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ABSTRACT In this paper, we deal with the vibration control problem of a flexible spacecraft system
with unknown external disturbance and uncertain input backlash nonlinearity. The considered system is
described by two partial differential equations and an ordinary differential equation as governing equations,
and by ordinary differential equations as boundary conditions. The backlash nonlinearity is reformulated
into the desired control input associated with an extra input nonlinear error. This input error and the external
disturbance are combined into an unknown ‘‘disturbance-like’’ item. Two boundary control inputs are
designed at the center body of the spacecraft, compensating for the unknown upper-bound of such items by
applying proper online updating laws. As a result, the vibration of both solar panels of the flexible spacecraft
is suppressed and their angle positions are regulated in the desired region. The numerical simulations are
provided to verify the control performance of the proposed controls by the choice of proper parameters.

INDEX TERMS Vibration control, adaptive control, flexible satellite, input backlash.

I. INTRODUCTION
Nonsmooth input nonlinearities often occur in real control
for industrial implementation, including saturation, back-
lash, hysteresis and dead-zone [1], [2]. Actually, the igno-
rance of these nonlinear characteristics in control system
design will deteriorate the system performance [3], [4].
Many studies and methodologies have sought to handle these
constraints [5], [6]. The backlash nonlinearity, which is a
clearance or lost motion in a mechanism caused by gaps
between the parts, is usually poorly known and often lim-
its system performance [7]. Neglecting input backlash may
result in serious instability [8], [9]. Unfortunately, most tra-
ditional control schemes are not effective enough to handle
systems with backlash, since backlash is non-differentiable,
non-linearities and usually unknown characteristic. Several
new modeling methods on backlash pattern and control
techniques have recently been proposed, e.g., phase plane
model [10], dead-zone model [11], and neural network-based

The associate editor coordinating the review of this manuscript and
approving it for publication was Jianyong Yao.

control [12]. In [13], the PrandtlCIshinskii hysteresis opera-
tor is adopted to eliminate the effect of the input backlash.
In [14], a novel integral control method is proposed for the
systems with the input and the output hysteresis. In [15],
an output feedback method is applied to design a controller
to deal with the feedback signals which cannot be measured
directly, thus the backlash nonlinearity is handled.

Spacecrafts with flexible solar panels have received
increasing attention in communication, remote sensing and
space industry, because the flexible structures are able to
adapt many complex application environments. However,
undesirable vibration caused by the flexible property is
a thorny problem. Thus, a number of approaches have
been proposed for designing controllers to suppress the
vibration, such as positive position control [16], neural
network control [17], optimal control [18], sliding mode
control [8], [19], linear quadratic regulator control [20],
etc. Most of these studies are based on finite dimensional
ordinary differential equations (ODEs) models [21], [22].
However, flexible structures are close to infinite dimen-
sional systems from a mathematical point of view [23], [24].
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Hence dimensionality reductions may lead to spill over
instability [25], [26].

In order to solve the aforementioned issue, original infi-
nite dimensional partial differential equations (PDEs) are
adopted to describe the flexible structures [27], [28]. Bound-
ary control technology has been proposed based on the PDEs
model [29], [30]. An advantage of this technology is that
the implementation only necessary to set up actuators and
sensors at the boundaries [31], [32]. In [33], a robust adaptive
boundary control for an axially moving string is investigated,
by applying a hydraulic actuator at the right boundary of the
string. In [34], the stabilization of a Timoshenko beam with
a tip payload subjected to boundary external disturbances is
considered. The effects of the external disturbances have been
eliminated according to design some nonlinear feedback con-
trol laws. In [35], an uncertainty and disturbance estimator
based robust boundary control strategy is presented, to handle
the stabilization of an unstable parabolic partial differential
equation with unknown input disturbance.

Literature [36] first proposes a boundary control scheme
based on hybrid PDEs-ODEs model for a flexible satellite.
A single-point control input is placed at the hub to restrain the
vibrations of the two panels. In [37], the flexible spacecraft
system subjected to external disturbances is investigated.
An efficient control scheme consisting of two boundary con-
trol laws and a distributed control law is developed to sup-
press the vibration and track the desired attitude. In [38],
by setting up a control torque in the central hub of the
flexible spacecraft system, the exponential stabilization of the
closed-loop system is achieved.With regard to the research of
input constraints of the flexible spacecraft system, although
input saturation phenomenon has been taken into account
in [39], [40], to the best of our knowledge, there is not any
published literature attempting to design boundary control
scheme for flexible spacecraft with input backlash. Hence it
motivates us to carry out this research.

