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ABSTRACT State-of-charge (SOC), which indicates the remaining capacity at the current cycle, is the key to
the driving range prediction of electric vehicles and optimal charge control of rechargeable batteries. In this
paper, we propose a combined convolutional neural network (CNN) – long short-term memory (LSTM)
network to infer battery SOC frommeasurable data, such as current, voltage, and temperature. The proposed
network shares the merits of both CNN and LSTM networks and can extract both spatial and temporal
features from input data. The proposed network is trained using data collected from different discharge
profiles, including a dynamic stress test, federal urban driving schedule, and US06 test. The performance
of the proposed network is evaluated using data collected from a new combined dynamic loading profile
in terms of estimation accuracy and robustness against the unknown initial state. The experimental results
show that the proposed CNN-LSTM network well captures the nonlinear relationships between SOC and
measurable variables and presents better tracking performance than the LSTM and CNN networks. In case
of unknown initial SOCs, the proposed network fast converges to true SOC and, then, presents smooth and
accurate results, with maximum mean average error under 1% and maximum root mean square error under
2%. Moreover, the proposed network well learns the influence of ambient temperature and can estimate
battery SOC under varying temperatures with maximum mean average error under 1.5% and maximum root
mean square error under 2%.

INDEX TERMS State-of-charge estimation, long short-term memory, convolutional neural network,
lithium-ion batteries.

I. INTRODUCTION
Lithium-ion batteries have gradually become the dominant
power source of electric vehicles (EVs) due to their high
energy density, high power density, long lifetime and envi-
ronmental friendliness [1]. As the EV driving environment
is usually complicated and the battery will degrade over
repeated charge and discharge, a battery management sys-
tem (BMS) is required to monitor the battery health status
and protect the battery from over-charge and over-discharge
to ensure the battery operating in a safe window [2]. State-of-
charge (SOC), which reflects the remaining battery charge
during one charge-discharge cycle [3], is one of the key
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states in the BMS. Accurate SOC information is necessary
for estimating EV range and preventing battery failure caused
by over-charge or over-discharge. However, it can only be
estimated from current, voltage and temperature and other
measurable variables as direct measurements of battery SOC
is not applicable.

Currently, Ampere-Hour integral method, open-circuit
voltage (OCV) method, model-based filtering method, and
machine learning method are widely investigated for SOC
estimation [4].

The Ampere-Hour integral method estimates battery SOC
directly through accumulating battery current over time [5].
This kind of method requires the initial SOC be known in
advance and relies on the precision of current sensor. In addi-
tion, the underlying numerical integration method also plays
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an important role. In contrast, the OCV method estimates
battery SOC via a look-up table based on the monotonic
relationship between OCV and SOC [6]. The OCV method
is simple, but it cannot be applied to on-board applications
because obtaining precise OCV value requires the battery rest
for an adequate time to reinstate the battery to an electro-
chemically stable condition.

Later on, the model-based method combines the Ampere-
Hour integral method and OCV method with mature filtering
techniques such as variants of Kalman filter and particle
filter to update the ‘‘best’’ estimate of SOC recursively [7].
Plett et al. introduced an extended Kalman filter [8] and an
unscented Kalman filter [9] to estimate the SOC of lithium-
ion polymer battery packs. Gao et al. employed a particle
filter to estimate the SOC of lithium-ion batteries [10]. The
model-based filtering method is very fast and hence suitable
for real-time applications, but its performance relies heavily
on the quality of battery model [11]. Many models, such as
simple model, combined model, one-state hysteresis model,
enhanced self-correcting model, and resistance-capacitance
network based equivalent circuit model, have been proposed
to estimate the SOC of lithium-ion batteries [12]. Most of
these models can only work under strict conditions, such as
constant ambient temperature and specified battery type. New
models must be established when other factors are consid-
ered, such as temperature, degradation level, humidity etc.

In contrast, the machine learning method directly models
the nonlinear relationships between battery SOC and mea-
sured variables through massive collected data [7]. The
commonly used machine learning methods include artifi-
cial neural networks [13], fuzzy logic [14], support vector
machine [15], and so on. While specific battery model is
not required for machine learning methods, their estimation
performance strongly depends on the quality and quantity of
training data. Moreover, the training process takes a long time
when large amounts of data are present.

