a nonlinear least square problem solved by
Gauss-Newton method. The objective function is the sum
of weighted square of positioning and orientation errors of
manipulators, and the selection of the weight coefficient will
affect the results of the identification. In addition, the orien-
tation is calculated by measured positions, which amplifies
the measurement error.

In previous studies, we found that parameter errors
can have a notable effect on the precise control of the
robot [23]–[27]. In this paper, a novel kinematic calibration

FIGURE 1. Experimental apparatus for manipulator kinematic calibration
in our lab. (a) Physical map of a laser tracker, FARO Vantage, and an ABB
IRB 2600 manipulator. (b) The installation position of SMRs: ta, tb and tc
are the three-dimensional Cartesian coordinates of the three SMRs
expressed in the end-effector coordinate system.

method based on optimization theory is proposed. A compar-
ison of the proposed method with existing ones is shown in
TABLE 1. Instead of calculating orientation errors directly,
by minimizing the maximum positioning errors of three
points, both positioning and orientation accuracy can be guar-
anteed in this method. With the constraint of distance invari-
ance, the minimax problem can be redefined as a sequence
quadratic programming (SQP) problem with fast local con-
vergence through primal-dual subgradient method. In the
meantime, robustness of the calibration process is increased
by introducing the minimax search algorithm.

The remainder of this paper is divided into four sections.
In Section II, the minimax problem with constraints is for-
mulated. In Section III, the problem in Section II is approx-
imately redefined as a quadratic programming problem with
fast local convergence, and convergence of the optimization
problem is analyzed. Section IV illustrates the experimental
results including comprehensive comparisons among differ-
ent methods. Section V summarizes this paper.

II. ROBUST CALIBRATION PROBLEM FORMULATION
In this section, definitions on manipulator kinematics and
description of pose accuracy are presented for problem for-
mulation. The objective function for robust calibration and
constraints based on distance invariance are proposed.

A. SENSOR-ROBOT SYSTEM
The experimental system setup is presented in Fig. 1, where
the pose measurement is achieved by measuring the positions
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of three SMRs mounted on the end flange of the manipulator.
The manipulator attains m arbitrary configurations in succes-
sion. And then, the positions of the SMRs are measured by
a laser tracker in each configuration, and in the meantime,
the corresponding joint angles are recorded.

The position y of the end-effector is expected to reach the
desired point yd . Unfortunately, due to the mechanical and
geometrical reasons such as the zero offset of joint angles
and the manufacturing deviation of rod lengths, the end-
effector errors are unevenly distributed in the working space
resulting in positioning errors of the three SMRs. Consider
the three SMRs as a unified whole for pose measurement
as shown in Fig. 1(b). According to geometry theroy, it is
known that the position and orientation of a plane can be fixed
by constraining the positions of three points on a plane that
are not collinear. So, minimizing the maximum value of the
positioning errors of three SMRs can improve both position-
ing and orientation accuracy of the end-effector, furthermore
the robustness of algorithm is improved by introducing the
minimax search method. Clearly, the distance between any
two of the three SMRs is fixed physically and can be mea-
sured by a laser tracker, which can be treat as a constraint for
optimization problems.

The calibration process is an offline process, and the
manipulators that need to be calibrated are those that
have been assembled waiting to be shipped from the
factory or have been used for a long time, with zero
offsets or deformation of the rods. By the kinematic calibra-
tion process, the end-effector errors due to structural param-
eter errors can be minimized.

B. FORWARD KINEMATICS
Considering an n-DOF manipulator, the Cartesian coordinate
of the end point can be analytically described as a nonlinear
mapping

y = f (θ, x), (1)

where the mapping y(·) provides the connection between the
joint angle θ = [θ1, θ2, . . . θn]T, the structural parameters
x ∈ Rg×1 on the joint space and the position of end point on
the Cartesian space. Take the differential on both sides of (1),
we can yield

dy =
∂f (θ, x)
∂xT

dx = J (θ, x)dx, (2)

where J (θ, x) ∈ R3×g is called the Jacobian matrix of the
manipulator, and usually is abbreviated as J .

C. POSITIONING AND ORIENTATION ACCURACY
The positioning accuracy of a robot manipulator is defined
below, namely the end-effector errors

AP = ‖ym− y‖ = ‖ym− f (θ, x)‖, (3)

where y is the coordinate of the command position, which can
be calculated by substituting structural parameters x and joint

angle values θ of the manipulator into the formula (1); ym is
the coordinate of the attained position.

