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ABSTRACT Modern developments of gamma-ray imagers by integrating multi-contextual sensors and
advanced computer vision theories have enabled unprecedented capabilities in detection and imaging, recon-
struction and mapping of radioactive sources. Notwithstanding these remarkable capabilities, the addition of
multiple sensors such as light detection and ranging units (LiDAR), RGB-D sensors (Microsoft Kinect),
and inertial measurement units (IMU) are mostly expensive. Instead of using such expensive sensors,
we, in this paper, introduce a modest three-dimensional (3D) gamma-ray imaging method by exploiting
the advancements in modern stereo vision technologies. A stereo line equation model is proposed to
properly identify the distribution area of gamma-ray intensities that are used for two-dimensional (2D)
visualizations. Scene data information of the surrounding environment captured at different locations are
reconstructed by re-projecting disparity images created with the semi-global matching algorithm (SGM)
and are merged together by employing the point-to-point iterative closest point algorithm (ICP). Instead of
superimposing/overlaying 2D radioisotopes on the merged scene area, reconstructions of 2D gamma images
are fused together with it to create a detailed 3D volume. Through experimental results, we try to emphasize
the accuracy of our proposed fusion method.

INDEX TERMS Stereo vision, gamma-ray imaging, stereo matching, scene data fusion, 3D imaging.

I. INTRODUCTION
Detecting and imaging, localizing and volumetric-visualizing;
gamma-ray sources are of the actively discussed topics in
the field of radiology, since the discovery of X-rays in
late 1895 [1]. Applications ranging from nuclear medicine
to nuclear safeguards, nuclear contamination remedia-
tion, and even environmental monitoring are being widely
researched [2]–[6], broadening the study of new designs and
developments of much sophisticated gamma-ray imagers
(detectors). Starting from medieval Geiger counters to mod-
ern static or portable imaging detectors with collimator,
Compton, coded-aperture based approaches have been pro-
posed in detecting and imaging [3].

The biggest challenge of most of these imagers is the
correct differentiation between relevant and irrelevant infor-
mation used to identify source intensities with scene data
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information and precise recognition of their spatial distri-
butions. Though the use of Geiger counters had gradually
increased; mainly after the incident in Fukushima, but they
resulted in many wrong claims of radiation contamination.
Also, they lack the ability to discriminate background radia-
tion from the radioactivity [1].

As of other conventional means of gamma-ray imaging,
collimators capable of determining incident angle - also
known as line-of-response were used; especially in low
energy nuclear medicine mainly after the development of
the Anger camera [7]. However, these imagers showed sig-
nificantly reduced efficiency at higher energy levels due
to limited attenuation of gamma-rays in the collimator.
Imagers with coded-apertures demonstrated some increased
efficiency, however, limited to simple source configurations
and low field of views [1].

On the other hand, Compton imaging and Compton scat-
tering have been adopted into gamma-ray imaging, enabling
source energy estimations and radioisotope identifications,
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source imaging and incidence direction reconstructions, and
3D position information measuring [8], [9]. Though these
have received the most developments and are best suited
for field use [12], they have certain downfalls. They require
position sensitive detectors (PSDs) for high precision location
estimations, the imaging capability is much confined at low
energy levels, and the conic-type reconstructions sometimes
wrap out-of-field sources to ghost locations on the back of the
visualizations [12], [13].

A gamma-ray whose energy is measured is worth more
than just the registration of its existence [1]. Notwithstand-
ing coded aperture-based, collimator-based, and Compton
scattering-based imaging approaches have been highly dis-
cussed in active radiation detection, they have shown very
selective and/or less comprehensive visualization capabil-
ities. In order to derive a better trade-off in gamma-ray
imaging and visualizing, integration of many conceptual sen-
sors has been proposed; providing new means in identifying
matching distributions of gamma-ray sources with physical
objects [10]. This lays the foundation of a new pathway for
bringing the naked human eye a one-step closer to seeing
and identifying spatial source distributions with more details
in 3D world. The motivation of this research paper is to pro-
pose a stereo gamma detection camera equipped with a sim-
ple, and comparatively less expensive sensor fusion system
for detailed gamma-ray visualization by deploying modern
stereo computer vision theories. Unlike most contemporary
sensor fusion systems been proposed, we do not use highly
expensive contextual sensors, such as LiDAR or Kinects. As
of our core work, we introduce a line equation model to
properly localize gamma sources and amodest reconstruction
method for their 3D scene data visualization.