In this paper, we consider the vibration control prob-
lem of a flexible spacecraft system with unknown external
disturbance and uncertain input backlash non-linearity. The
studied system is described by a set of PDEs and ODEs.
We define an appropriate Lyapunov function candidate and
design a novel boundary control scheme with considering the
unknown external disturbance and the uncertain input back-
lash non-linearity in the system. Different from the previous
existing research studies, main contributions of this paper can
be summed up as follows:
i The input backlash is presented as a desired control

input associated with an input non-linear error. The
input non-linear error and external disturbance form
an unknown ‘disturbance-like’ item.

ii A novel boundary control scheme is presented,
including two control inputs. Based on apply-
ing proper online updating laws, the unknown
upper-bound of the ‘disturbance-like’ items can be
estimated.

FIGURE 1. A typical flexible spacecraft system [39].

iii With the proposed controls, the vibration of the
flexible spacecraft is suppressed and the angle posi-
tion is regulated in the desired region. Moreover,
the closed-loop system is proved to be uniformly
bounded via the Lyapunovs direct method.

The arrangement of this paper is listed as below.
A PDEs-ODEs model of the flexible spacecraft system
and preliminaries are presented in Section II. Considering
the input backlash non-linearity and the boundary external
disturbances, a novel boundary control algorithm is pro-
posed in Section III. Numerical simulations are completed in
Section IV and we reach a conclusion in Section V.

II. PROBLEM STATEMENT AND PRELIMINARIES
In this paper, we directly use the system model described
in [39], which is proposed for investigating the input satu-
ration issue of the flexible spacecraft system. We will handle
the input backlash problem for this model.

As is shown in Fig. 1, the frame consists of a inertial
coordinate XOY and a fixed coordinate xoy. ωL(x, t) and
ωR(x, t) are the deflections in xoy of the left and right panels,
respectively. The displacements of the two panels in XOY are
denoted as {

YL(x, t) = ωL(x, t)+ lη(t)
YR(x, t) = ωR(x, t)+ lη(t).

(1)

η(t) represents the attitude angle displacement, and ηd is
the desired angle displacement. M denotes the point mass
of the center body. The length of the symmetrical flexible
panel is l. Ih is the center body inertia. d̄1(t) and d̄2(t) denote
the external input disturbances, while u(t) and F(t) are the
corresponding control inputs. ρ is the density of the panels.
γ1 is the coefficient of viscous damping. EI is the bending
stiffness.
Remark 1: For convenience and clarity, notions (?)′ =

∂(?)/∂x, (?)′′ = ∂2(?)/∂x2, (?)′′′ = ∂3(?)/∂x3, (?)(n) =
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FIGURE 2. Diagram of backlash.

∂n(?)/∂xn (n ≥ 4), ˙(?) = ∂(?)/∂t , and ¨(?) = ∂2(?)/∂t2 are
defined throughout this paper.

The flexible spacecraft system proposed in [39] are
described with three governing equations:

ρŸL(x, t)+ EIY
(4)
L (x, t)+ γ1ẎL(x, t) = 0,

x ∈ (0, l), t > 0

ρŸR(x, t)+ EIY
(4)
R (x, t)+ γ1ẎR(x, t) = 0,

x ∈ (l, 2l), t > 0

(2)

and

Ihη̈(t)=EI [Y ′′R (l, t)− Y
′′
L (l, t)]+u(t)+d̄1(t), t > 0 (3)

where u(t) is the axial control force and d̄1(t) is the external
input disturbance.

The corresponding boundary conditions are:
YL(l, t) = YR(l, t) = Y (l, t), t ≥ 0
Y ′′L (0, t) = Y ′′′L (0, t) = 0, t ≥ 0
Y ′′R (2l, t) = Y ′′′R (2l, t) = 0, t ≥ 0

(4)

and

MŸ (l, t)=EI [Y ′′′L (l, t)− Y ′′′R (l, t)]+ F(t)+d̄2(t), t ≥ 0

(5)

where F(t) is the control torque and d̄2(t) is the external input
disturbance.

