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ABSTRACT In order to overcome the limitations of the Pareto optimality in solving multi-objective
optimization problems, a new optimality definition, fuzzy optimality is proposed, which considered both
of the numbers of improved objectives and the extent of the improvements. Then, the fuzzy optimality-
based multi-objective particle swarm optimization algorithm is presented. It inherits the basic structure of the
particle swarm optimization and evaluates the particles by the fuzzy optimality. The numerical experiments
are carried out on 6 representative test functions, and the results show that the proposed fuzzy optimality
based multi-objective particle swarm optimization algorithm shows better performance on aspects of quality
of solutions, robustness, and computational complexity, compared with the results of the NSGA-II and
MOPSO. Finally, the efficacy and practicality of the proposed approach are validated in the APU fuel
consumption and emissions multi-objective optimization problem.

INDEX TERMS Multi-objective, optimization, fuzzy optimality, particle swarm optimization.

I. INTRODUCTION
Many real-world applications involve simultaneous opti-
mization of multiple objectives which are often conflicting
with each other and subject to a number of equality or
inequality constraints, such as the motor controller tuning
problem [1], the set-point tracking controller design prob-
lem [2], the hydraulic energy storage system [3], the power
allocation problem of the multibeam satellite systems [4] and
the test suite optimization problem [5]. Such problems are
formulated as multi-objective optimization problems (MOPs)
by researchers, in which the goal is to minimize or maximize
the conflicting objectives simultaneously.

Mtaheuristic evolutionary algorithms have received much
attention by researchers in the past as they have the abil-
ity to solve real world complex problems [6]. To solve
the MOPs, various metaheuristic evolutionary approaches
were proposed, such as the Vortex Multi-Objective Par-
ticle Swarm Optimization(MOVPSO) [7], cross-entropy
based MOP [8], CMO(cooperative multi-Objective opti-
mization) [9], MOPSO (multi-objective particle swarm
optimization) [10] and the latest proposed MOWCA
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(multi-objective water cycle algorithm) [11], IMADE
(immune multi-objective optimization algorithm with dif-
ferential evolution inspired recombination) [12], DMMO
(double-module immune algorithm) [13], MAP (memory-
based adaptive partitioning algorithm) [14] and
SAMOHS (self-adaptive multi-objective harmony search
algorithm) [15].

One of the general characters of the aforementioned
approaches is that they are all Pareto optimality (PO) based
approaches and aimed at converging toward the Pareto front
(PF), which is a set of optimal solutions in the Pareto sense.
For the PO based approaches, the number of improved objec-
tives, the extent of such improvements and the preference
information of each objective are not taken into account in
the calculation process. However, these issues are crucial in
practice and usually only one ‘compromise’ solution is finally
desired. Consequently, an additional multi-criteria decision
making method is needed [16].

In this paper, a new optimality definition: fuzzy optimality
(FO) is presented and the FO based multi-objective particle
swarm optimization (FMOPSO) is proposed. For the pro-
posed FO, the number of improved objectives and the extent
of the improvements are both considered, the linguistic pref-
erence information of objectives are represented by the fuzzy
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triangular numbers and processed by fuzzy mathematics,
thus it is much closer to the optimality judgement in human
decision-making activities.

The rest of this paper is structured as follows. In section 2,
several optimality concepts are reviewed and their basic fea-
tures are analyzed. In section 3, FO is present and its calcu-
lation process is described in detail. Section 4 describes the
critical steps and the overall process of the FMOPSO algo-
rithm. In section 5, the FMOPSO is validated using several
standard test functions. In section 6, the FMOPSO is further
validated in the auxiliary power unit(APU) fuel consumption
and emissions multi-objective optimizaiton problem. Finally,
the conclusion is stated in section 6.

II. STATE OF THE ART
In general, a constrained multi-objective optimization prob-
lem can be formulated in mathematical terms as follows,

minimize : [f1(x), f2(x), · · · , fk (x)]

subject to : gi(x) ≤ 0 i = 1, 2, · · · ,m (1)

where k is the number of objective functions,fi : Rs
→ R,

x = [x1, x2, · · · , xs]T is the vector of independent variables.
m is the number of inequality constraints.
For the MOPs, the most frequently used methods are PO

based approaches. The aim of PO based multi-objective opti-
mization approaches is to determine a particular set of values
x∗ = [x∗1 , x

∗

1 , · · · , x
∗
s ] from the feasible solution space. Here,

these x∗ solutions are named as nondominated, noninferior or
Pareto optimal solutions.