In recent years, the neural network-based deep learning
method has drawn much attention from the research world.
On one hand, as the booming of computing power owing to
the advancement of graphics processing units (GPUs) as well
as the advent of mature machine learning frameworks such
as TensorFlow, building and training neural networks have
been much easier and faster than before [16]. On the other
hand, large-scale field data can be gathered and stored via
online BMS and then uploaded to remote data servers [4].
Additionally, battery data can also be generated from labora-
tory tests with dynamic driving regimes. Sahinoglu et al. [17]
proposed a recurrent neural network (RNN) to estimate the
SOC of lithium-ion batteries. Yang et al. [4] introduced a
long short term memory (LSTM) network to estimate the
battery SOC from measured voltage, current, and tempera-
ture. Yang et al. [16] employed a gated recurrent unit (GRU)
network to estimate the battery SOC at varying tempera-
tures and evaluated the performance using two mainstream
lithium-ion batteries. Unlike traditional feedforward neural
network, the RNN uses hidden nodes to store information of

past inputs, allowing the SOC estimation to incorporate the
past information. LSTM and GRU are two variants of RNN,
which further extend the ability of original RNN for long-
term dependency.

Convolutional neural network (CNN) [18] is yet another
successful architecture in deep learning research. While
LSTM characterizes long-term dependency and is good at
handling time series information, the CNNuses convolutional
filters to extract interrelations among inputs data.

In this paper, a combined CNN-LSTM network is pro-
posed to model the complex battery dynamics. Specifically,
the CNN is used to extract advanced spatial features in the
original data, and the LSTM is used to model relationships
between current SOC and historical inputs. The proposed net-
work takes advantages of both the CNN and LSTM networks
and captures both spatial and temporal features of battery
data.

The contributions of this paper are summarized as follows.
1) A combined CNN-LSTM network is proposed to cap-

ture the nonlinear dynamics inside the lithium-ion bat-
tery and estimate battery SOC with voltage, current,
and temperature measurements.

2) Data collected from various well-known dynamic load-
ing profiles including dynamic stress test (DST),
federal urban driving schedule (FUDS), and US06, are
employed to train the proposed network. Data collected
from a combined dynamic loading profile are used to
evaluate the SOC estimation performance of the pro-
posed network.

3) Robustness against unknown initial states of the pro-
posed network is investigated. The performance of
SOC estimation is compared with the LSTM and CNN
networks.

4) The proposed network is trained to learn the influence
of ambient temperature and its performance on SOC
estimation is evaluated under varying temperatures.

The rest of this paper is organized as follows. Section II
introduces the experiment design and data collection.
Section III illustrates the details of the proposed network
for SOC estimation. The estimation results are presented in
Section IV. Conclusions are drawn in Section V.

II. EXPERIMENTS
Fig. 1 shows our test bench in Shenzhen Research Insti-
tute lab. The experiments were conducted on an Arbin
BT2000 battery tester with cylindrical A123 18650 battery
samples (cathode: lithium iron phosphate (LFP); anode:
graphite; nominal capacity: 1.1Ah; cut-off voltage: 3.6/2V;
end-of-charge current: 0.011A). The battery charge/discharge
profile was controlled with Arbin’s Mits Pro software. The
ambient temperature of battery samples was regulated using
a temperature chamber from Votsch.

A. NETWORK TRAINING TEST
To simulate different battery loading behaviors in real-world
applications, a set of well-known dynamic loading profiles
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FIGURE 1. Battery test bench.

designed by the US Advanced Battery Consortium [19] were
applied to discharge the battery under varying temperatures,
including DST, FUDS and US06.

Specifically, the FUDS and US06 driving profiles simulate
EV battery usage corresponding to city and highway driving
conditions, respectively. The DST profile is a simplified
profile resembling characteristics of the FUDS profile.
Fig. 2(a) plots the current profiles of DST, FUDS, and US06,
respectively.

FIGURE 2. Current profile and measured voltage in one discharge cycle:
(a) current profiles of DST (top), FUDS (middle), and US06 (bottom);
(b) measured voltages during the DST test (top), FUDS test (middle), and
US06 test (bottom).

In each test, the battery was first fully charged using
the standard constant-current/constant-voltage mode. In the
discharge process, one of the above discharge profiles was
applied repeatedly until fully discharged. After the DST,
FUDS, and US06 tests, a constant current test, where the
battery was discharged under a constant current (1.1A), was
also conducted. The cumulative capacity calculated during
the discharge process served as the nominal capacity of the
battery sample.