From the boundary conditions (4) and the equations (1),
we have Y ′L(l, t) = Y ′R(l, t) = η(t). And we also have
Y (n)
L (x, t) = ω(n)

L (x, t), Y (n)
R (x, t) = ω(n)

R (x, t), n ≥ 2.
As is shown in Fig 2, The input backlash proposed in [1]

is reformulated as follows

u(t) = B(ν) = sν(t)+ d(ν) (6)

where u(t) denotes the control input, ν(t) denotes the desired
control command, s > 0 is the slope, d(ν) is the non-linearity
error and has the below expression

d(ν) =


−sbr , if ν̇ > 0 and u(t) = s(ν(t)− br )
−sbl, if ν̇ < 0 and u(t) = s(ν(t)− bl)
u(t_)− sν(t) otherwise,

(7)

in which bl < br are constant parameters and u(t_) means
there is no change of u(t).
Several necessary assumptions are proposed for the subse-

quent development.
Assumption 1: The backlash output B(ν) is hard to

measure.
Assumption 2: The parameters s, br and bl are unknown

bounded constants. However, their signs are specific such that
s > 0, br > 0 and bl < 0. Moreover, they are within known
bounded

0 < smin ≤ s ≤ smax, (8)

0 < (br )min ≤ br ≤ (br )max, (9)

(bl)min ≤ bl ≤ (bl)max < 0. (10)
Assumption 3: The unknown external input disturbances

d̄1(t) and d̄2(t) are also bounded.
Under these assumptions, we have

|d(ν)| ≤ max{sbr ,−sbl}.

And we define the ‘disturbance-like’ term as

d(t) = d(ν)+ d̄(t). (11)

Remark 2: The following inequality presented in [41] will
be applied for analyzing the system stability.

|y(l, t)D(t)| ≤ y(l, t) tanh(y(l, t))Dm, (12)

where tanh(∗) denotes the hyperbolic tangent function and
Dm > max{|D(t)|} > 0.

III. ADAPTIVE CONTROL DESIGN
Different from the dynamics of robotic manipulator or marine
riser represented by a single governing PDE equation,
the flexible spacecraft system is represented by two PDE
equations and more complex boundary conditions. Further-
more, the control goals of this study are to suppress the
vibration and to restrict the angle position, while the previous
controls in [15], [42] are only for the stability. Hence the
previousmethods proposed in [15], [42] cannot directly apply
to this study without difficulty.

In this section, an extension of backlash handling
approaches to the flexible spacecraft system is presented.
In order to stabilize the system and compensate for the
‘‘disturbance-like’’ terms, the boundary controlsF(t) and u(t)
are designed based on the Lyapunov’s direct method. Our
control designs will make sure that all the states of the closed-
loop system are uniformly ultimately bounded.
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The input backlash models of the flexible spacecraft sys-
tem can be described as follows

u(t) = Bu(ν) = sν(t)+ d1(ν) (13)

and

F(t) = BF (σ ) = gσ (t)+ d2(σ ) (14)

where ν(t) and σ (t) are the two designed boundary control
inputs. s and g are the positive constant slope of the lines
associated with ν(t) and σ (t), respectively.

According to (7), the non-linearity errors d1(t) and d2(t)
can be formulated as

d1(ν) =


−sbur , if ν̇ > 0 and u(t) = s(ν(t)− bur )
−sbul, if ν̇ < 0 and u(t) = s(ν(t)− bul)
u(t_)− sν(t) otherwise

(15)

and

d2(σ )=


−gbFr , if σ̇ > 0 and F(t) = g(σ (t)−bFr )
−gbFl, if σ̇ < 0 and F(t) = g(σ (t)−bFl)
F(t_)−gσ (t) otherwise.