When PO is considered, it means that solutions cannot be
improved in any of the objectives without degrading at least
one of the other objectives. In mathematical terms, solution
x1 is said to Pareto dominates x2 (also written as x1 � x2)
when it meets the following conditions,

1. fi(x1) ≤ fi(x2), ∀ i ∈ (1, 2, · · · , k);
2. ∃ j ∈ (1, 2, · · · , k): fj(x1) < fj(x2).

solution x1 is called Pareto optimal, if there does not exist
another solution that dominates it. However, the Pareto opti-
mal always gives not a single solution, but rather a set of
solutions called the Pareto-optimal set (Pareto set). The indi-
vidual solution included in the Pareto-optimal set is called
non-dominated solution. The image of the Pareto-optimal set
under the objective functions is called Pareto front.
The definition of PO is ineffective to evaluate the indepen-

dent variables objectively due to essentially three reasons,
1. Number of improved or equal objectives is not taken

into account;
2. The extent of such improvements are not taken into

account;
3. Preference information of different objectives are not

taken into account.
Such issues are implicitly included in the common sense

of optimality and are the essential elements in the human
evaluation process. In order to overcome the limitations of
the PO, a new definition-FO is introduced in next section.

Several other optimality concepts have been proposed in
the literature. Through progressively expand the dominance
area of solutions as the problem dimensionality increases, and
thereby maintaining a relatively consistent level of solution
discriminability across a range of many objectives, Zhu et al.
proposed a generalized Pareto-optimality (GPO) to tackle the
scalability problem of the PO based approaches [17]. He et al.
reformulate the original large-scale multi-objective opti-
mization problem into a low-dimensional single-objective
optimization problem via problem reformulation, and pro-
posed a large-scale multi-objective optimization framework
(LSMOF) [18]. Through training the trade-off solutions to
a neuro-fuzzy system (NFS), Das and Pratihar proposed a
novel approach for neuro-fuzzy system-basedmulti-objective
optimization to capture inherent fuzziness in engineering
processes [19].

Alanis et al. assisted dynamic programming optimization
framework and validated that it is capable of circumvent-
ing the increased complexity of the Pareto optimality [20].
Farina andAmato [21] proposed the k-optimality and kF opti-
mality concepts. Each of these optimality is a sound extension
both of the previous one and of Pareto-optimality. For these
optimality definitions, the fuzzy membership is utilized as a
tool for the numerical formalization and treatment of the size
of improvements in the dominance definition. However, the
preference information is not considered in these optimality
definitions.

III. FUZZY OPTIMALITY
In this section, FO is introduced. If the FO is considered
in an MOP, the variable which gives smallest FO value is
recognized as the best solution.

A. BASIC CONCEPTS
To make the FO easier to be understood, the objective values
of the candidate solutions set IV are concisely expressed in
matrix format as,

F(IV) =


f11 f12 · · · f1k
f21 f22 · · · f2k
...

...
...

...

fS1 fS2 · · · fSk

 (2)

where, as defined above, k is the number of the objective
functions, and S is the number of the candidate independent
variables, here S is the rows of the matrix IV . fij and wi are
all crisp numbers, where i ∈ (1, 2, · · · , S), j ∈ (1, 2, · · · , k).

In many circumstances, crisp numbers are inadequate to
model real-life situations, since human judgements includ-
ing preferences are often uncertain, vague and cannot be
estimated by conventional quantitative terms. To resolve the
vagueness and ambiguity of human decision-making activi-
ties, the fuzzy sets theory which was proposed by Zadeh is a
natural candidate due to its capability of processing the data
in the forms of fuzzy numbers [22].

The basic definitions of fuzzy set theory and FO are
described as follows,
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FIGURE 1. Schematic of five triangular fuzzy numbers, minimum fuzzy subset Ã− and Hamming
distance between two fuzzy subsets.

Definition 1: A fuzzy subset Ã in a universe of discourse
X is defined by a membership function µÃ(x) : X→ [0, 1],
where µÃ(x) indicates the degree to which x belongs to
Ã [22]. The value 0 means that x is not a member of the
fuzzy subset; the value 1 means that x is fully a member of the
fuzzy subset. The values between 0 and 1 characterize fuzzy
members, which belong to the fuzzy subset only partially.
An example about the fuzzy subset and membership function
is given in Appendix A.
Definition 2: A triangular fuzzy number M̃ is a normal,

convex fuzzy subset ofX , with a piecewise linearmembership
function µM̃ (x) defined by

µM̃ (x) =


(x − l)/(m− l) l < x ≤ m
(r − x)/(r − m) m < x ≤ r
0 otherwise

(3)

which is specified by the triplet of M̃ = (l,m, r), where
l and r are the lower and upper bounds of the fuzzy num-
ber M̃ respectively, and m is the modal value. An example
about the triangular fuzzy number is given in Appendix A.
Furthermore, the diagram of five triangular fuzzy numbers
(Ã1, Ã2, · · · , Ã5) are shown in Fig. 1.
Definition 3: Ã− = m̃in(Ã1, Ã2, · · · , Ãn) is the minimum

fuzzy subset among Ã1, Ã2, · · · , Ãn, the member function
µÃ−

(x) is defined as,

µÃ−
(x) = sup

x=x1∧···∧xn
min{µÃ1 (x1), · · · , µÃn (xn)} (4)

where (x1, x2, · · · , xn) ∈ Rn, ∧ is the fuzzy minimize oper-
ator. The membership function of the minimum fuzzy subset
Ã− among (Ã1, Ã2, · · · , Ã5) is shown in Fig. 1 by black thick
lines. Another example about the minimum fuzzy subset is
given in Appendix A.
Definition 4: dH (Ãi, Ãj) is the Hamming distance between

fuzzy subset Ãi and Ãj,

dH (Ãi, Ãj) =
∫
x∈R
|µÃi

(x)− µÃj (x)| dx (5)