Finally, to take ambient temperature into consideration,
the above tests were repeated under 0◦C, 10◦C, 20◦C, 30◦C,
40◦C, 50◦C, and room temperature (RT, around 27◦C). The
voltage, current, and temperature data were sampled every
1 second. Fig. 2(b) shows the discharge voltage measure-
ments at room temperature corresponding to the DST, US06,
and FUDS tests, respectively.

B. NETWORK EVALUATION TEST
To simulate the complex real-world EV battery loading
behaviors, the DST-FUDS-US06 (DFU) profile, which com-
bines the DST, FUDS, and US06 profiles, was used to evalu-
ate the SOC estimation performance of the proposed network.
During discharge, the DFU profile was adopted repeatedly
until fully discharged. The DFU test was conducted under
0◦C, 10◦C, 20◦C, 30◦C, 40◦C, 50◦C, and RT to construct
the testing data sets for SOC estimation. Fig. 3 shows the
measured current, voltage, and calculated SOC fromAmpere-
Hour integral method during a DFU test at room temperature.

III. STATE-OF-CHRAGE ESTIMATION BASED ON THE
COMBINED CNN-LSTM NETWORK
In this section, a combined CNN-LSTM network is proposed
to model the highly nonlinear dynamics of lithium-ion bat-
teries and estimate battery SOC from measurable voltage,
current, and temperature variables. The CNN layer focuses on
the current input and manages to extract the spatial features
of battery data, then combines into high-level features. While
the LSTM uses hidden cell memories to store information
of past inputs, which is more suitable for processing time-
series data. The details of the CNN and LSTM networks are
described in the following.

A. CONVOLUTIONAL NEURAL NETWORK
CNN, proposed by Lecun et al. [18], is a feedforward neural
network effective for pattern recognition and feature extrac-
tion. As in Fig. 4, a typical CNN usually consists of an
input layer, a convolutional layer, a pooling layer, a fully
connected layer, and an output layer. With a list of filters,
the CNN extracts the topological features hidden inside the
data through layer-by-layer convolution and pooling opera-
tions. The CNN can use few parameters to capture the spatial
features of the input and combine them to generate high-level
features. These features are then fed into the fully connected
layer for further classification or regression.

Although CNN is known for great success in dealing with
2D images, there is no difficulty in applying the same idea to
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FIGURE 3. DFU test at RT: (a) measured current; (b) measured voltage;
(c) calculated SOC.

FIGURE 4. Typical CNN structure.

1D data [20]. In this paper, 1D convolution is adopted to cap-
ture the spatial features of battery variables. A convolutional
layer is added such that the input information runs through
a convolutional operation and an activation function before
flowing to the next layer,

hk = σ cnn(W ∗cnnxk + bcnn), (1)

where ∗ denotes the discrete convolution between the input
signal xk and the filter weight Wcnn; bcnn is a bias parameter
which shall be learned during training; σcnn is the underlying
activation function.

To capture different features, several filters of the same
size are adopted in one convolutional layer. The input sig-
nal convolves with each filter and the results are then
stacked together as the output, which is illustrated in Fig. 5,
where one convolutional layer with two filters are present.

FIGURE 5. Mechanism of a 1D convolutional layer.

The convolution operation is visualized as a sliding window
of the same size moving along the input with certain stride,
where for each stay of the window, the inner product between
the filter and the examined portion of input is computed as
one element of the output. For example, when using filter
(−1, 0, 1) with stride two and no bias, the first output is
2 × (−1) + 3 × 0 + 5 × 1 = 3 and the second output is
5× (−1)+ 1× 0+ 3× 1 = −2.

Since the space dimension of battery data on SOC estima-
tion is limited, the pooling layers are not employed in this
work.

