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ABSTRACT Network motifs provide an enlightening insight into uncovering the structural design principles
of complex networks across multifarious disciplines, such as physics, biology, social science, engineering,
and military science. Measures for network motifs play an indispensable role in the procedures of motif
measurement and evaluation which are crucial steps in motif detection, counting, and clustering. However,
there is a relatively small body of literature concerned with measures for network motifs. In this paper,
we review the measures for network motifs in two categories: structural measures and statistical measures.
The application scenarios for each measure and the distinctions of measures in similar scenarios are also
summarized. We also conclude the challenges for using these measures and put forward some future
directions on this topic. Overall, the objective of this survey is to provide an overview of motif measures,
which is anticipated to shed light on the theory and practice of complex networks.

INDEX TERMS Network motif, motif measure, network science and motif definition.

I. INTRODUCTION
Mining information hidden in large-scale complex networks
has been a hot topic for decades [1], [2]. Most previous works
dig up information on basic network structures, such as aver-
age degree [3], clustering coefficient [4], average shortest
distance [5], betweenness [6], etc. However, previous works
have not dealt with mining meso-level network structure
information. In 2002, Milo et al. [7] defined the concept of
‘‘Network Motifs’’ by frequent connection patterns that sig-
nificantly exceeds the connection patterns in the randomized
networks. Though the concept of motif stems from biological
networks, motifs exist widely in various other kinds of com-
plex networks. Motifs have now drawn academic attentions
in multiple research areas as well. Motif discovery, motif
analysis, motif counting, and other motif-based issues have
become themost prevailing research hotspots [8]–[10]. There
are fruitful results of its applications in bioinformatics, social
statistics, data science, and many other disciplines [11]–[13].
Various kinds of motifs have been found in different scenarios
such as gene transcription regulation, food chain, electronic
circuit and world wide web [14], [15].

The traditional network properties, which describe nodes,
links or the whole network, lack the ability to profile
motif structural measures. As it is known, motif struc-
tures are significantly different in different networks. Based
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on this fact, scholars study measures of motifs from the
viewpoint of network science. Barabasi and Oltvai [16]
study motifs and find that motifs play an important role
in real world network dynamics. Milo et al. [17] propose
Z-score to evaluate the importance of motifs in networks.
Onnela et al. [18] study motifs in weighted networks and
propose motif-based measures. Abundant research results
provide new insights into motif-based network structure
studies.

To enhance the understanding of motifs, scholars inves-
tigate from the perspectives of motif application and
motif discovery methods, which are obviously important.
Rebeiro et al. [19] summarize motif discovery algorithms in
complex networks. In their survey, they categorize, imple-
ment, and analyze motif discovery methods. Other simi-
lar surveys mainly focus on studying motifs in biological
networks [20]–[22]. Rare literature centralizes motifs in gen-
eral networks. However, studies about motif measures are
fruitful but lack systematicness, which are most included in
motif discovery and counting studies. As mentioned above,
studies have achieved abundant results of motif structures.
Thus, in this paper, we aim at proposing a systematic survey
of motif measures. In summary, our contributions are con-
cluded as follows.
• A systematic survey of motif measures: In this paper,
we summarize almost all motif measures. We classify
these measures into two categories, i.e., structural mea-
sures and statistical measures. To our best knowledge,
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we are both the first to introduce motif measures sys-
tematically and the first to classify these measures
reasonably.

• Universal measures for network motifs: We survey
universal motif measures, which are fit for general net-
works instead of biological networks. These measures
are described in great detail in this paper.

• Applications of specific measures:We introduce motif
measures and their different applications, including
motif detection, motif counting, network classification,
motif-based clustering, etc. Introduction of this content
can be a guidance for scholars when choosing motif
measures.

The rest of this paper is organized as follows. Section II
introduces some basic definitions about motifs. Measures for
network motifs are presented in Section III. In Section IV,
we introduce applications for network motifs. Conclusions
and future topics of research are presented in Section V. The
structure of this paper is also shown in Fig. 1. The measures
assigned into each category are listed under each heading of
subsections respectively in the figure.

FIGURE 1. The structure of this article.