The orientation accuracy defined in ISO9283 is described
as formula (4) by the deviation of Euler angles.

AO = [|am − ac|, |bm − bc|, |cm − cc|], (4)

where the orientation of the manipulators is referred as a, b, c
values, the angular components about axes x − y − z, and
the subscript m and c indicate the measured and calculated
value of the orientation, respectively. Using scalar deviation
to denote orientation accuracy, there is no comparability
between different configurations of manipulator, worse still,
the orientation accuracy does not reflect the real situation
when the Euler angles are near the singular configuration.
To overcome the above disadvantages, a new orientation
accuracy indicator [22] of a robot manipulator is given by

AO′ = ‖log(RTmRc)
∨
‖, (5)

where the orthogonal matrix R represents the orienta-
tion transformation from the base coordinate system of
the manipulator to the end-effector coordinate system, and
log(RTmRc)

∨
∈ R3 denotes the vector representation of

log(RTmRc) ∈ so(3).

D. OPTIMIZATION PROBLEM FORMULATION
The objective function of the optimization is defined as min-
imizing the maximal error of three points (SMRs), where the
error is expressed by the sum of the squares of the positioning
errors corresponding to the m configurations, which can be
calculated by

F(x) = rTr =
m∑
j=1

[rj(x)]2 =
m∑
j=1

‖ymj − f (θj, x)‖2, (6)

where r = [r1, . . . , rm]T is the sequence of positioning
accuracy. Both accuracy and robustness should be thought
andmade to the optimal trade-off in the choice of the indicator
function containing the errors of three SMRs. Hence, a min-
imax search algorithm is chosen to solve the above problem

min
x

max
i
: Fi(x),

subject to : c(x) ≤ 0, (7)

where the subscript i indicates i−th SMR, and c(x) ≤ 0 is the
inequality constraint defined in Section II-E. By optimizing
the structure parameters x, such as link lengths, joint offsets,
and the transformation of coordinate systems, the goal can be
achieved.

E. NONLINEAR INEQUALITY CONSTRAINT
Clearly the three SMRs are fixed on the flange, and the
distances between any two of them are independent of the
coordinate system. So, the distance of two SMRs in the end
flange coordinate system is equal to the corresponding dis-
tance measured by the laser tracker. However, considering
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measurement errors, the distance invariance can be expressed
as an inequality constraint

(rt1)2 = [‖ta− tb‖ −
1
m

m∑
j=1
‖ym1j − ym2j‖]2 ≤ ε,

(rt2)2 = [‖tb− tc‖ −
1
m

m∑
j=1
‖ym2j − ym3j‖]2 ≤ ε,

(rt3)2 = [‖tc− ta‖ −
1
m

m∑
j=1
‖ym3j − ym1j‖]2 ≤ ε,

(8)

where rtl, l = 1, 2, 3 is the deviation of the nominal and
the measured distance between any two SMRs in the l − th
group, and l is the number of nonlinear constraints. ta, tb and
tc are the nominal three-dimensional Cartesian coordinates
of the three SMRs expressed in the end coordinate system
of the manipulator. The measured distances are acquired by
averaging m measurements. The error value between the
nominal and the measured of the distance is set to less than a
threshold, ε. The formula (8) can be rewritten as

c(x) =

(rt1)2 − ε(rt2)2 − ε
(rt3)2 − ε

 ≤ 0, (9)

Hence, taking into account the minimization of maximum
positioning errors and distance invariance, the robust cali-
bration problem can be transformed into a minimax problem
with constraints.

III. MINIMAX SEARCH ALGORITHM WITH SQP
APPROACH
In this section, we redefine the minimax problem with non-
linear inequality constraints as a SQP subproblem, and solve
the SQP subproblem with primal-dual subgradient method.