(16)

Then the governing equation (3) and the boundary condi-
tion (5) can be rewritten as

Ihη̈(t)− EI [Y ′′R (l, t)− Y
′′
L (l, t)] = sν(t)+ d1(t), (17)

MŸ (l, t)− EI [Y ′′′L (l, t)− Y ′′′R (l, t)] = gσ (t)+ d2(t) (18)

where

d1(t) = d1(ν)+ d̄1, (19)

d2(t) = d2(σ )+ d̄2 (20)

are the ‘disturbance-like’ terms. Since d1(v), d̄1, d2(σ ) and
d̄2 are bounded, d1(t) and d2(t) are bounded within unknown
positive constant D and Q, respectively. We will estimate D
and Q later.
The desired control inputs are presented as follows

ν(t) =
1
s
[−k1ė− k2e− tanh(h(t))D̂(t)] (21)

σ (t) =
1
g
[−kua(t)−

mβ
α
ω̇(l, t)− kdω(l, t)

− tanh(ua(t))Q̂(t)] (22)

where k, k1, k2, kd , α, β are positive constants, D̂(t) and Q̂(t)
are the observers ofD andQ, respectively. Then the errors of
estimation ofD andQ can be defined as D̃(t) = D−D̂(t) and
Q̃(t) = Q−Q̂(t), respectively. Hence we have ˙̃D(t) = − ˙̂D(t)
and ˙̃Q(t) = − ˙̂Q(t). The adaptive laws are expressed as

˙̂D(t) = h(t) tanh(h(t))− ξ1D̂(t), (23)
˙̂Q(t) = αua(t) tanh(ua(t))− ξ2Q̂(t) (24)

where ξ1 and ξ2 are positive constants. Moreover, h(t) and
ua(t) are expressed as

h(t) = αė+ βe (25)

and

ua(t) = ω̇(l, t)+
β

α
ω(l, t), (26)

respectively, in which

e = η(t)− ηd (27)

and it implies that ė = η̇(t).
Remark 3: In the designed control laws (21) and (22), all

signals can be measured by sensors located at the center
body or computed by backward difference algorithm. We can
directly measureω(l, t) by applying a laser displacement sen-
sor, and use the backward difference algorithm to calculate
ω̇(l, t) according to the measured value. η(t) and η̇(t) can
be measured by employing a rotary encoder and tachometer,
respectively. Although measurement noises objectively exist
in sensors’ implementation, the effect is obvious for the high
order differentiating terms with respect to time and weak for
first-order differentiating terms. In the proposed controls (21)
and (22), only ω̇(l, t) and η̇(t) with differentiating once exist,
thus the effects of the noises can be ignored in practice.

The Lyapunov function candidate of our chosen is

V(t) = Va(t)+ Vb(t)+ Vc(t)+
1
2
D̃2(t)+

1
2
Q̃2(t) (28)

where Va(t), Vb(t) and Vc(t) are defined as

Va(t) | =
αEI
2

∫ l

0
[ω′′L(x, t)]

2dx +
αEI
2

∫ 2l

l
[ω′′R(x, t)]

2dx

+
βγ1

2

∫ l

0
Y 2
Le (x, t)dx +

βγ1

2

∫ 2l

l
Y 2
Re (x, t)dx

+
αρ

2

∫ l

0
Ẏ 2
L (x, t)dx +

αρ

2

∫ 2l

l
Ẏ 2
R (x, t)dx, (29)

Vb(t) =
αm
2
u2a(t)+

αkd
2
ω2(l, t)+(

αk2
2
+
βk1
2

)e2+
αIh
2
ė2,

(30)

Vc(t) = βIheė+ βρ
∫ l

0
ẎL(x, t)YLe (x, t)dx

+βρ

∫ 2l

l
ẎR(x, t)YRe (x, t)dx (31)

where YLe (x, t) = ωL(x, t)+xe and YRe (x, t) = ωR(x, t)+xe.
Lemma 1: The Lyapunov function candidate (28) is a pos-

itive function and is upper and lower bounded as

0 ≤ λ1[Va(t)+ Vb(t)+ D̃2(t)+ Q̃2(t)] ≤ V(t)
≤ λ2[Va(t)+ Vb(t)+ D̃2(t)+ Q̃2(t)] (32)

where λ1 and λ2 are two positive constants.
Proof: Please see Appendix A. �

Lemma 2: The time derivative of the Lyapunov function
candidate (28) can be upper bounded with

V̇(t) ≤ −λV(t)+ ε (33)

where λ > 0 and ε > 0.
Proof: Please see Appendix B. �

87020 VOLUME 7, 2019



Z. Lin et al.: Vibration Control of a Flexible Spacecraft System With Input Backlash

Theorem 1: For the studied flexible spacecraft system
described by (2)-(5), under the proposed control laws (21)
and (22) with suitable parameters, assuming that the initial
conditions are bounded, the closed-loop system is uniformly
bounded.