II. DEFINITIONS OF NETWORK MOTIF
In this section, we mainly introduce the formal definition of
network motifs and briefly review several definitions used in
the specific networks. For the sake of simplicity, we do not
distinguish the terms ‘‘network" and ‘‘graph" in the following
paper. We model a network as a graph G = {V ,E}, where
V = {v} is the set of all nodes or vertices, and E = {e} =
{(u, v)} is the set of edges or links. The edge connects a pair
of nodes (u, v). |V | denotes the number of nodes in G, which
is called the graph size or order. If an edge e = (u, v) ∈
E is ordered, it is called a directed edge. On the contrary,
it is called an undirected edge. If all the edges in a graph
are directed, the graph is called a directed graph. If they
are all undirected, the graph is an undirected graph. A path
between two nodes (u, v) consists of a sequence of nodes

that starts from node u and ends with node v. Each of nodes
in the sequence is adjacent to its successor and predecessor.
An undirected graph with no multiple edges is a completed
graph if there are n(n− 1)/2 edges in it.
Let Gk ⊂ G or k-subgraph be the subgraph of G whose

size is k . An induced subgraph means that it need to include
all edges connected to the nodes existing in the original graph.
The neighborhood set N (v) of node v ∈ V consists of nodes
connected to v. Two graphs G and G′ are isomorphic if there
is a bijection function fismp : V ′ → V with (u, v) ∈ E ′ ⇔
(fismp(u), fismp(v)) ∈ E for all u ∈ V ′, v ∈ V ′. Here fismp is
called an isomorphism between graph G and G′.

A. NETWORK MOTIF DEFINITIONS
Milo et al. [7] first propose the definition of ‘‘network
motifs’’ as patterns of inter-connections occurring in complex
networks which occurs much more frequently in the original
network than in the similar randomized networks. In this
definition, motifs are statistically over-represented so that in
the randomized networks the in and out degrees (as degrees in
undirected graphs) of all single nodes should be equal to those
in the original networks [23]. When calculating the signifi-
cance ofGk , the number of allGk−1 appearing in randomized
networks should be equal to that in the real network. Based
on that, Riberio et al. [19] give a more formal version of the
definition that is described as follows:

Given a network, a set of parameters {P,U ,D,N} and an
ensemble of N similar networks, network motif is defined as
an induced subgraph appearing in the real network when it
satisfies the following conditions:

1) p((f̄rand (Gk ) > freal(Gk ))) 6 P
2) freal(Gk ) > U
3) freal(Gk )− f̄rand (Gk ) > D× f̄rand (Gk )

where freal(Gk ) is the frequency of a motif in the real network
and f̄rand (Gk ) is the average frequency in all randomized net-
works. The parameter P is a probability threshold determined
by an ensemble of a large number of N similar randomized
networks and the Z-score measure that we will introduce
in III. U is an uniqueness cutoff value for the frequency
of a motif in the real network and D is the proportional
cutoff to guarantee the minimum difference between freal(Gk )
and f̄rand (Gk ).

The first constraint means the probability of the frequency
of a motif in randomized networks is greater than that in the
real networks. Meanwhile, the frequency in both randomized
networks and real networks should be lower than the thresh-
old P, which is to ensure that the motif is over-represented.
It is called P-value as a threshold measure for networkmotifs,
which could be represented as

Pvalue =
1
N

N∑
i=1

δ(c(i)), c(i) : frand (i) > freal(i) (1)

where N still denotes the number of randomized networks.
The value of function δ(c(i)), i.e., Kronecker delta function,
is 1 when the condition c(i) holds [24]. The second constraint

VOLUME 7, 2019 106577



F. Xia et al.: Survey of Measures for Network Motifs

guarantee the lower bound of the frequency of a motif in
the real network. The last one makes the number of appear-
ances in the real network be significantly larger than that in
the randomized networks. This is to ensure the frequency
of motifs with consistency in randomized networks and the
real network. Moreover, these motifs are not under a narrow
distribution in a randomized network.

In Milo’s experiments, the parameters {P,U ,D,N } are
the set as {0.01, 4, 0.1, 1000} [7]. Whereas for various aims
or in different networks, we may adjust the values of these
parameters. This formal definition has been properly used
in directed and undirected networks with various sizes in
many fields, which is a fundamental definition in correlated
research. But there are certain limitations that we will ignore
the patterns or subgraphs with more important functions but
less statistical significance.

FIGURE 2. All possible directed 3-motifs.

In Fig. 2 we exhibit all the thirteen possible connected
motifs as examples. The majority of research considers only
connected subgraphs as possible motifs. Whereas some stud-
ies also analyze unconnected subgraphs [25]. Here in this
paper we refer to connected subgraphs unless specially stated.

The definition can also be explained from the statistical
perspective. For the original network and its randomized
networks whose size and degree distribution are the same,
they have a common feature as the original network where
the feature refers to the frequency of one or several kinds
of subgraphs. Here the ensemble of randomized networks
is regarded as the null model. The three constraints are the
validation criteria that should hold simultaneously, which
makes the null hypothesis above invalid. Except for null
model, Markov chain algorithms can also be used for ran-
domization of networks [26]. In the definition based on null
model, the distribution of features in the underlying network
is considered as Gaussian. However some researchers suggest
that under null model or Gaussianity is not sufficient to assess
its significance. Other distributions i.e., compound Poisson
distributions are used to determined whether the motif is
overrepresented [27]. Kernel density estimation and cross
validation are also used to learn the distribution [28].