B. LONG SHORT-TERM MEMORY
LSTM, proposed by Hochreiter et al. [21], is one of
the most popular variants of RNN [22]. Due to gradient
vanishing or explosion, RNN is incapable of addressing
long-term dependency using classic gradient based training
framework [23]. The LSTM network, in contrast, uses hidden
memory instead of ordinary hidden nodes to avoid such
drawbacks. Fig. 6 shows the structure of an LSTMunit, which
contains three types of gate: the input gate i, which determines
how much proportion of current input shall merge into the
cell memory; the forget gate f , which characterizes the forget
rate of the cell memory given current input; and the output

FIGURE 6. Structure of an LSTM unit.
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gate o, which controls how the cell memory shall influence
the node output. At time k , the forward pass of an LSTM unit
is proceeded as follows:

fk = σg
(
Wf xk + Uf hk−1 + bf

)
ik = σg (Wixk + Uihk−1 + bi)

ok = σg (Woxk + Uohk−1 + bo)

ck = fk ◦ ck−1 + ik ◦ σc (Wcxk + Uchk−1 + bc)

hk = ok ◦ σh(ck ), (2)

where ‘◦’ denotes the Hadamard product; xk is the unit input
at time k; hk is the corresponding unit output; ck is the hidden
unit memory; ik , fk , and ok are the activation vectors of the
input gate, the forget gate and the output gate, respectively;
σg, σc, σh are activation functions, where σg is a logistic
sigmoid function while σc and σh are both hyperbolic tangent
functions; and W , U , and b are weight matrices and bias
parameters to be learned during training.

To see how the gating process works, take the forget gate
for example, the gating factor fk is the output of a sigmoid
function and hence every element of which lies between
0 and 1. After the gating operation, old cell memory tends
to fade out when elements of fk approaches 0 and will be
preserved when fk approaches 1. In other words, fk can be
interpreted as an effectiveness factor determining how old
memory is retained as new input is available. The input gate
and the output gate function in the same way.

C. PROPOSED CONVOLUTIONAL LSTM NETWORK
When inferring SOC, two kinds of features exist, the spatial
feature which is the interrelations within current input and
the temporal feature which is the correlations between cur-
rent SOC and past inputs. To attend to both the spatial and
temporal features of battery data, we propose a combined
CNN-LSTM network for accurate and robust battery SOC
estimation. Specifically, the CNN is used to extract more
advanced spatial features in the original data, and the LSTM
is used to model relationships between current SOC and
historical inputs.

FIG 7. shows the architecture of the proposed CNN-
LSTM network. The first layer is a sequence input layer,
where battery variables including current I , voltage V ,
temperature T , average current Iavg, and average voltage Vavg

FIGURE 7. Architecture of the proposed network.

are fed into the network. The selection of average current
and voltage signals as input refers to [24], in which better
performance was achieved when the average current and
voltage were present. Specifically, the average current and
voltage are calculated over 20 precedent time steps in this
work. Next one convolutional layer with six filters of length
three is followed to extract the spatial features of battery input
parameters. Then one LSTM layer with 300 hidden nodes
is added to learn the temporal features of battery dynamic
evolution. According to [16], [24], [25], it is sufficient to
depict the temporal nonlinearity inside the battery with one
LSTM layer. Moreover, examination with the networks of
varying number of LSTM nodes reveals that 200 to 500 nodes
are suitable for SOC estimation of LFP batteries. Finally,
a fully connected layer with 80 nodes is used as a regression
layer, spitting out the final SOC estimation.

The effect of 1D convolutional layer is reflected as follow-
ing. By choosing the weight of convolution kernel and the
width of window, different data features can be extracted to
better serve as the input of LSTM layer. From signal process-
ing point of view, performing 1D convolution is equivalent
to applying discrete Fourier transform or wavelet transform
with the same kernel to the raw data, hence extracting the
characteristics in the frequency domain. Now the LSTM
network explores the correlations of the current output with
the past inputs, the introduction of CNN forces the network
to also exploit the relationships within current input. Such
relationshipmay present in a vague or unintuitiveway, but can
be generally understood as how current, voltage, temperature,
mean current and mean voltage interrelates with each. Learn-
ing these features is reflected as training the CNN network
towards reducing the estimation error.

During the training process, mean square error (MSE) is
chosen as the overall loss function evaluated at the end of
each forward pass:

MSE =
1
K

K∑
k=1

(
yk − ŷk

)2
, (3)

where yk is the true SOC value while ŷk is the output of the
proposed network at time k . Adam optimizer [26] is selected
to minimize the total loss, which updates the network weights
and biases based on the gradient of the loss function. The
initial learning rate is set to 0.01. The decay rates are set
to 0.9 and 0.999, respectively. Considering possible over-
training during the training phase, a dropout rate of 20% is
used in the LSTM layer and fully connected layer [27].