As an example, the Hamming distance dH (Ã1, Ã−) and
dH (Ã2, Ã−) are graphically demonstrated in Fig. 1, where

s1, s2, s3, s4 are the area of the shaded areas which consti-
tute the geometric metric of Hamming distance. As shown
in Fig. 1, dH (Ã1, Ã−) = s1 + s4, dH (Ã2, Ã−) = s2 + s3.
Another example about the Hamming distance between two
fuzzy subset is given in Appendix A.
Definition 5: For i ∗ j triangular fuzzy numbers

f̃ij = (lij,mij, rij), i ∈ (1, 2, . . . , S), j ∈ (1, 2, . . . , k). Let
(·)max

j = max
i=1,2,...,S

{(·)ij}, then the normalized fuzzy triangular

number of f̃ij is described as,

f̃1ij = (
lij
rmax
j

,
mij
mmax
j

,
rij
lmax
j
∧ 1) (6)

An example about the calculation of the normalized fuzzy
triangular number is given in Appendix A.
Definition 6: For two triangular fuzzy numbers,

x̃ = (lx ,mx , rx) and ỹ = (ly,my, ry), x̃ · ỹ is defined as,

z̃ = x̃ · ỹ = (lx ly,mxmy, rxry) (7)

Based on the basic concepts introduced above, each objec-
tive function value fij is converted to triangular fuzzy number
f̃ij = (fij, fij, fij) and the objective values of the candidate
solutions set IV described by equation (2) is rewritten as

F̃(IV) =


f̃11 f̃12 · · · f̃1k
f̃21 f̃22 · · · f̃2k
...

...
...

...

f̃S1 f̃S2 · · · f̃Sk

 (8)

Since human preferences are often vague and cannot esti-
mate by an exact numerical value. In practice, the preferences
information are often described in natural language, such as
‘very important’, ’fairly important’, ‘important’, ‘somewhat
important’, ‘general’ and ‘not important’. In the proposed
FO, the linguistic preference information is mapped to fuzzy
triangular number and then processed by the aforementioned
fuzzy operators. As an example, the linguistic preference
information between three objectives {‘important’, ‘some-
what important’, ‘not important’} can be mapped to the fuzzy
fuzzy triangular number set {(0.5, 0.5, 0.6), (0.3, 0.4, 0.5),
(0, 0.1, 0.1)}. Here, the preference information are given
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in the format of triangular fuzzy numbers directly, and the
preference vector is written as w̃ = [w̃1, w̃2, · · · w̃k ].

B. COMPUTATIONAL FLOW OF THE FO
For the candidate independent variable set IV to be evaluated,
the FO computational flow of each independent variable is
summarized as the following steps,
Step 1: Map the linguistic preference information to fuzzy

triangular preference vector w̃ = [w̃1, w̃2, · · · w̃k ].
Step 2: Normalize the objective values F̃(IV) by column

with equation (6).
Step 3: Obtain the fuzzy utility matrix by the following

equation,

r̃ij = w̃j · f̃1ij, ∀ i, j (9)

where i ∈ (1, 2, · · · , S), j ∈ (1, 2, · · · , k), the ‘·’ operator is
defined by definition 6.
Step 4: Obtain the fuzzy ideal solution M̃∗,

M̃∗ = (M̃1−, M̃2−, · · · M̃k−) (10)

where M̃j− = m̃in(r̃1j, · · · r̃Sj), j ∈ (1, 2, · · · , k), the member-
ship function of M̃j− is described by the following equation,

µM̃j−
(r) = sup

r=r1∧···∧rS
min{µr̃1j (r1), · · · , µr̃Sj (rS )} (11)

where (r1, r2, · · · , rS ) ∈ RS .
Step 5: Calculate the Hamming distance Di between the

ith solution and the fuzzy ideal solution M̃∗,

Di =

√√√√√ k∑
j=1

dH (r̃ij, M̃j−)
2
, i ∈ (1, 2, · · · S) (12)

where Di is the FO of the ith independent variable.
Step 6: Sort the candidate independent variables accord-

ing to theDi values from smallest to largest. The independent
variable which gives smallest FO value is regarded as the best
solution.

C. CASE STUDY
In order to demonstrate the computational process of the
proposed FO, and exemplify its ability to provide a solu-
tion among sunken parts of the PF in nonconvex problems,
an example is discussed in this section.

Consider the below six feasible solutions of a bi-objectives
minimization problem: a(0,1), b(0.1,0.8), c(0.2,0.9,
d(0.56,0.56), e(0.8,0.1) and f (1,0), their distribution are
shown in the objective space in Fig. 2. As shown in Fig. 2,
this is a nonconvex problem, where a, b, d, e and f are
all Pareto solutions, and c is a dominated solution. d is a
solutionwhich is located at the sunken part of the Pareto front.
Here, we assume that two objectives are equally desired, thus,
the preference vector is w̃ = [(0.5, 0.5, 0.5), (0.5, 0.5, 0.5)].