There is also an alternative definition, Berg and Lässig
perform a subgraph alignment across an ensemble of
small graphs to extract an average structure named

consensus pattern [29]. This definition seems to reduce the
effect of data incompleteness, but the process of alignment
among many different subgraphs may lose some information.
And overlaps of motifs are also considered in the definition
in some researches [28], [30], [31].

B. SPECIFIC DEFINITIONS
In specific application contexts, network motifs have been
studied from multiple perspectives. In this section, we intro-
duce some correlative definitions of network motif deforma-
tions and the motif definitions in specific networks.

Anti-motif is the statistical insignificance subgraph, oppo-
site to the aforementioned definition of motif, which also
makes sense to existing researches. It is suggested that
anti-motif should satisfy: p(f̄rand < freal) < P and f̄rand −
freal > D × f̄rand [7]. It means the frequency of anti-motif is
lower than the expected value according to the randomized
networks [32].

Maximal motif is another essential concept characterizing
the maximality of motifs [33], [34]. If one motif is not con-
tained in any other motif of G, that motif is considered as a
maximal motif. Only detecting maximal motifs is of benefit
to reduce computations because it costs more storage to detect
the subgraphs than all motifs.

FIGURE 3. Simple military communication network and supernetwork
motifs.

In biological networks, network motifs are supposed to
be recurring circuit elements with key information process-
ing tasks [21]. Network motifs have also been applied to
the supernetworks. Supernetwork can be easily compre-
hended as a composite network of various subnetworks.
Shi et al. [35] summarized the definition of supernetwork as
a multi-linked heterogeneous network including various links
and nodes, which focuses on the entire network function.
Fig. 3 presents a simple military communication supernet-
work (MCSN) and two supernetwork motifs are evolving
from it. Fig. 3(b) is a simple military communication super-
network. The nodes in shape of circle, star, pentagon and
hexagon denote decider, sensor, target and influencer, respec-
tively. The solid line denotes situation message transmission.
The dotted line denotes command and control (C2) message
transmission. The dashed line denotes state message trans-
mission. In Fig. 3(a), there are two examples of supernetwork
4-motif s that can be found in Fig 3(b). k(m)-motif denotes the
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supernetwork motif composed of k nodes with m types [36].
In supernetwork motif the node with maximal degree is
regarded as a core node named Core of Supernetwork Motif.
If there are more than one node having the maximal degree
in a supernetwork motif, the motif is called multi-core motif.
If all nodes in the motif have the same degrees, the motif is
called np-core motif. In processing complex supernetwork
analysis, we can analyse n-motif as a structural motif. For
further analysis of function, n-motif can be partitioned into
n(k)-motif as a functional motif.

III. MEASURES FOR NETWORK MOTIF
Studies on measures for network motif combine not only
knowledge of graph theory, statistics, supernetwork, entropy,
network complexity and community detection, but also tech-
niques of machine learning like clustering and classifica-
tion. The relations of measuring network motifs are shown
in Fig. 4, whose basic information is the basis of the following
comprehension. The measures for network motifs can be
divided into two categories, structural measures and statistical
measures. Structural measures describe the topological fea-
tures networks from microcosmic view like the significance
of node and edge, or from macroscopic view for example
the complexity of network. Statistical measures describe the
statistical significance of a motif or other features on the
basis of motif frequency or motif statistical significance.
The classification measures are shown in Fig. 5, in which
the blue parts are structural measures and the green parts are
statistical measures. In this section, we specifically introduce
each measure and its applications.

FIGURE 4. Subjects and techniques related to motif measures. The
definition of motif measures is related to statistics, graph theory,
clustering, classification, network complexity, entropy, supernetwork and
community detection.

A. STRUCTURAL MEASURES
Structural measures make sense for network motifs. For
example, randomized networks can be constructed with the
same topological measures, size and degree distribution,
as the original network for motif detection. In this section we

FIGURE 5. Motif measures are divided into two categories, i.e., structural
measures and statistical measures. Their definitions are written in the
green and blue hexagons, respectively.

firstly introduce structural properties in graph theory. Then
we also introduce some other topological structure measures
for network motif.

TABLE 1. Structural Properties for Undirected 3&4-Motifs.

TABLE 1 lists all possible motifs of 3 and 4 nodes in
undirected graphs. We also list the basic measures inherited
from graph theory, such as density ρ, max degree 1, mean
degree d̄ , assortativity γ , total number of triangles |T |, max
k-core number K , Chromatic number χ , diameterD, the max
betweenness B, the number of components |C|.