In the testing process, the root mean square error (RMSE)
and mean absolute error (MAE) are used to evaluate the
performance of the proposed network:

RMSE =

√√√√ 1
K

K∑
k=1

(
yk − ŷk

)2
MAE =

1
K

K∑
k=1

∣∣yk − ŷk ∣∣, (4)
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MAE measures how close the estimation is to the true values
neglecting the sign. In contrast, the RMSE is more sensitive
to large errors, and characterizes the variation of errors.

IV. RESULTS
The proposed CNN-LSTM network in Section III is trained
with data collected from the DST test, the FUDS test, and
the US06 test, and the performance of online SOC estimation
is evaluated with data collected from the DFU test. The
input of the network isxk = [Ik ,Vk ,Tk , Iavg,k ,Vavg,k ], while
the output is the corresponding SOC estimation, namely
yk = [SOCk ]. Section IV-A presents the estimation results
at room temperature, while Section IV-B provides estimation
results under varying temperatures. All the training processes
are implemented on a server with two GeForce GTX 1080 Ti
GPUs.

A. SOC ESTIMATION AT ROOM TEMPERATURE
In this section, the proposed CNN-LSTM network is
trained with the DST data (8438 samples), the FUDS data
(8390 samples), and the US06 data (7987 samples) at room
temperature, and the performance of online SOC estimation
is evaluated with the DFU data (8350 samples) at room
temperature.

While large training epoch generally enhancesmodel accu-
racy, the training time grows accordingly. To determine an
appropriate training epoch, the RMSEs of the training and
testing data sets versus training epochs are plotted in Fig. 8,
where the training epoch increases by 200 until 15000.
As in Fig. 8, the RMSE quickly drops below 4% after
2000 epochs, and then almost keeps within 2% after
6200 epochs. Fluctuations are observed around epoch
6000∼8000 and 11000∼12000, where the RMSEs increase
abruptly but then quickly stabilize, indicating the optimiza-
tion algorithm hopping from one local optima to another.
Training and testing error reach global minimum between
epoch 8000 to 11000. Hence 10000 is a justified choice for
training epoch selection.

FIGURE 8. RMSEs of the training and testing performance when epoch
varies from 1 to 15000.

The performance of the proposed network is compared
with the LSTM and CNN networks. The LSTM network is
the proposed network without the convolutional layer. The
CNN network has three-convolutional layers with six filters
in each layer, where each hidden layer has the same size
as the input layer, and zero padding is used such that data

length is preserved in the subsequent layers. All networks
are trained with 10000 epochs. The training times of the pro-
posed network, the LSTM network, and the CNN network are
161 minutes, 231 minutes and 102 minutes, respectively. For
the SOC estimation on our laptop, the average computation
time at each time step is 0.098ms, 0.116ms, and 0.082ms,
respectively.

Fig. 9 shows the SOC estimation results with SOC starting
from 100%. Compared with the LSTM network and the
proposed network, the CNN network which is independent
of past inputs yields a much fluctuating estimation. In con-
trast, the estimated SOCs from the LSTM network and the
proposed network are much smoother andmore accurate. The
estimation errors of the proposed network and the LSTM
network are also plotted in Fig. 9(b), where the estimation
errors of the proposed network stay within 2%, while for
the LSTM network, the worst estimation error exceeds 4%.
In this case, both the proposed network and the LSTM net-
work yield satisfying results, with the proposed network been
slightly better.

FIGURE 9. SOC estimation results with initial SOC at 100%: (a) SOC
tracking; (b) estimation error.

In practice, the initial battery SOC is not always known
a priori, hence it is vital that the proposed network is robust
against unknown initial SOC state. Rather than fixing the
initial SOC at 80% and then performing the discharge test,
data with initial SOC at 80% are generated by removing those
data with SOC greater than 80% in Fig. 9. Other initial SOC
data are generated in the same way.

When SOC starts from 80%, as in Fig. 10, being a feed-
forward neural network, the CNN network presents almost
identical estimation results as those in Fig. 9. In comparison,
the performance of the LSTM network and the proposed
network are two-stage. In the first stage, the performance
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FIGURE 10. SOC estimation results with initial SOC at 80%: (a) SOC
tracking; (b) estimation error.

of the two networks are dominated by the unknown initial
states, where compared with the LSTM network, it takes
longer time for the proposed network to track the true SOC.
After this period, the proposed network presents smaller and
more consistent estimation errors similar to Fig 9, which can
be seen from the estimation errors plotted in the Fig. 10(b).
Statistically, the overall RMSE and MAE of the proposed
network are 1.35% and 0.87%, respectively, slightly smaller
than those of the LSTM network (RMSE: 1.43%, MAE:
0.95%).