A. REDEFINITION OF THE OBJECTIVE FUNCTION
The problem, min

x
max
i
: Fi(x), can be equated to a mini-

mization problem with constraints:

minimize
x

: φ(x),

subject to : Fi(x) ≤ φ(x), (10)

where φ(x) = max
i
{Fi(x)}. One of approaches to solve

the above constrained problem is to solve the approximate
quadratic programming (QP) problem iteratively by generat-
ing a sequence {xk} which converges to the solution, namely
SQP method [29]–[31]. The main idea here is to linearize the
original system and to solve the resulting linear problem with
fast local convergence. Owing to Fi(x) differentiable, then,
for any direction 1x, the directional derivative D1xφ(x) can
be expressed as

D1xφ(x) = max
i∈I (x)
{∇FT

i (x)1x}, (11)

where

I (x) = {i : Fi(x) = φ(x)}, (12)

The step 1x can be obtained by

minimize
1x

:
1
2
1xTHk1x + D1xφ(xk ),

subject to : Fi(xk )+∇FT
i (x

k )1x ≤ φ(xk )+ D1xφ(xk ),

(13)

where the Hessian matrix Hk updated through BFGS method
is positive definite,1x = xk+1− xk . Taking a close observa-
tion of (13), we notice that when1x = 0, then,D1xφ(x) = 0,
the new objective function gets the value of zero; when
1x 6= 0, since Hk is positive definite, then, 1xTHk1x > 0,
and hence D1xφ(x) < 0. Thus, the following relationship
can be obtained by expanding at xk and using the constraint
condition in (13)

Fi(xk + δ1x) = Fi(xk )+ δ∇FT
i (x

k )1x + O(δ2)

≤ φ(xk )+ δD1xφ(xk )+ O(δ2) < φ(xk ),

(14)

Hence, 1x is a descent direction, and there exists some
sufficiently small δ ≥ 0 such that

max
i
{Fi(xk + δ1x)} < max

i
{Fi(xk )}, (15)

B. REDEFINITION OF THE INEQUALITY CONSTRAINT
The minimax problem with constraints can be stated in terms
of the minimizing problem defined as

minimize
x

: φ(x),

subject to : Fi(x)− φ(x) ≤ 0,

c(x) ≤ 0, (16)

where the inequality constraints can be combined into

CI (x) =
[
Fi(x)− φ(x)

c(x)

]
, (17)

For a constrained optimization problem, the Karush-
Kuhn-Tucker (KKT) equations are necessary conditions.
Commonly, the SQP method can be applied to solve the
constrained quasi-Newton problem, since the superlinear
convergence is guaranteed by accumulating second-order
information regarding the KKT equations. Combining for-
mula (11), the osculating QP subproblem can be deduced as

minimize
1x

:
1
2
1xTHk1x + D1xφ(xk ),

subject to : ∇FT
i (x

k )1x − D1xφ(xk )

+Fi(xk )− φ(xk ) ≤ 0,

∇cT(xk )1x + c(xk ) ≤ 0, (18)

Here, the Lagrangian is defined as

L(1x, λ) ,
1
2
1xTHk1x + D1xφ(x)

+λT(CI (x)+ G(x)1x), (19)
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where λ ≥ 0 are called Lagrange multipliers, and G(x) is the
gradient of the inequality constraints CI (x). For optimal1x∗

it must hold the KKT conditions (necessary condition) of (18)
∇Fi(x)|i∈I (x) + Hk1x +

(
GT(x)

)+
λ = 0,(

CI (x)+ G(x)1x
)+
= 0,

λ ≥ 0,
(λ)T

(
CI (x)+ G(x)1x

)
= 0,

(20)

where (·)+ is defined as

(x)+ =

{
x, x ≥ 0,
0, x < 0,

(21)

The step size along the descent direction and the step
length of Lagrange multipliers can be determined through
primal-dual subgradient method, where (1x, λ) is primal-
dual optimal if and only if

0 ∈ ∂1xL(1xp, λp) = Hk1xp +∇Fi(xk )|i∈I (x)
+
(
GT(xk )

)+
λp,

0 = −∇λL(1xp, λp) = −CI (xk )− G(xk )1xp,

(22)

where p is the number of iterations for QP subproblems.
Define z = (1x, λ)T and the KKT operator for the problem
which is monotone

T (1xp, λp) =
[

∂1xL(1xp, λp)
−
(
∇λL(1xp, λp)

)+] , (23)

The iterative process of the primal-dual subgradient method
is as follows:

zp+1 = zp − αpT p, (24)

where T p ∈ T (zp) and αp is the step length.

C. GRADIENT OF OBJECTIVE FUNCTION AND
CONSTRAINTS
The given gradient instead of the one calculated by the dif-
ference method can make the optimization problem converge
to the stationary point more quickly. The gradient of the
objective function (18) is derived as

P(x) = Hk1x +∇Fi(x)|i∈I (x), (25)

where the Hessian matrix Hk can be updated through BFGS
method [32]. Without loss of generality, the gradient of the
least square error of i-th SMR corresponding to m configura-
tions, ∇F , is deduced in this section.