Proof: Multiplying (33) by exp(λt), and integrating the
consequence yields

V(t) ≤ V(0)exp(−λt)+
ε

λ
∈ L∞. (34)

We further have{
ω2
L(x, t) ≤ (2l + 1)ω2(l, t)+ (l + 16l4)

∫ l
0 [ω
′′
L(x, t)]

2dx

ω2
R(x, t) ≤ (2l + 1)ω2(l, t)+ (l + 16l4)

∫ l
0 [ω
′′
R(x, t)]

2dx

(35)

By Lemma 1, (29) and (30), we can further obtain
ω2
L(x, t) ≤ τ [Va(t)+ Vb(t)] ≤

τ

λ2
V(t)

ω2
R(x, t) ≤ τ [Va(t)+ Vb(t)] ≤

τ

λ2
V(t)

(36)

where τ = max{
4l + 2
αkd

,
2l + 32l4

αEI
} > 0.

Substituting (34) into (36), we get
|ωL(x, t)| ≤

√
τ

λ2
[V(0)+

ε

λ
], ∀(x, t) ∈ [0, l]× [0,∞),

|ωR(x, t)| ≤
√
τ

λ2
[V(0)+

ε

λ
], ∀(x, t) ∈ [l, 2l]× [0,∞)

(37)

In the same manner, we have

|e|=|η(t)− ηd | ≤

√
ϑ

λ2
[V(0)+

ε

λ
], ∀t ∈ [0,∞) (38)

where ϑ = 2/(αk2 + βk1). Hence, we can obtain

lim
t→∞
|ωL(x, t)| ≤

√
τε

λλ2
, lim

t→∞
|ωR(x, t)| ≤

√
τε

λλ2
(39)

and

lim
t→∞
|e| ≤

√
ϑε

λλ2
. (40)

�
Remark 4: A reasonable selection process of the control

design parameters can make sure that constraint conditions
(60)-(64) are satisfied. Since J is neither a design parameter
nor a system parameter, J can be assigned an arbitrary
value. It implies that we can first choose a proper β, and
determine J according to (61). Then α can be selected by
(60). kd , k1 and k2 are chosen for making (62), (63) and
(64) hold, respectively. In simulations, we will repeat the
above parameters selection procedure, until better control
performances are achieved.

TABLE 1. Parameters of the flexible spacecraft system.

FIGURE 3. Deflection of the uncontrolled spacecraft.

IV. SIMULATIONS
In order to verify the effectiveness of our proposed control
scheme for the flexible spacecraft system with input backlash
non-linearity, simulations have been carried out by using
the finite difference method [24], [43] and the results are
presented in this section.

The finite difference method can provide a straightforward
and accurate process to resolve the dynamic model (2)-(5)
constituting a highly nonlinear and hybrid differential equa-
tions with two independent variables, i.e., space and time.
The space step and the time step are divided as 1x = 0.5m
and 1t = 3 × 10−4s, respectively. The spatial and temporal
terms in the equations are obtained using the finite difference
techniques through a finite rectangular grid on this mesh of
discrete points.

The parameters of the considered system are shown
in Table 1. The boundary disturbance and initial conditions
of the system are as follows d̄1(t) = d̄2(t) = 1.2 + sin(π t),
ωL(x, 0) = ωR(x, 0) = 0.2x, ω̇L(x, 0) = ω̇R(x, 0) = 0,
η(0) = 0(rad) and ηd = 0.5(rad).