For the above problem, if the classic weighted summethod
is utilized, then each solution is evaluated by the following

FIGURE 2. Diagram of the case study.

equation,

F =
k∑
i=1

wifi (13)

where, k = 2. If w1 = w2 = 0.5, then F(b) =
F(e) = 0.45, solution b and e are selected as the best
solutions. However, no matter which combination of weights
is utilized, the solutions which is located in the sunken part
of the Pareto front are not available. Fig. 2 describes this
scenario. For a specific combination of the weighting fac-
tors, a contour line marked ‘L1’ or ‘L2’ in Fig. 2 results,
the optimal solution with minimum F will correspond to a
Pareto solution which is the tangent point with the Pareto
front, such as point b, e and h. Unfortunately, no contour
line will produce a tangent point with the sunken parts of the
Pareto front between b and e [23]–[25].

If the proposed FO is utilized, the computational process
is described as below.
Step 1: Normalize the objectives of the candidate solu-

tions by equation (6), then the normalized weighted fuzzy
decision matrix is described as,

F̃ =


(0, 0, 0) (1, 1, 1)

(0.1, 0.1, 0.1) (0.8, 0.8, 0.8)
(0.2, 0.2, 0.2) (0.9, 0.9, 0.9)

(0.56, 0.56, 0.56) (0.56, 0.56, 0.56)
(0.8, 0.8, 0.8) (0.1, 0.1, 0.1)

(1, 1, 1) (0, 0, 0)

 (14)

Step 2: The fuzzy utility matrix is obtained by applying
equation (9),

R̃ =


(0, 0, 0) (0.5, 0.5, 0.5)

(0.05, 0.05, 0.05) (0.4, 0.4, 0.4)
(0.1, 0.1, 0.1) (0.45, 0.45, 0.45)

(0.28, 0.28, 0.28) (0.28, 0.28, 0.28)
(0.4, 0.4, 0.4) (0.05, 0.05, 0.05)
(0.5, 0.5, 0.5) (0, 0, 0)

 (15)

Step 3: Obtain the fuzzy ideal solution M̃∗ by
equation (10) and (11),

M̃∗ = [(0, 0, 0), (0, 0, 0)] (16)
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Here, the fuzzy ideal solution is marked by M∗ in the objec-
tive space, as shown in Fig. 2.
Step 4: Compute the Hamming distance between the ith

solution and M̃∗ by equation (12),

D = [1; 0.8062; 0.922; 0.792; 0.8062]; (17)

Thus, the solution d which gives the smallest FO is selected
as the best solution. The FO of a solution is essentially the
Hamming distance between its fuzzy utility value and the
fuzzy ideal solution, thus, its able to provide a solution among
the sunken parts of the PF in nonconvex problem.

Consider solution c, which is dominated by solution b. Its
FO is 0.922. For a minimization problem, if solution α is
dominated by β, that means all objectives of β are not bigger
than those of α. Thus, no matter which preference vector
is utilized, the Hamming distance between the fuzzy utility
value of α and the fuzzy ideal solution always larger than that
of the β. That is, the solution which gives the minimum FO
must be an Pareto solution.

IV. FO BASED MULTI-OBJECTIVE PARTICLE
SWARM OPTIMIZATION
In this section, an interactive evolutionary approach is pro-
posed for solving the MOPs. It inherit the basic structure of
the PSO and evaluate the particles by the FO, thus we named
it as FMOPSO.

A. THE PARTICLE SWARM OPTIMIZATION ALGORITHM
PSO is a population stochastic algorithm which is origi-
nally designed for single objective optimization, It has been
used to solve a range of optimization problems [26]–[29].
Wang et al. employed the PSO to search the optimum oper-
ating point of the auxiliary power unit under three kinds of
constraints, where the PSO algorithm was programmed in
Matlab language and executed on a rapid control prototyping
toolkit [30]. Kim and Lee employed the PSO to optimize
the trajectory of the manipulator, where the D-dimensional
modification vector was encoded into a particle for PSO and
the cost for each step was used for initializing the particles.
The cost was calculated by multiplying the degree of a con-
straint violation with a weighting factor [31]. Furthermore,
PSO was applied as a design tool for a parasitically coupled
microstrip antenna array in [32], where PSO was employed
to determine the shape of microstrip antennas with limited
geometrical constraints allowing the optimization process
to freely develop unique non intuitive designs for WLAN
applications. The PSO Antenna software developed consists
of two main components. The first is the PSO software that
implements the PSO algorithms and the second is a Linking
Program that connects the PSO software to either in-house or
commercial antenna simulation software to allow the antenna
performance and fitness function to be evaluated for a partic-
ular antenna geometry [32].

The PSO is initialized with a population of random solu-
tions (named as particle swarm in PSO) and searches for

optimum solutions by updating generations. In PSO, all parti-
cles fly through the problem space by following the optimum
particles, each particle accelerates in the direction of its own
personal best solution found so far, as well as in the direction
of the global best position discovered so far by any of the
particles in the swarm. This means that if a particle discovers
a promising new solution, all the other particles will move
closer to it, exploring the region more thoroughly in the
process [33]–[35].