1) MOTIF-BASED NODE DEGREE
Motif-based node degree, presented by Han et al. [37], is a
measure combining node degree and network motif. Given a
network G and the motif M of G, Motif-based node degree
is written as dMi , which denotes the number of Ms including
node i. Generally, an edge connecting two nodes can be seen
as a 2-motif. Then for node i, the traditional node degree can
be described as the number of 2-motifs that include node i,
which is a special case of the motif-based node degree.

2) MOTIF-BASED EDGE DEGREE
Motif-based edge degree is also proposed by Han et al. [37].
There has been measures for edge-clustering coefficient,
which is the ratio of the actual number of triangles including
the edge e to the number of all possible triangles includ-
ing e. For an edge connecting two nodes i, j, the formula of
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edge-clustering coefficient, C (3)
ij is

C (3)
ij =

z(3)ij + 1

min[di − 1, dj − 1]
, (2)

where z(3)ij is the number of triangles formed by the edge.
But it does not consider that in different networks, there are
different kinds of motifs. For example, there is no 3-motif in
hierarchical tree structure networks. So, given an arbitrary
network G and its motif M , for an edge e, the edge degree
based on motif is redefined as the number ofMs including e,
denoted by CM

e .
The motif-based node and edge degree are analysed

in terms of Karate network, Dolphin network, Newman
science coauthors network, PGP network and email net-
work. The authors calculated the Pearson correlation coef-
ficient between the degree they presented and traditional
concepts [38]. It is represented as r and the formula is
shown in (3).

r =

∑
i(Xi − X̄ )(Yi − Ȳ )√∑

i(Xi − X̄ )2
√∑

i(Yi − Ȳ )2
(3)

In experiment results, r is high enough to verify the rationality
and superiority of the motif-based node degree and edge
degree.

3) SNME
Supernetwork Motif Entropy (SNME) is a complexity
measure combining the heterogeneity of nodes, the signifi-
cance of functional motifs and information entropy for mil-
itary communication networks (MCN). It is presented by
Shi et al. [36]. The mathematical representation is

SNME =
m′∑
i=1

Pi
m′∑
j=1

H (m′(j))
i , (4)

wherein m′ denotes the number of node types in the whole
network. Pi denotes the proportion of the node number
belonging to type i in the network. H (k(j))

i denotes the
m′(j)-motif entropy whose core node is included in type i.
The k(m)-motif entropy, H (k(m)), is defined by information
entropy as

H (k(m))
= −

Mk(m)∑
i=1

p(k(m))i log2 p
(k(m))
i , (5)

where p(k(m))i is a probability distribution of k(m)-motif that
belongs to type i. Mk(m) means the number of types that
k(m)-motif can formate. If m = 1, then H (k(m))

= H (k),
which indicates the k(m)-motif entropy without considering
the heterogeneity of nodes and applicable for motifs in com-
mon networks [39].

According to other studies about network complexity and
Boltzmann’s entropic equation, the number of states of net-
work possible structures will increase with the number of

node types. So SNME can be used as a complexity mea-
sure for MCNs. More concretely, SNME can measure the
complexity of network from the perspective of classifica-
tion of nodes’ function, combining the existing measures for
network structural complexity, such as OdC [40], MAg [41],
Cr [42] and Orb [43]. For different aims, we can choose
different size of supernetwork motifs, which will give a new
insight into MCNs analysis. But the effect of it is not good
enough when measuring network complexity without other
measures. Its application in networks of other domains has
not been studied.

4) φM(S)
φM (S) is a structural measure for evaluation clustering or
partition of network motifs [11]. It is a generalization of
conductance metric that is a useful graph partitioning score
in spectral graph theory [44]. The measure can be calculated
as the following equation

φM (S) =
cutM (S, S̄)

min[volM (S), volM (S̄)]
, (6)

where S denotes a set of nodes partitioned in a cluster, and
S̄ is the complement of S ⊂ V . cutM (S, S̄) is the number
of motif Ms that has at least one node in S and one node
in S̄. volM (S) denotes the number of nodes belonging to motif
Ms and moreover residing in S. This measure reflects the
extent of the motif conductance of cluster S relative to M .
The smaller the value is, the better the cluster is.

B. STATISTICAL MEASURES
As described in Section II, statistical significance, espe-
cially compared with randomized networks, is one of the
most important features for networkmotifs. Several measures
related to statistics of motifs have been proposed for diverse
purposes, such as discovery of motifs and classification of
networks. In this section, we review the statistical measures
for network motifs arranged from simple to complex. For
each measure, we summary its application contexts.