Without any control input, i.e. u(t) = F(t) = 0, the
deflection is always large as shown in Fig. 3. From Fig. 5, we
can see that the angle displacement of the spacecraft is less
than 0.3 rad, which exceeds the desired position ηd = 0.5 rad.
Boundary control laws (13) and (14) are executed by set-

ting kd = 50, k = 100, k1 = 300, k2 = 800, α = 1.2,
β = 0.6, ξ1 = 0.001 and ξ2 = 0.08. s = g = 1,
bul = −50, bur = 50, bFl = −10 and bFr = 10 are
chosen as the parameters of the input backlash non-linearity.

VOLUME 7, 2019 87021
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FIGURE 4. Deflection of the spacecraft with the proposed boundary
control laws.

FIGURE 5. Angular position of the spacecraft with the proposed boundary
control laws.

FIGURE 6. Designed control torque.

Figs. 4 presents that the developed control can suppress the
vibrational deflection to zero by the proposed controls in
about 15s. As is shown in 5, thanks to the control schemes,

FIGURE 7. Designed control force.

FIGURE 8. Actual control torque.

FIGURE 9. Actual control force.

the angle displacement is regulated to 0.5rad in less than
15 seconds. The desired control commands ν(t) and σ (t) are
bounded and smooth as demonstrated in Fig. 6 and Fig. 7.

87022 VOLUME 7, 2019
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FIGURE 10. Online updating law D̂(t).

FIGURE 11. Online updating law Q̂(t).

FIGURE 12. Deflection of the spacecraft with PD controls.

Moreover, the performances of the actual controls and the
adaptive laws are illustrated in Figs. 8, 7, 10 and 11.

As a comparison, we replace the control laws (21) and (22)
with classical PD controls, namely, νPD = −kp1η(t)−kd1η̇(t)
and σPD = −kp1ω(l, t) − kd1ω̇(l, t), respectively, where
kp1 = 10, kd1 = 6, kp2 = 100 and kd2 = 80. As shown
in Fig. 12, the offset can be stabilized near to zero slowly.

FIGURE 13. Angular position of the spacecraft with PD controls.

From Fig. 13, the angle displacement cannot be regulated to
the desired position, but the bias is tapering off and close to
0.5 rad at the 30s. Hence, we can conclude that by employing
the PD control laws, the flexible spacecraft system is stabi-
lized to some extent. However, the control result is inferior to
ours.

Therefore, the above simulations suggest that the proposed
novel control scheme in this paper can handle the unknown
backlash and prove the ultimately uniform stability of the
closed-loop system.

V. CONCLUSION
In this study, the vibration suppression issue for a flexible
spacecraft system subject to unknown external disturbance
and uncertain input backlash non-linearity was addressed.
The backlash error and external disturbance were reformu-
lated as a combined ‘‘disturbance like’’ item. The upper-
bound of a such item was estimated by designing a proper
online updating law. Two adaptive vibration control inputs
were constructed for eliminated the effect of the ‘‘disturbance
like’’ items. With the boundary control schemes, the stabi-
lization of the spacecraft’s offset was achieved and the angle
positions were regulated in the desired region. Numerical
simulations were performed to illustrate the performance of
the control designed. A further research is conducted the
work of this paper into a 3-DOF attitude described flexible
spacecraft model.

APPENDIX A
PROOF OF LEMMA 1
According to (29) and (30), we have

δ1[e2 + ė2 +
∫ l

0
[Y 2
Le (x, t)dx + Ẏ

2
L (x, t)]dx

+

∫ 2l

l
[Y 2
Re (x, t)+ Ẏ

2
R (x, t)]dx] ≤ Va(t)+ Vb(t) (41)

where 2δ1 = max{βγ1, αρ, αk2 + βk1, αIh}.
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Moreover, from (31) we obtain

|Vc(t)| ≤
βIh
2

(e+ ė)+
βρ

2
[
∫ l

0
[Y 2
Le (x, t)dx + Ẏ

2
L (x, t)]dx

+

∫ 2l

l
[Y 2
Re (x, t)+ Ẏ

2
R (x, t)]dx]]

≤ δ2(Va(t)+ Vb(t)) (42)

where δ2 = β max{Ih, ρ}/2δ1. It implies that

−δ2[Va(t)+ Vb(t)] ≤ Vc(t) ≤ δ2[Va(t)+ Vb(t)]. (43)