For a d dimensions minimization problem, the swarm size
is N , each individual particle (1 ≤ i ≤ N ) has the following
attributes: a current position pij(k) in the search space �d ,
where j is the jth dimension of the particle and j = 1, · · · , d ;
a current velocity vij(k); and a personal best position
Pbi = [pbi1, · · · , pb

i
d ]. During each iteration, each particle i

in the swarm is updated in the jth dimension using the velocity
update formula (18) and the position update formula (19).

vij(t + 1) = µ · vij(t)︸ ︷︷ ︸
velocity reference

+ τ1r1[pbij(t)− p
i
j(t)]︸ ︷︷ ︸

individual optima reference

+ τ2r2[pgj(t)− pij(t)]︸ ︷︷ ︸
global optima reference

(18)

pij(t + 1) = pij(t)+ v
i
j(t + 1) (19)

The velocity update formula can be divided into three sub-
formula, the current velocity reference formula, the individ-
ual optima reference formula and the global optima formula,
as shown in the equation (18), where µ is the inertia weight,
r1, r2 are two random values in the range [0, 1], τ1, τ2 are the
acceleration coefficients. Pg = [pg1, · · · , pgd ] is the global
optimal position.

The individual best position of each particle is updated by,

Pbi(t + 1) =

{
Pbi(t), f [Pi(t + 1)] ≥ f [Pbi(t)]
Pi(t + 1), f [Pi(t + 1)] < f [Pbi(t)]

(20)

where, the global best position Pg(t) is defined as,

Pg(t) = argmin f [Pbi(t)] 1 ≤ i ≤ N (21)

After the positions of all the particles are evaluated, and
corrections are made to the positions of Pbi and Pg, repetition
of this cycle until the desired objective value is obtained or the
maximum iterations number is reached.

B. OVERALL COMPUTATIONAL FLOW OF THE FMOPSO
In order to accommodate the FO to multi-objective optimiza-
tion problems, the FMOPSO - a variant of the PSO is pro-
posed. It inherits the basic structure of the PSO and modified
in the mechanism of individual optima and global optima
reference update, where particles are evaluated by their FO
values, rather than the fitness of the objective function. The
overall computational flow of the proposed FMOPSO is pre-
sented by the pseudo code as shown in below, where the indi-
vidual optima and global optima reference update operations
are described in detailed (highlighted with bold italic fonts).
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Algorithm FMOPSO(k , d , N , tmax , µ, τ1, τ2)
Parameter description:
k , number of the objective functions;
d , number of the independent variables;
N , swarm size;
tmax , maximum iteration number;
µ, inertia weights, µ ∈ [0, 1];
τ1, acceleration coefficient 1;
τ2, acceleration coefficient 2.
1: Initialization: Initialize a N*d matrix P[N ][d] ←
rand ∈ R, each row Pi of this matrix is a d dimensions
individual, iteration number t ← 0, velocity vij = 0,
history population of the ith individual particle Phi = ∅,
where i ∈ (1, · · · ,N ), j ∈ (1, · · · , d)

2: while t ≤ tmax do
3: Constraints handling: if Pi is infeasible, then it is

regenerated randomly.
4: for i = 1 to N do
5: Individual optima reference update:

Evaluate Pi ∪ Phi by FO:
D = FO(Pi ∪ Phi)
Update individual optima reference and Phi:
Pbi = min(Dυ ), υ = 1, 2, · · · , t , where υ denotes

the size of the personal history population.
Phi = Phi ∪ Pi

6: end for
7: Global optima reference update:

Evaluate Pbi, i = 1, 2, · · · ,N by FO:
Di = FO(Pbi)
Update global optima reference:
Pg = min(Di), i = 1, 2, · · · ,N

8: for i = 1 to N do
9: for j = 1 to d do
10: Velocity update:

vij = µ · v
i
j + τ1r1[pb

i
j − p

i
j]+ τ2r2[pgj − p

i
j]

11: Position update:
pij = pij + v

i
j

12: end for
13: end for
14: t=t+1
15: end while
16: Output Pg as the best solution

V. NUMERICAL EXPERIMENTS AND RESULTS
A. EXPERIMENTS ENVIRONMENTS AND TEST FUNCTIONS
The proposed FMOPSO is implemented in Java and exe-
cuted on a computer equipped with a Intel E7400 2.8Ghz
CPU and 4GB RAM. The operating system is Ubuntu
Linux 13.10 64bit.

The Java JDK 1.5 development kit is employed. The devel-
oped FMOPSO software follows an object-oriented architec-
ture, it consists of four classes, algorithm, solution, function
and operator. Class algorithm represents the superclass of
the proposed optimization engine FMOPSO, and it provides

the execute entry of the software. As its name suggests, class
solution represents a set of solution objects, it is a superclass
aimed at describing the features of the solutions. All test
functions considered in the numerical experiment are inher-
ited from the class function, it provides two basic methods,
evaluate the objective function and process the constraints.
Operator is a superclass aimed at representing the basic oper-
ator of the FMOPSO, such as swarm initialization, velocity
update, position update, et al.