1) FREQUENCY
As mentioned above in definitions, the frequency of a motif f
means the number that a motif appears in a network. It is a
necessary condition for a subgraph that the frequency of it
in real network is higher than the mean frequency in similar
randomized networks. Notice that the overlap allowed can
make a big difference on both the value of frequency and the
counting complexity [21], [45]. Thus it is indeed important
to distinguish the frequency when detecting motifs. There
are three conditions where they allow arbitrary overlaps of
nodes and edges, only overlaps of nodes and no overlaps [45].
In biological networks, for example PPI (protein-protein
interaction) networks, one node may take part in different
motifs that denotes modules performing different functions.
In that case, overlaps of nodes or edges are considered as
the first condition. On the contrary, no overlaps of nodes nor
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edges are considered in algorithms presented in data mining
papers [46].

Motif frequency has a wide application in different net-
works. Marinho et al. [47] study the authorship attribution
using the frequency of motifs. In the word co-occurrence net-
works derived from written texts, they calculate the absolute
frequency of all thirteen directed 3-motifs as the only feature
of classification and find that there is a dependency between
the frequency and the writing style of different authors.

We can also calculate a ratio of the frequency in real
network to the mean frequency in randomized networks as
R = freal/f̄rand . It should be higher than 1.1 generally. There
are some softwares that can extract the frequency of motifs,
such as mfinder and fanmod [41].

2) CONCENTRATION
Concentration is also an interesting measure for network
motifs in combination with sampling methods. Given a sub-
graph Gki, the concentration is defined as

C(Gki) =
f (Gki)∑card(Gk )

j N (Gkj)
, (7)

where f (Gki) refers to the frequency of one specific subgraph
in size k , and

∑card(Gk )
j N (Gkj) is the total number that all

possible subgraphs in the same size k appearance in the
network. This measure is also used in experiments when
comparing motifs from PPI network and Internet routers
network [7].

3) Z-SCORE
For each subgraph of Gks, the statistical significance
compared to that in randomized networks is qualitatively
described as the measure named Z-score [7],

Z =
freal − f̄rand
std(frand )

, (8)

where freal is the frequency or the number that Gk appears
in the real network. f̄rand is the average that Gk appears in
the randomized networks. std(frand ) is the standard deviation
that Gk appears in randomized network ensemble. Z-score
is widely used in network motif discovery and counting
tasks [25]. Whereas it asserts the samples, i.e., subgraphs,
are in Gaussian distribution. But in real-world networks,
subgraphs are often not Gaussianity [28]. Z-score tends to
be higher for motifs in respective large networks. So other
measures of statistical significance for motifs are proposed.

4) ABUNDANCE
The abundance is another measure of the characterization of
motif statistical significance written as M [17], [21]. Similar
to Z-score, for each subgraph, abundance measure defined as

M=
freal − f̄rand

freal + f̄rand + ε
, (9)

where ε is a value to ensure the absolute value of M, | M |
will not be too large to mislead the results when the subgraph

occurs very few times in both the original and randomized
networks.

5) SP
Milo et al. [17] proposed a relative significance measure,
the significance profile (SP), for network motifs statisti-
cal significance compared to randomized networks. The
SP is a normalized value of Z-score vector to length one,
defined as (10)

SP =
ZGki

(
∑card(Gk ) Z2

Gkj )
1/2
, (10)

where Gki denotes a subgraph i in size of k , for each Gki,
ZGki is its Z-score value. SP can effectively avoid the impact
of different sizes of networks.

Milo et al. also propose a specificmeasure as Triad Signifi-
cance Profile (TSP) for 3-motifs. They analyze all 13 directed
and connected subgraphs’ TSP for networks that were con-
structed from different domains. They find that some net-
works have similar TSPs whose correlation coefficients are
higher than 0.99, which are divided into several groups named
as superfamilies. For example, the sensory transcription net-
works from the bacteria Escherichia coli, Bacillus subtili and
the yeast Saccharomyces cerevisiae have similar TSPs are
regarded as one superfamily with rate limited feature. In these
networks, the expected response times are as short as that
of the components in the network, i.e., motifs. Furthermore,
WWW networks and social networks have similar TSP so
that they can be recognized as a superfamily, which indicates
that classical models of social structural organization may be
benefit to the comprehension of WWW structure. We can
also calculate the correlation between the TSPs of different
networks which also can be used to cluster networks as
distinct superfamilies.

TSP is robust to data under missing circumstance or with
random errors. Experiments demonstrate that the TSP is
almost insensitive to removing 30% of the edges or adding
50% new edges randomly. But TSP can be sensitive to rare
occasions of a mutual edge in a network.