We choose a proper 0 < β < 2δ1/max{Ih, ρ} for getting
0 < µ1 = 1− δ2 < 1, then we have

0 ≤ λ1[Va(t)+ Vb(t)+ D̃2(t)+ Q̃2(t)] ≤ V(t)
≤ λ2[Va(t)+ Vb(t)+ D̃2(t)+ Q̃2(t)] (44)

where λ1 = min{µ1,
1
2 } and λ2 = 1+ δ1 > 1. �

APPENDIX B
PROOF OF LEMMA 2
Differentiating (28) leads to

V̇(t) = V̇a(t)+ V̇b(t)+ V̇c(t)+ D̃(t) ˙̃D(t)+ Q̃(t) ˙̃Q(t).

(45)

V̇a(t) = αEI
∫ l

0
ω′′L(x, t)ω̇

′′
L(x, t)dx

+αEI
∫ 2l

l
ω′′R(x, t)ω̇

′′
R(x, t)dx

+βγ1

∫ l

0
YLe (x, t)ẎLe (x, t)dx

+βγ1

∫ 2l

l
YRe (x, t)ẎRe (x, t)dx

+αρ

∫ l

0
ẎL(x, t)ŸL(x, t)dx

+αρ

∫ 2l

l
ẎR(x, t)ŸR(x, t)dx. (46)

Substituting governing equations (2) and using integration
by parts, we have

V̇a(t) ≤ −αγ1
∫ l

0
Ẏ 2
L (x, t)dx − αγ1

∫ 2l

l
Ẏ 2
R (x, t)dx

−αEI [ω′′R(l, t)− ω
′′
L(l, t)]ė

−αEI [ω′′′L (l, t)− ω
′′′
R (l, t)]ω̇(l, t)

+βγ1

∫ l

0
YLe (x, t)ẎLe (x, t)dx

+βγ1

∫ 2l

l
YRe (x, t)ẎRe (x, t)dx. (47)

Taking the time derivative for Vb(t), we have

V̇b(t) = αmua(t)u̇a(t)+ αkdω(l, t)ω̇(l, t)
+ (βk1 + αk2)eė+ αIhėë. (48)

Applying (26), (18) and (22), we obtain

αmua(t)u̇a(t)=−αku2a(t)− kdω(l, t)ω̇(l, t)− βkdω
2(l, t)

+αEIua(t)[ω′′′L (l, t)− ω
′′′
R (l, t)]

+αua(t)[− tanh(ua(t))Q̂(t)+d2(t)]. (49)

Moreover, using (17) and (21), we have

αIhėë = αėEI [ω′′R(l, t)+ ω
′′
L(l, t)]− αk1ė

2
− αk2eė

+αė[− tanh(h(t))D̂(t)+ d1(t)]. (50)

Substituting (49) and (50) into (48), we have

V̇b(t) ≤ −αku2a(t)− βkdω2(l, t)− αk1ė2 + βk1eė

+αėEI [ω′′R(l, t)+ ω
′′
L(l, t)]

+αEIua(t)EI [ω′′′L (l, t)− ω
′′′
R (l, t)]

−αė tanh(h(t))D̂(t)+ αėd1(t)

−αua(t) tanh(ua(t))Q̂(t)+ αua(t)d2(t). (51)

For the third term of (45), we have

V̇c(t)= βIhė2+βIheë

+βρ[
∫ l

0
ŸL(x, t)YLe (x, t)dx+

∫ l

0
Ẏ 2
L (x, t)dx

+

∫ 2l

l
ŸR(x, t)YRe (x, t)dx+

∫ 2l

l
Ẏ 2
R (x, t)dx]. (52)

Substituting (3) and (21), we have

βIhëe = βEI [ω′′R(l, t)− ω
′′
L(l, t)]e− βk1ėe

−βk2e2 − βe[tanh(h(t))D̂(t)+ d1(t)]. (53)

Applying (2) and using integration by parts yield

βρ

∫ l

0
ŸL(x, t)YLe (x, t)dx

= −βγ1

∫ l

0
ẎL(x, t)YLe (x, t)dx − βEI [ω

′′′
L (l, t)ω(l, t)