To validate the performance of the FMOPSO, the results
of FMOPSO are compared against two highly competitive
PO based algorithms: NSGA-II [36] and MOPSO [10]. For
fair comparison, the FMOPSO parameters used in the exper-
iments are set as: µ = 0.4, τ1 = 2.0, τ2 = 2.0, tmax and
N are determined by the specific test function. As regards
the parameters of the NSGA-II and MOPSO, we follow the
settings of the original paper [10], [36].

Because of the results of the PO based algorithm is a set of
Pareto optimal solutions while the results of the FMOPSO
is a single solution, it is difficult to compare the results
directly. In order to compare the results between the PO based
approaches and FMOPSO objectively, the results of the PO
based approaches are evaluate by a simple weighting based
decision maker and thus a sole best compromise solution
is derived [23]. Furthermore, due to the objective functions
are in different scales, they cannot be directly applied the
weighting based decision maker and should be converted to
a similar non-dimensional scale firstly. Thus, each of the k
objective values is normalized to a value between 0 and 1 by
the following equation,

f ij(x) =
fij(x)− f mj
f Mj − f

m
j

, j = 1, 2, · · · , k (22)

where f mj = min
i=1,2,··· ,S

fij(x), f Mj = max
i=1,2,··· ,S

fij(x).

Six representative test functions ZDT1, ZDT3, CTP2,
TNAK, VET3 and DTLZ7 are used to evaluate the perfor-
mance of the tested algorithms. These test functions have
different features in solution space and objective space, thus
they are adequate for demonstrating the performance of the
multi-objective optimization approaches.

For each algorithm, the experiments are performed
with three different preference vectors w̃1, w̃2 and w̃3,
where for the bi-objective test functions (ZDT1, ZDT3,
CTP2 and TNAK), the preference vectors are set as
w̃1 = [(0.2, 0.2, 0.2), (0.8, 0.8, 0.8)], w̃2 = [(0.5, 0.5, 0.5),
(0.5, 0.5, 0.5)] and w̃3 = [(0.8, 0.8, 0.8), (0.2, 0.2, 0.2)],
while for the three-objective test functions (VET3 and
DTLZ7), the preference vectors are set as w̃1 =

[(0.2, 0.2, 0.2), (0.2, 0.2, 0.2), (0.6, 0.6, 0.6)], w̃2 = [(0.2,
0.2, 0.2), (0.6, 0.6, 0.6), (0.2, 0.2, 0.2)] and w̃3 = [(0.6, 0.6,
0.6), (0.2, 0.2, 0.2), (0.2, 0.2, 0.2). For all of the three
approaches, the population size is set to N = 500 for bi-
objective test functions, and N = 800 for three-objective
test functions. The iterations number is set to tmax = 100.
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FIGURE 3. Experimental results of the proposed FMOPSO.

For the MOPSO, the size of the external repository is same
as the population size.

B. RESULTS ANALYSIS
The experimental result are analyzed on three aspects: quality
of the solutions, robustness of the results and computational
complexity.

1) QUALITY OF SOLUTIONS
The experimental results of the FMOPSO, NSGA-II and
MOPSO are graphically illustrated in Fig. 3, Fig. 4 and Fig. 5,
respectively. In these figures, the best solutionmeans the best

compromise solution of the real Pareto front for the specific
weight factors. Furthermore, to show the results more clearly,
we use 2.5-times magnifying glasses to show the details of
the results of w̃2 for each test function and each optimization
approach in Fig. 3, Fig.4 and Fig. 5.

As shown in Fig. 3, for most test functions, the results of
the FMOPSO are coincide with the best solutions. For the
DTLZ7, which is a three-objective function, the deviation
between the results of the FMOPSO and the best solutions
is slightly greater compared with that of the bi-objective
functions. Furthermore, the results of the DTLZ7 shown
in Fig. 4 and Fig. 5 reveal that the NSGA-II and MOPSO
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FIGURE 4. Experimental results of the NSGA-II.

perform more poorly on the DTLZ7. Fig. 4 reveals that
the NSGA-II performs poorly on ZDT1, CTP2, TNAK and
DTLZ7, although it obtains fairly good results on ZDT3 and
VET3. As for the MOPSO, the results shown in Fig. 5
reveals that it obtains comparative results compared with the
NSGA-II for all test functions except for CTP2, which is quite
poor.

In order to quantitatively analyze the results of the three
approaches, for each preference vector, the distance between
the result and the best solution in objective space is calculated

according to the following equation,

d =

√√√√ k∑
i=1

[fi(x)− fi(xbest )]2 (23)

where k is the dimension of the objective space. The quantita-
tive results of the three approaches for each preference vector
are shown in Table 1, where the gray colored background
is used to point out the algorithms which obtaining the best
values.
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FIGURE 5. Experimental results of the MOPSO.