∇Fi = 2(
∂ri
∂xT

)Tri = 2JTi (θ, x)ri, (26)

where ri = [ri1, . . . , rim]T, and rij = f (θj, x) − ymij. The
analytical expression of the Jacobian matrix J (θ, x) can be
readily acquired via the MDH convention. The gradient of

the constraints, G(x), is expressed as

G(x) =



∇FT
1 (x)−∇F

T
i (x)|i∈I (x)

...

∇FT
i (x)−∇F

T
i (x)|i∈I (x)

...

∇FT
3 (x)−∇F

T
i (x)|i∈I (x)

∇cT1 (x)
...

∇cTl (x)
...

∇cT3 (x)



, (27)

where i = 1, 2, 3 is the number of the constraints introduced
from the minimax problem into the minimal problem, cor-
respondingly, l = 1, 2, 3 generated by physical limitations.
The former item can be readily derived by the formula (26),
the latter is deduced as below

∇cl = 2rtl
∂rtl
∂x
, (28)

Without loss of generality, only the gradient of the first con-
straint is considered, and the ∂rt1

∂x can be deduced as

∂rt1
∂x
=
∂(ta− tb)T

∂x
(ta− tb)
‖ta− tb‖

, (29)

where ta = [tax , tay, taz]T, and tb = [tbx , tby, tbz]T belong
to the structural parameters x.

D. CONVEXITY AND CONVERGENCE ANALYSIS
Obviously, the formula (7) is non-convex, since it is the
product of a series of matrices containing trigonometric func-
tions. Then, the original objective function (16) is also non-
convex, which is the maximum of (7). Through the SQP
method, approximately, the original function is replaced by
the second-order expansion which can be proved to be con-
vex. According to the Convex Optimization Theory [33],
the objective and constraint functions are convex satisfying

f (αx + βy) ≤ αf (x)+ βf (y),

where α + β = 1, α ≥ 0, β ≥ 0,

Define that

Q(1x) =
1
2
1xTHk1x + D1xφ(x), (30)

Then, we have

Q(αy+βz)−αQ(y)−βQ(z) = −αβ(y−z)THk (y− z)≤0,

(31)

since Hk is a positive definite matrix. So, the objective func-
tion in formula (18) is convex. Clearly, the constraints are
convex. Then, the conclusion can achieve that the original
problem converges to the local minimum. With the step size

αp =
γp

‖T p‖2
, γp > 0,

∑
p

γ 2
p <∞,
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Algorithm 1 Robust Calibration of Kinematic Manipulators
Input: joint angles: θ , nominal parameters: x, measured
positions: ym1, ym2, ym3;

Output: optimal parameters: x∗

initialize x0,Hk
Algorithm initialization:
for j=1:g do

ri = ymi − f (θ, x0)
Fi(x0) = rTi ∗ ri
∇Fi(x0) = 2JT(θ, x0)ri

end for
φ = max{Fi}, I (x0) = {i : Fi(x0) = φ(x0)}
for j=1:g do

CI (x0)←− Fi(x0)− φ
G(x0)←− ∇Fi(x0)−∇Fi(x0)|i∈I (x0)

end for
for l=1:h do

CI (x0)←− cl(x0) = rtTl (x
0) ∗ rtl(x0)

G(x0)←− ∇cl(x0) = 2JtT(x0)rtl
end for
while x not converge do

initialize 1x0 = 0, λ0 = 0
while 1x not converge do

Primal-dual optimal method for QP subproblem:

T p =

[
Hk1xp +∇Fi(xk )|i∈I +

(
GT(xk )

)+
λp

−
(
CI (xk )+ G(xk )1xp

)+
]

αp =
γp
‖T p‖2

zp+1 = zp − αpT p

end while
States updating:
xk+1 = xk +1xk

φ = max{Fi(xk+1)}
I (xk+1) = {i : Fi(xk+1) = φ(xk+1)}
Constraint and gradient matrices updating:
∇Fi(xk+1),CI (xk+1),G(xk+1)←− xk+1

Hessian matrix updating through BFGS method:
sk = 1xk

qk = ∇Fi(xk+1)|i∈I (xk+1) + G
T (xk+1)λk+1

−[∇Fi(xk )|i∈I (xk ) + G
T (xk )λk ]

Hk+1 = Hk +
qkqTk
qTk sk
−

Hk sk sTkH
T
k

sTkHk sk
end while

the QP subproblem can get convergence [33]:

Q(1xp)→ q∗,
(
CI (x)+ G(x)1xp

)
→ 0.