−ω′′L(l, t)e+
∫ l

0
[ω′′L(x, t)]

2dx] (54)

and

βρ

∫ 2l

l
ŸR(x, t)YRe (x, t)dx

= −βγ1

∫ 2l

l
ẎR(x, t)YRe (x, t)dx − βEI [−ω

′′′
R (l, t)ω(l, t)

+ω′′R(l, t)e+
∫ 2l

l
[ω′′R(x, t)]

2dx]. (55)

Therefore, we obtain

V̇c(t)
≤ βIhė2 − βk1eė− βk2e2

+βρ[
∫ l

0
Ẏ 2
L (x, t)dx +

∫ 2l

l
Ẏ 2
R (x, t)dx]

−βγ1[
∫ l

0
ẎL(x, t)YLe (x, t)dx

+

∫ 2l

l
ẎR(x, t)YRe (x, t)dx]

−βEI [ω′′′L (l, t)− ω
′′′
R (l, t)]ω(l, t)
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−βEI [
∫ l

0
[ω′′L(x, t)]

2dx +
∫ 2l

l
[ω′′R(x, t)]

2dx]

−βe[tanh(h(t))D̂(t)+ d1(t)] (56)

according to (52), (53), (54) and (55).
Applying (12), (23), (24)and (25), we further have

−αė tanh(h(t))D̂(t)+ αėd1(t)− αua(t) tanh(ua(t))Q̂(t)

+αua(t)d2(t)− βe tanh(h(t))D̂(t)− βe tanh(h(t))d1(t)

+D̃(t) ˙̃D(t)+ Q̃(t) ˙̃Q(t)

≤
ξ1

2
D2
−
ξ1

2
D̃2(t)+

ξ2

2
Q2
−
ξ2

2
Q̃2(t). (57)

By the boundary conditions (4), the following inequality
holds

J [
∫ l

0
Y 2
Le (x, t)dx +

∫ 2l

l
Y 2
Re (x, t)dx]

≤ 4Jlω2(l, t)+ 16Jl3e2 + 16Jl4[
∫ l

0
[ω′′L(x, t)]

2dx

+

∫ 2l

l
[ω′′R(x, t)]

2dx] (58)

where J is a positive constant.
Together all of (47), (51), (56), (57) and (58), we have

V̇(t)

≤ −(αγ1 − βρ)[
∫ l

0
Ẏ 2
L (x, t)dx +

∫ l

0
Ẏ 2
R (x, t)dx]

− J [
∫ l

0
Y 2
Le (x, t)+

∫ 2l

l
Y 2
Re (x, t)]

− (βEI − 16Jl4)[
∫ l

0
[ω′′L(x, t)]

2dx +
∫ 2l

l
[ω′′R(x, t)]

2dx]

−αku2a(t)− (βkd − 4Jl)ω2(l, t)

− (αk1 − βIh)ė2 − (βk2 − 16Jl3)e2

ξ1

2
D2
−
ξ1

2
D̃2(t)+

ξ2

2
Q2
−
ξ2

2
Q̃2(t). (59)

Carefully choosing proper parameters α, β, J , k, kd k1 k2
and let them satisfy the following conditions

αγ1 − βρ > 0 (60)

βEI − 16Jl4 > 0 (61)

βkd − 4Jl > 0 (62)

αk1 − βIh > 0 (63)

βk2 − 16Jl3 > 0. (64)

Then we have

V̇(t) ≤ −λ3[Va(t)+ Vb(t)+ D̃2(t)+ Q̃2(t)]+ ε (65)

where

λ3 = min{
2(αγ1 − βρ)

αρ
,
2J
βγ1

,
2(βEI − 16Jl4)

αEI
,
2k
m
,

2(βkd − 4Jl)
αkd

,
2(αk1 − βIh)

αIh
,
2(βk2 − 16Jl3)
αk2 + βk1

,

ξ1, ξ2} > 0 (66)

and

ε =
ξ1

2
D2
+
ξ2

2
Q2. (67)

Therefore, combining (32) and (59), we get

V̇(t) ≤ −λV(t)+ ε (68)

where λ = λ3/λ2 and ε > 0. �
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