Table 1 reveals that for the w̃1, the proposed FMOPSO
obtains best values in 4 out of 6 test functions, the other
two best values are obtained by the MOPSO algorithm. For
the w̃2, the FMOPSO obtains best values in 5 out of 6
test functions, the only exception is the ZDT3 function, its
best value is obtained by the NSGA-II algorithm. For the
w̃2, the FMOPSO obtains best values for all of the 6 test
function.

Based on the above analysis, we can reach a conclusion
that the proposed FMOPSO is superior to the NSGA-II and
MOPSO on aspect of quality of solutions.

2) ROBUSTNESS OF THE RESULTS
As a population based heuristic optimization approach, there
may exist randomness in the result of the FMOPSO. In order
to evaluate the robustness of the FMOPSO, all of the three
approaches are run 20 times on each test function, where
for the bi-objective test functions, the preference vector is
set as w̃ = [(0.5, 0.5, 0.5), (0.5, 0.5, 0.5)], while for the
three-objective test functions, the preference vector is set as
w̃ = [(0.2, 0.2, 0.2), (0.6, 0.6, 0.6), (0.2, 0.2, 0.2)]. The
results of each test function are presented in box-and-
whisker plot, as shown in Fig. 6. Here, the box-and-whisker
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FIGURE 6. Box-and-whisker plots for the results of 20 times experiments.

TABLE 1. Quantitative Results of the Three Approaches.

plot shows the statistical characteristics of the experimental
results clearly, it summarizes data using the median, upper
and lower quartiles and the extreme (minimum and maxi-
mum) values, it allows you to see important characteristics
of the data at a glance.

In Fig. 6, the statistical characteristics of the objective
functions for 6 test functions over 20 times independent runs
are shown. As can be seen in Fig. 6, the FMOPSO obtains
better median, minimum,maximum, lower quartile and upper
quartile values than those of the other approaches for ZDT1,
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FIGURE 7. Average execution time of three approaches.

CTP2 and TNAK. For the ZDT3, VET3 and DTLZ7 test
functions, three approaches obtain competitive results. Fur-
thermore, for the results of the FMOPSO, there are no outlier
for all the objective functions of the 6 test functions. While
for the NSGA-II and MOPSO, there are many outliers, such
as the f2 of ZDT1 for NSGA-II, the two objective functions
of CTP2 for both algorithms.

Based on the above analysis, we can reach a conclusion
that the proposed FMOPSO shows better robustness than the
NSGA-II and MOPSO.

3) COMPUTATIONAL COMPLEXITY
The average execution time of the three approaches on six test
functions are also analyzed statistically. As shown in Fig. 7,
NSGA-II is the approach which has the longest average exe-
cution time for all six test functions. TheMOPSO has slightly
shorter execution times than that of NSGA-II. However,
the average execution time of the FMOPSO is only about a
quarter of that of NSGA-II for the bi-objective test functions
and one in seven for the three-objective test functions. This is
because that the time consuming non-dominated sorting pro-
cess is avoided in FMOPSO and the time complexity of this
process is increased sharply with the increase of numbers of
the objective functions [36]. As regards theMOPSO, it adopts
an external elitist archive to retain the non-dominated solu-
tions and introduces the adaptive grid procedure to maintain
the diversity of the population, the time complexity of these
operation are slightly lower than that of the NSGA-II [10].
Thus, its average execution time is slightly shorter than that
of the NSGA-II.

Obviously, since the time consuming non-dominated sort-
ing process is avoided, the computational complexity of the
FMOPSO is reduced significantly.

VI. PRACTICAL CASE STUDY
To further validate the efficacy and practicality of the pro-
posed FMOPSO, a case study based on a real-word problem
is performed.

A. APU OPERATING POINT MOP
Auxiliary power units (APUs) are widely used for elec-
tric power generation in various types of electric vehicles,
improvements in fuel economy and emissions of these vehi-
cles directly depend on the operating point of the APUs.
To balance the conflicting goals of fuel consumption and
emissions reduction, the APU operating point optimization
problem is formulated as a constrained multi-objective opti-
mization problem which contains two independent variables
(n,T ) and four competing objectives FE cost, HC emissions,
CO emissions and NOx emissions [37],

minimize : F(n,T ) = [fFE (n,T ), fHC (n,T ),

fCO(n,T ), fNOx(n,T )] (24)

subject to :


max(nmin, 4x(ftm(n), g(Plow, n))) ≤ n ≤

min(nmax, 4x(T = Tmin, g(Phigh, n)))
max(Tmin, g(Plow, n)) ≤ T ≤ min(ftm(n),

g(Phigh, n))
(25)

For the APU operating point multi-objective optimization
problem, based on the same experimental facility and
procedure as in [37], an experiment-based case study is
performed.