For 4-motifs in both directed and undirected networks,
the normalized Z-score, SP, can be seriously affected by the
size of network. Instead of Z-score, the normalized abundance
is used to describe the statistical significance of 4-motifs.
Thus subgraph ration profile (SRP) is proposed and its
definition is

SRPi =
MGki

(
∑card(Gk ) M2

Gkj )
1/2
. (11)

This measure is calculated in electrical power grid networks,
protein structure networks and AS (Autonomous systems)
networks, measuring its capability of classification of differ-
ent networks. However, it is interesting that some networks of
different types in the same TSP superfamily present diverse
SRPs, measuring that higher order subgraph profiles can
promote the network classification.
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6) MD
Motif Difficulty (MD) is a problem difficulty measure for
evolutionary algorithms (EAs) as presented in [48]. It can
quantify the difficulty of different problems into [−1, 1],
where MD = −1 means the problem is the easiest, and
MD = 1 means it is the most difficult. Since it is based
on the statistics of motifs and nodes in motifs, we classify
it as statistical measures. Before describing the formula of
MD, the directed fitness landscape network and three types
of motifs used are introduced.

A directed fitness landscape network is defined as
−−→
FLN =

(V ,
−→
E ). Here V is the ensemble of nodes in the network,

and each node denotes a configuration in the search space
or a point in the fitness landscape.

−→
E is the set of edges and

each edge connects a certain node to one of its neighbours.
The direction of the edge is determined by the value of
the fitness function f . The edge (x, y) points to y from x
when f (y) > f (x).

FIGURE 6. Basic motifs These six motifs are subsets of other directed
3-motifs.

As shown in Fig. 6, the authors choose six types of 3-motifs
that are the subsets of other 3-motifs, called basic motifs.
Unlike other measures that define motifs based on compar-
ison with that in randomized networks, here we choose the
motifs because they are the subsets of other motifs, since gen-
eration randomized networks of FLN is another research topic
with large difficulties. Then a distance motif is defined on
basic motifs as Md

= {VM ,
−→
EM , d1, d2, d3}, where di,i=1,2,3

refers to the Hamming distance between di and the global
optima. The distance and fitness information are both con-
sidered when checking the searching direction in a motif.
So effective path is presented as a path inMd with no inverse
direction edges existing for each edge in the path. If there is no
effective paths inMd , it is a neutral motifMN . If all effective
paths in Md satisfy dstart > dend , Md is a guide motif MG.
In all other cases, it is named as deceptive motif MD. Based
on the description above, a network level difficulty measure
MDe has been presented and the formula is:

MDe =

∑|V |−2
i=1

∑|V |−1
j=i+1

∑|V |
k=j+1(|M

D
i,j,k | − |M

G
i,j,k |)∑|V |−2

i=1
∑|V |−1

j=i+1
∑|V |

k=j+1 |M
d
i,j,k |

(12)

where i, j, k ∈ V . |MD
i,j,k |, |M

G
i,j,k |, and |M

d
i,j,k | represent the

number of deceptive, guide and distance motifs that any three
nodes i, j, k form, respectively.
The value ofMDe is in the range of [−1.0, 1.0]. When it is
−1.0, i.e., all Md s in DFLN are guide motifs, the problem is
the easiest. When MDe is 1.0, all Md s are deceptive motifs,
so that the problem is the most difficult. The measure MDe

predicts problem difficulty in the most straightforward way
by counting the numbers of distance motifs over the whole
network. So it cannot reflect the difference in details.

The measureMDo is presented to describe the detailed fea-
ture and spatial distribution of each kind of distance motifs.
In an MG, there is an effective path whose length is two and
the distances decrease from the start node to the end node in
turn. Then thisMG is aCore Guide Motif. The start node with
the smallest distance is the Core Guide Node. Similarly, in an
MD if there is a path of length two and the distance increase
from start to end in this path in turn, it is a Core Deceptive
Motif. The start node is calledCoreDeceptive Node. Based on
the core guide node and core deceptive node, another measure
named node level difficulty is defined as

MDo =
|(V − VCG) ∩ VCD| − |VCG|

|V |
(13)

where (V − VCG) ∩ VCD refers to the set of core deceptive
nodes that are not the core guide nodes. The value is also
range from −1.0 to 1.0 This measure considers the situation
of each node. In searching process, guide motifs always have
priorities. Even if a node belongs to both guide and deceptive
motifs, the deceptivemotif may not be visited in the searching
process. So only core guide nodes and the core deceptive
nodes who are not simultaneously core guide nodes are taken
into account.

Combining the general and detailed measure for problem
difficulty, the authors integratedMDe andMDO and proposed
a measureMotif Difficulty labeled asMD.