Additionally, Fig. 11 presents the estimation results with
initial SOC at 60%. As expected, the estimation results of the

FIGURE 11. SOC estimation results with initial SOC at 60%: (a) SOC
tracking; (b) estimation error.

CNN network resemble those in Fig. 9. This time, the pro-
posed network converges to the true SOCmuch faster than the
LSTM network. In the second stage, the proposed network
is again more stable and accurate. The RMSE and MAE of
the proposed network are 0.92% and 0.48%, respectively,
while those of the LSTM network are 2.97% and 2.03%,
respectively.

While the CNN network still yields the worst performance,
it is least influenced by unknown initial states. For the LSTM
network and the proposed network, the SOC estimation is
first dominated by unknown initial SOC. Once the networks
converge to the true SOC, the proposed network presents
better performance in terms of consistency and accuracy.

More statistical results are tabulated in Table 1, where
initial SOC decreases from 100% to 20% by 20%. In all cases,
the proposed network yields smaller RMSEs and MAEs than
the LSTM and CNN networks.

TABLE 1. RMSEs and MAEs of SOC estimation under varying initial states.

It is observed that the estimation RMSEs and MAEs are
greater during 40% to 80%, rather than increasing with ini-
tial SOC bias. This can be explained by the existence of
flat region in the OCV-SOC curve for the LFP batteries.
Fig. 12 presents the typical OCV-SOC curve for the LFP

FIGURE 12. OCV-SOC curve for LFP battery at room temperature:
(a) 0%-100% SOC; (b) 30%-80% SOC.
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battery under room temperature, where the 40%∼80% SOC
region is relatively flat, meaning that measurable battery
physical states are quite stable among this range, which is
desirable for the battery as a power source. On the other hand,
this property makes inferring the initial SOC becomes much
harder, since tiny deviation in the OCV corresponds to great
deviation in SOC estimation.

B. SOC ESTIMATION AT VARYING TEMPERATURES
To capture the effects of ambient temperature, in this section,
the proposed network is trained to learn the battery dynamics
under varying temperatures. The proposed network is trained
using theDST, FUDS, andUS06 data under 0◦C, 10◦C, 20◦C,
30◦C, 40◦C, and 50◦C. Then the proposed network is tested
using the DFU data under 0◦C, 10◦C, 20◦C, 30◦C, 40◦C,
50◦C, and RT, respectively. Fig. 13 shows the estimation
results under 0◦C, RT, and 50◦C, respectively. The proposed
network produces satisfying estimation results, with RMSEs
of 1.46%, 1.31%, and 0.82%, respectively. The RMSE and
MAE results of all cases are tabulated in Table 2, where
all RMSEs are within 2% while MAEs are within 1.5%.
Therefore, the proposed network can capture the influence of
ambient temperature and provide good SOC estimation under
varying temperatures.

FIGURE 13. Results of SOC estimation under different temperatures:
(a) 0◦C; (b) RT; (c) 50◦C.

TABLE 2. RMSEs and MAEs of SOC estimation under varying
temperatures.

V. CONCLUSION
In this paper, we proposed a combined CNN-LSTM network
for the SOC estimation of lithium iron phosphate batteries.
The network was trained using data collected from different
discharge profiles, including the DST, US06 and FUDS pro-
files. Data collected from a new combined DFU profile were
used to evaluate the performance of the proposed network on
SOC estimation.

Experimental results showed that the proposed network
can capture the nonlinear correlations between SOC and net-
work input variables, namely current, voltage, temperature,
average current, and average voltage successfully. In case
of unknown initial SOCs, the network converged to the true
SOC quickly, and then presented smooth and accurate esti-
mation with overall RMSEs under 2% and MAEs under 1%.
Compared with the LSTM and CNN networks, the proposed
network presented smoother estimation results and better
tracking accuracy in all test cases. Besides, the proposed
network well learned the influence of ambient temperature
and provided satisfying SOC estimation under varying tem-
peratures, with RMSEs within 2% and MAEs within 1.5%.

Finally, the battery dynamics is influenced by aging upon
repeated usage. To consider the effect of battery aging,
we proposed to update the network parameters regularly.
Based on our experience, a two-month or even longer gap is
acceptable as the battery aging process is slow.
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