B. EXPERIMENTAL RESULT ANALYSIS
In the experiments, HWFET, NEDC and JPN1015 driv-
ing cycle are utilized to evaluate the optimization results
of the FMOPSO. The fuel consumption(FC), HC, CO and
NOx emissions of the FMOPSO for the three driving
cycles are present in Table 2, where the experimental
results of the FMOPSO are compared with that of the
AMODE reported in [37]. Since the weights of the FC,
HC, CO and NOx were set as 0.4, 0.2, 0.1 and 0.3 in
AMODE, the preference vectors of the FMOPSO are
set as w̃ = [(0.4, 0.4, 0.4), (0.2, 0.2, 0.2), (0.1, 0.1, 0.1),
(0.3, 0.3, 0.3)]. In Table 2, the third column of each
optimization objective represents the comparison results
(CR), CR= RAMODE - RFMOPSO, where RAMODE and
RFMOPSO are the experimental results of the two approaches,
respectively.

Since the APU operating point multi-objective optimiza-
tion problem is a minimization problem and the smaller FC,
HC, CO and NOx values are desired, the positive CR means
the FMOPSO obtains the better result. As shown in Table 2,
compared with the AMODE, the proposed FMOPSO obtains
better results on majority driving cycles and optimization
objectives, such as the FC for all driving cycles, the CO
for HWFET and JPN1015, NOx for NEDC and JPN1015.
As for the average results off all driving cycles, the FMOPSO
obtains better or equal results on aspects of FC, CO and NOx
emissions, which indicates that the FMOPSO is capable to
solve the real-wordmulti-objective optimization problem and
shows better performance on aspects of quality of solutions
and robustness.
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TABLE 2. Experimental Results of the AMODE and FMOPSO.

VII. CONCLUSION
In order to overcome the limitations of the PO in solving
multi-objective optimization problems, a new definition of
optimality: FO is presented, and further, the FMOPSO is
proposed. The innovation of this paper can be summarized
as follows:

1. The number of improved objectives and the extent
of the improvements are both considered in the FO,
the linguistic preference information of objectives are
represented by the fuzzy triangular numbers and pro-
cessed by fuzzy mathematics. Furthermore, the pro-
posed FO is able to provide a solution among sunken
parts of the PF in nonconvex problems;

2. Through introduce the FO definition into the traditional
PSO, a heuristic multi-objective optimization approach
FMOPSO is proposed.

To validate the performance and practicality of the
FMOPSO, experiments were carried out on 6 representative
test functions and APU operating point MOP. The experi-
mental results show that the proposed FMOPSO is superior
to the existing approaches on aspects of quality of solutions,
robustness and computational complexity.

APPENDIX A
DEFINITION 1
As an example of the fuzzy subset and membership function,
let fuzzy subset Ã denotes the ‘‘young people" and its member
ship function is,

µÃ(x) =

1 15 ≤ x ≤ 25
1

1+( x−255 )
2 25 < x ≤ 35 (26)

Thus, the degree that a 30 years old people belongs to the
‘‘young people" is µÃ(30) = 0.5.

DEFINITION 2
As an example of the triangular fuzzy number, Fig. 8 shows
the diagram of M̃=(1, 1.5, 3), and the piecewise linear mem-
bership function of M̃ is,

µM̃ (x) =

L(x) = 2x − 2 1 ≤ x ≤ 1.5

R(x) = −
2
3
x + 2 1.5 < x ≤ 3

(27)

DEFINITION 3
The black thich lines in Fig. 9 shows the diagram of the mini-
mum fuzzy subset between M̃=(1, 1.5, 3) and Ñ=(0.5, 2, 2.5).

FIGURE 8. A triangular fuzzy number.

FIGURE 9. Diagram of the minimum fuzzy subset and Hamming distance.

The member function of m̃in(M̃, Ñ) is,

µm̃in(M̃,Ñ)(x) =



2
3
x −

1
3

1 ≤ x ≤ 1.25

2x − 2 1.25 < x ≤ 1.5

−
2
3
x + 2 1.5 < x ≤ 2.25

−2x + 5 2.25 < x ≤ 2.5

(28)

DEFINITION 4
As an example of the Hamming distance between two fuzzy
subset, Fig. 9 shows the diagram of the Hamming distance
between M̃ and m̃in(M̃, Ñ), that is,

dH (M̃ , m̃in(M̃ , Ñ )) =
∫

x∈R|µM̃ (x)− µm̃in(M̃ ,Ñ )(x)|dx

= s1 + s4 = 0.25 (29)

where s1 and s4 are the area of the shaded areas which
constitute the geometric metric of Hamming distance.
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DEFINITION 5
Here, an example about the calculation of the normal-
ized fuzzy triangular number is given, consider the fol-
lowing two triangular fuzzy number f̃11 = (1, 1.5, 3) and
f̃21 = (0.5, 2, 2.5), then rmax

1 = 3, mmax
1 = 2 and lmax

1 = 1.
According to equation (6), the normalized fuzzy triangular
number of f̃11 is,

f̃111 = (
l11
rmax
1

,
m11

mmax
1

,
r11
lmax
1
∧ 1)

= (
1
3
,
3
4
, 1) (30)

Similarly, the normalized fuzzy triangular number of f̃21 is,

f̃121 = (
l21
rmax
1

,
m21

mmax
1

,
r21
lmax
1
∧ 1)

= (
1
6
, 1, 1) (31)
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