MD =
MDe +MDo

2
(14)

Obviously, the value of MD also ranged in [−1.0, 1.0].
For the easiest problems MD is −1.0 and for the most dif-
ficult problems MD is 1.0. Since it is computational costly
and impractical to compute on the whole network quickly,
an approximate measure may be preferred. A sampling tech-
nique has been proposed by computing on a sample of the
search space. It is verified by experiments that the approx-
imate MD is stable [48]. It is validated that MD is not only
consistent with other difficult measures on previous results
of problem difficulty, but also performs well on some coun-
terexamples for other difficulty motifs. It has the advantages
of being insensitive to nonlinear scaling, detecting the pres-
ence of constantness and being robust to irrelevant deceptive
information. But there are also some disadvantages. It takes
global optima as reference points that are impractical to find.
The operator used to build FLNs has constraints onMD. The
distance is calculated by Hamming distance instead of the
ideal distance named the shortest path length.
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TABLE 2. Measures for network motifs and application scenarios.

We give a brief summary of all measures mentioned above
in TABLE 2. We also combine the measures’ application
networks and target problems except for the category and
definition. Measures applications are further discussed and
analysed in the next section.

IV. APPLICATIONS AND CHALLENGES
The measures for network motifs are used for solving prob-
lems related to motifs. In this section, we summarize three
important problems related to motif and list the measures
for each problem. As shown in TABLE 3, we make the
summary of the application problems of each measure.

f and R can be used in all applications we listed, which are
basic but important measures. In terms of the studies for these
problems, we also analyze the facing challenges.

A. NETWORK MOTIF DETECTION AND COUNTING
Network motif detection is also referred to as motif discovery
or motif finding [49]–[51]. It is similar to motif counting
tasks [25], [52], [53]. It is important and basic problem in
studies of network motifs [54].

Motif detection process includes several tasks such as
motif definition, the definition of frequency concepts, gen-
eration of randomized networks, choosing measures for
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TABLE 3. Application scenarios for each measure.

statistical significance and determining the isomorphism of
subgraphs.We have discussed these tasks in Section II and III.
Here we mainly focus on the measures to be used in these
tasks. The measures to be used for detection includes all
statistical significancemeasures. Asmentioned in Section III,
we can enumerate the measures as: f, R, P-value, Z-score,
Abundance, SP and SRP.

The first challenge is to choose an appropriate measure for
the target network. There is a precondition that the frequency
of the subgraphs are under Gaussian distribution. But it is
not appropriate to all networks. For example, the distribution
may be undersampled. So some methods based on other
distributions like compound Poisson distribution are applied
in motif counting and detection. Kernel density estimation,
cross validation can be used for density estimation. But few
measures are presented.

In addition, randomized network generation is also a chal-
lenge. There are a few definitions from other perspectives
or at least without randomized networks. For large complex
networks, generation of randomized networks with corre-
sponding features that need to go through the whole network
is a task with high time complexity. It is impractical to form
a set of randomized networks in some cases, i.e., randomized
network construction for fitness landscape networks is also
a research topic whose time complexity is high, relatively.
Thus in this kind of problems, measures without randomized
networks to be used are proper for these problems, like con-
certration, frequency.
Functional significance is also important especially for

networks with complex function. Here MD considers func-
tion and statistics of motifs, but it is not used for motif
detection. Researchers of biology are interested in predicting
the functional behavior of motifs from its structural features
and finding the necessity between biological significance and
the abundance of such motifs [55].

Another challenge is the time complexity and compu-
tational cost. Determining whether subgraphs are isomor-
phic is a computation-intensive task, which has been proved
an NP-hard problem. The computational cost will increase
rapidly with network size and motif size. The scale and
density of the real world networks are also growing increas-
ingly. So approximate algorithms for distinguishing larger
isomorphic subgraphs are in urgent need.

Several strategies have been used for these tasks. One
uses subgraph sampling through the network instead of

exact enumeration. Another strategy is the motif centric
approach, which can reduce isomorphism computational cost
together with symmetry breaking and mapping methods [50].
But it is not fit for large motifs because the number of the
types of motifs grow exponentially with motif size. Many
authors will apply their measures or algorithms for larger
motifs in future work [25], [26], [47]. At present, there is no
algorithm that can detect motifs having more than 10 nodes
from a large and complex network in a practical time.

To sum up, the challenges in network motif detection
and counting related to measures can be summarized as
three points. Firstly, we need statistical significance mea-
sures for different underlying distributions. Secondly, wemay
investigate about measures reducing the computations and
complexity on generation and analysis of randomized net-
works. Last but not least, we should try to reduce the com-
putational cost in the detection and counting process.

B. NETWORK CLASSIFICATION
Network classification means classifying the networks with
different sizes from various domains into several groups by
the features of network motifs [17], [47], [56], [57]. In other
words, we evaluate the features of subgraphs included in
different networks and compare these features.