Hence, with primal-dual optimal method, the osculating
quadratic subproblem is able to converge to global minimum
for estimating model parameters, and the proposed robust
calibration algorithm can converge to the local minimum.

E. INITIAL VALUES OF OPTIMIZATION PROBLEM
The last section has the conclusion that the original prob-
lem converges to the local minimum by the SQP method.

TABLE 2. DH parameters of ABB 2600 Robot Manipulator.

Hence, it is crucial to find a suitable initial value for the
optimization problem. In plain sight, minimizing the sum of
all square errors is a suitable choice, and the optimization
problem can be expressed as

minimize
x

: F1(x)+ F2(x)+ F3(x),

subject to : c(x) ≤ 0 (32)

where the optimal solution x∗ can be readily gained using
Gauss-Newton Method and be set as initial values of the
minimax problem.

F. ALGORITHM DESIGN AND ANALYSIS
Algorithm Robust Calibration gives the pseudo code of the
proposed robust calibration method. The section III-E gives
an appropriate initial value x0 for the iterative optimization
problem. Then, approximately, the original function (7) is
replaced by the second-order expansion through the SQP
method, and the corresponding constraint matrix CI and gra-
dient matrices ∇F,G can be calculated by substituting the
initial value x0. During the iterative process, the second-order
expansion, namely the QP subproblem, is continuously recal-
culated and updated as the structural parameter x changes.
In each iteration process of x, the QP subproblem is solved
by the primal-dual optimal method.

IV. EXPERIMENTAL VERIFICATION
Note that ABB IRB 2600 is commonly used in indus-
trial applications [34], [35], and its structural parameters
expressed in the form of a MDH model can be readily com-
pensated back to the controller through the file absacc.cfg.
Besides, the ABB IRB 2600 with six independent joints can
reach any position in the working space at any orientation.
In this section, the proposed method will be experimen-
tally validated on the IRB 2600 manipulator whose nomi-
nal structural parameters are shown in TABLE 2, and the
positions of the end point are measured by the laser tracker
(FARO Vantage) with the accuracy of 10µm + 2.5µm/m as
shown in Fig. 1.

A. ACQUISITION OF THE POSITION DATA
To show the efficacy of the proposed algorithm and guarantee
the manipulator accuracy in the global workspace, a total
of 100 configurations are arbitrarily selected for the calibra-
tion. Initially, transformation from measurement coordinate
system to base, and the coordinates ta, tb and tc are calculated
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FIGURE 2. Experimental results of absolute positioning (AP) accuracy and absolute orientation (AO) accuracy with nominal structural parameters.
(a) Box chart of the AP accuracy corresponding to three SMRs. (b) 2D map of the AP accuracy. (c) Box chart of the AO accuracy. (d) 2D map of the
AO accuracy.

FIGURE 3. Experimental results of AP accuracy and AO accuracy with both structural parameters and coordinate systems attained by the minimax
search algorithm. (a) Box chart of the AP accuracy corresponding to three SMRs. (b) 2D map of the AP accuracy. (c) Box chart of the AO accuracy.
(d) 2D map of the AO accuracy.

as the initial value, and themethod can be found in [36]. Then,
the manipulator automatically moves to the selected configu-
ration one after another, and pauses 10 seconds between two
configurations. In the meantime, the approximate positions
of SMRs can be calculated with the initial transformations
and joint angles, and the laser tracker can quickly search
for the target SMR with the position information. When the
manipulator reaches the command configuration, a startup
message is sent to the laser tracker for measurement. Once
the position data is attained, a message is returned back to
the manipulator for the next move. Finally, the positions of
three SMRs responding to 100 configurations can be attained
within 30 minutes, and the corresponding joint angles can be
read through the controller of the manipulator.