Milo et al. [17] present SP, SRP and adapt them in dif-
ferent networks. Then the measures are used in email-based
social networks [58], [59]. The measures are also used in text
networks [47], time series networks [60], Internet networks,
etc. Its core idea is also about statistics of motifs in the
network. After calculating the relative statistical significance
measures for all possible motifs then all the results of the
measures construct the profile. If the profiles of two networks
are much similar, they fall into the same group. Using this
method, different writing style of authors, sensors with dif-
ferent functions and networks from different domains can
be distinguished clearly. The networks that are commonly
thought with no similarities may be assigned into the same
group by this method. These networks may have some inter-
nal similarities that have not been discovered.

One way is to explore the generation process and evo-
lution law of these networks. Another interesting result is
that 4-motif and 3-motif analysis form distinct classification
results. We can not distinguish which k order motif reveals
the network profile better. So we can only combine its known
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real world function unit to analyze the profile, but can not find
more unknown function or organization of the networks.

There is a similar task described as comparison of net-
works with graphlets, which means analyzing the graphlet
degree distribution of different networks and the ‘‘agree-
ment’’ to compare their similarity or difference [61]. Notice
that graphlet is a concept which is as same as motif in
structure, but different in statistical significance. There is
no need to compare the frequency of the graphlet to the
randomized networks for determining whether it is a graphlet
or not. Because of the structural similarity between motif and
graphlet, the studies on network classification with graphlet
can lead to inspiration to that with the motif.

The challenge we are facing in studying this problem is
the analysis of high order motifs. The appropriate region for
motif sizes for different size of networks need to be studied.
For instance, we can analyze the relationship between motif
size and network size when performing classifying networks.
The relative value is preferred for a better universality.

C. MOTIF BASED CLUSTERING
Motif based clustering is a hot research topic that has attracted
increasing interest [11], [62]–[66]. We perform clustering
nodes on a network previously. But the scale of real world
networks and the knowledge in them grow explosively, which
makes it difficult and computational costly for the tasks
like community detection and conflation of hub structure
in geography. In addition, triangles are of equally practical
significance as well as pairs of nodes that have been analyzed
and concluded in social and biological networks. When we
perform clustering tasks through networks, it is reasonable
to keep the nodes in a motif, such as a triangle, in a cluster.
Therefore, clustering based on motifs is studied on the social
network, biological network, transportation network, etc. Dif-
ferent from clustering based on nodes, motif clustering aims
at reducing cutting both edges and motifs essential to the
target problem. Overlapping of community or clusters should
be considered as well. When choosing methods or measures
for motif clustering, another noteworthy problem is whether
it is applicable for the target networks. There are fewmethods
or measures applicable to all directed, undirected, weighted
signed networks and hypernetworks.

The measures that can be used in clustering problems
except for the statistical significance is φM (S), which is
an evaluation measure for clustering. The method is based
on spectral clustering. There are also some other clustering
strategies such as correlation clustering and embeddingmeth-
ods. The challenges in motif based clustering are also related
to the exponential explosion as the size of motif increases.
It is also important to choose appropriate clustering strategies.
Although the strategy based on spectral clustering has been
studied widely, some researchers consider it without general
analytical guarantees [64]. And using parallel and low com-
plexity methods can be regarded as a challenge.

Network motifs can be used to study many other problems,
such as evaluating the significance of node and edge in a

network, measuring the complexity of networks and super-
networks, etc. And the challenges are mostly bound up with
the size of motif, computational cost, approximate algorithms
and the deviation from the underlying network.

V. CONCLUSION
Network motifs have attracted immense attention over
decades due to the enormous applicability in understanding
complex networks. Variousmeasures for networkmotifs have
been proposed in the detection and evaluation of motifs in
complex networks. In this paper, we present an organized
and detailed overview of the state-of-the-art measures for
networks motifs and categorize them as structural measures
and statistical measures. We study the definition and appli-
cation scenarios of each measure and showcase the corre-
spondences between measures and application scenarios in
tables. We also enumerate the available and appropriate mea-
sures for three essential problems with respect to network
motifs. Structural measures are applicable to measuring the
importance and goodness at meso-level. Statistical measures
describe the comparative frequency of motifs in the whole
network from various perspectives, which are indispensable
measures for motif detection and counting. Furthermore,
we summarize the challenges for motif measure computation
and choosing. Since the complexity of the networks, it is
arduous to circumvent the computational intractability in
generation randomized networks and detection of high-order
motifs. The deviation between the model and the underlying
network makes the choice of measures a formidable task.
Consequently, there arises a need for measures with less com-
putational cost and approximate algorithms for the existing
measures, which are still open research issues that we intend
to investigate.
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