B. CALIBRATION WITH MINIMAX SEARCH ALGORITHM
With all the data attained, the minimax algorithm can search
for the optimal structural parameters x. Fig. 2 show the initial
absolute positioning and orientation accuracy before calibra-
tion, while Fig. 3 show the final after calibration, respectively.
It can be seen from the experimental results that the mini-
max search algorithm dramatically improves the positioning
and orientation accuracy of the manipulator by 67.34% and
73.14%, respectively. Analysis of the orientation accuracy
in Fig. 2(d) and 3(d) can be found that the orientation error
of the 75th point is particularly large. According to the char-
acteristics of the orientation accuracy given in Sec. II-C, it is
likely that the Euler angle is near the singular value in this

FIGURE 4. Comparison of modified orientation accuracy before and after
calibration. (a) Box chart of accuracy comparison. (b) 2D map of accuracy
comparison.

configuration, resulting in a large orientation error. Using the
newly defined orientation accuracy indicator in formula (5),
the comparison of modified orientation accuracy before and
after calibration is represented in Fig. 4, improved by 32.76%.
However, the root mean square error (RMSE) is more able
to reflect the degree of dispersion of the deviation between
actual arrival pose and command pose, and the RMSE of
orientation before and after calibration is 0.005015 rad and
0.002176 rad , respectively.

C. COMPARISONS WITH EXISTING METHODS
The experimental results calculated under different condi-
tions are shown in the Fig. 5, and corresponding data is
in the Tab. 3, where condition 0 indicates the situation
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FIGURE 5. Sum of square errors of three SMRs under different
conditions: Condition 1, minimize the value of F1; Condition 2, minimize
F2; Condition 3, minimize F3; Condition 4, minimize {F1 + F2 + F3};
Condition 5, minimize max{Fi }; Condition 6, minimize pose errors.

TABLE 3. Sum of square errors corresponding to different methods.

before calibration. From these results it is clear that the
maximal root mean square error of three SMRs, RMSE(φ),
is minimal with the proposed method. Contrary to the results
of calibration with only one SMR, namely condition 1 to 3,
it can be concluded that single-SMR calibration can reduce
the RMSE of SMRs not involved in the calibration to a certain
extent, but the effect is not as good as the proposed method.
Condition 6 is the scheme that directly minimizes the square
sum of the positioning and orientation errors, and its maximal
root mean square error of three SMRs is still larger than the
proposed method.

In order to further verify the improvement of absolute
positioning and orientation accuracy with various methods,
box charts of the absolute accuracy under different condi-
tion are shown in the Fig. 6. Compared to the single-SMR
calibration, the absolute positioning and orientation accuracy
are developed by 23.48% and 22.30%, respectively, with the
proposed method. Compared with the method directly cal-
culating and minimizing positioning and orientation errors,
namely pose errors, although the orientation accuracy of the
proposed method is slightly inferior to the method of directly
minimizing the pose, the positioning accuracy is still signifi-
cantly improved by 14.36%.

D. VERIFICATION ON OTHER MANIPULATORS
In order to verify the versatility of the proposed algorithm,
the algorithm was tested on two other manipulators, and
the experimental results compared with previous works are
shown in the TABLE 4. From the table, it can be concluded
that the proposed method has the best positioning accuracy
compared with the previous works. As for the orientation
accuracy, the method in this paper is better than single-SMR

FIGURE 6. Box chart of the absolute accuracy corresponding to different
conditions. (a) The absolute positioning accuracy to different conditions,
abbreviated to APi , (b) the absolute orientation accuracy to different
conditions, abbreviated to AOi . The subscript i = 0, . . . , 6 indicates the
number of conditions. Three bars of the box chart corresponding to each
condition represent the positioning accuracy of three SMRs for APi , and
the orientation accuracy of Euler angle for AOi , respectively.

TABLE 4. Experimental results corresponding to different methods.

method proposed in [18], [19], and slightly inferior to the
method proposed in [28].

V. CONCLUSIONS
In this paper, an autonomous kinematic calibration method
with pose information considered is proposed, which consists
of four parts: pose measurement, modeling, identification and
compensation. The novel feature is that, in the identifica-
tion procedures, by optimizing the worst case of the three
points mounted on the end-effector, both absolute positioning
and orientation accuracy of manipulators can be improved,
and in the meantime, the robustness of the calibration pro-
cess is increased. Besides, the method is based on a simple
set of sensing data, which reduces the manual operation in
data collection. Compared with vision based measurement
method, this method reduces error propagation due to ori-
entation calculation and coordinate transformation. Before
ending this paper, it worth mentioning that the proposed
algorithm is able to successfully address robust calibration
problem of manipulators and the experimental results based
on IRB 2600 robot show that both positioning and orientation
accuracy are improved by 67.34% and 73.14%, respectively.
Moreover, the proposedmethod has the best positioning accu-
racy compared with the previous works [18], [19], [28].
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