The structure of our paper is as follows: Section II briefly
discuss about a few contemporary state-of-the-art imaging
systems with their scene data fusion methods. The design of
our imager is roughly described in Section III , where a full
description is given in our previous work [17]. 2D imaging
of gamma-rays is challenging as they do not deposit their
full energy in the detector, causing partial source imaging.
On the other hand, pan/tilt-type imagers always have axis
misalignment problems; leading into improper visualizations.
We propose a stereo line-equation model to properly localize
gamma sources, while compensating with partial imaging
and misalignment problems. These localized intensities are
then mapped into the 2D image coordinate to generate 2D
gamma-ray images. This is briefly described in Section IV .
Scene contexts of the surrounding environment captured at
different locations from a CCD camera are reconstructed
by re-projecting pixel points of disparity images generated
based on Semi-Global Matching algorithm [19], [20]. Sepa-
rate reconstructions of the scene context are merged together
into a more detailed 3D volume by deploying the ICP
algorithm [21], [22]. Similarly, 2D images of gamma-rays
are reconstructed, merged, and fused with the merged
scene reconstruction (Section V ). Section VI summarizes
our experimental results. As an additional measurement of

determining source location, we calculate 3D distances from
the imager to the center of the gamma source (SectionVI−A).
Inside our laboratory, we have used bright white-LED point
sources as our radioactive materials, as they are broadly used
in many radioactive researches [23]–[25]. Experiments using
a Cs-137 source are done in a more secured radioactive
facility. Both quantitative and qualitative result analyses (dis-
tance calculations and reconstructions) conducted to evaluate
the accuracy of our proposed methods are also summarized.
Finally, we conclude the paper by stating our thoughts and
future improvements in Section VII .

II. CONTEMPORARY IMAGING SYSTEMS AND SCENE
DATA FUSION
A series of scene data fusion techniques withmany contextual
sensor integration systems have been proposed throughout
the past few years. Mihailescu et al. proposed the idea of
combining a LiDAR sensor with their large field-of-view
Compton imager to create 3D maps of the surrounding
scene environment [8]. Though this approach instantiates
the importance of volumetric visualizing, however, falls
behind as only 2D spatial distributions of gamma sources are
back-projected on the reconstruction area; causing localiz-
ing ambiguities (particularly when source distributions are
fully/partially covered by obstacles). As an extension to
this work, [11] discusses a full volumetric visualization and
fusion approach of source distributions with scene data infor-
mation, but yet fails in quality as volumetric models are cre-
ated by hand using point cloud data of the LiDAR sensor [3].

As of other additional works, a series of more advanced
imaging systems with sophisticated scene data fusion tech-
niques have been proposed. Some enabled new means in
registering and processing contextual information in real-
time [10]. Barnowski et al. [3] discuss a near real-time
gamma-ray imaging approach using Simultaneous Localiza-
tion and Mapping (SLAM) for volumetric reconstructions of
unknown environments. The cart-based Compton gamma-ray
imager they used is designed by two 3D position-sensitive
high purity germanium (HPGe) detectors. The 3D map of
the surrounding environment is created by solving RGBD-
SLAM, where RGB images and depth data are captured
by a Microsoft Kinect sensor. The approach is suitable for
indoor environments, however, not at outdoors as the IR
camera of the Kinect sensor does not work properly in direct
sunlight [14]. In addition, the reconstruction and tracking of
gamma-ray events are not optimized for sensitivity, result-
ing in limited position resolution and Compton imaging
efficiency.

An extended version of this approach is discussed in [1].
Two different gamma-ray imagers are presented - a sec-
ond generation Compact Compton Imager (CCI-2) and a
High-Efficiency Multimode Imager (HEMI). Like its prede-
cessor, CCI-2 imager has a similar design, but equipped with
additional contextual sensors: two panoramic video cameras
and a LiDAR sensor for both indoor and outdoor data acqui-
sition. They managed to solve the outdoor data acquisition
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FIGURE 1. The design of our gamma-ray imager. Upper part consists of a
gamma detector, vision camera, and a tilting module. The lower part
contains a signal processing unit. Upper part is connected to the lower
part through a panning module.

problem of their first generation imager by replacing the
Kinect with a LiDAR sensor, however, this multi-sensor inte-
gration is more expensive.

TheHEMI imager, consisting of 96CdZnTe (CZT) crystals
implemented in an active mask-type coplanar grid configu-
ration, is used as a hand portable gamma-ray detector. The
imager is sensitive to both low energy and high energy radia-
tion, and the active mask configuration allows it to serve as a
coded aperture and a Compton-type imager, simultaneously.
This unit is upgraded in [15] by integrating a Kinect sensor,
however, is susceptible to interference and, constrained by
ambient lighting at outdoor environments [28].

The same unit is again used in [14] where various uti-
lization and implementations are discussed. The Kinect sen-
sor is used for indoor environments and RGBD-SLAM is
employed for localizing and volumetric mapping. A video
camera is used to replace the Kinect sensor for outdoor envi-
ronments. In addition to hand-held deployment, the imager
is mounted on an unmanned RMAX helicopter for aerial
measurements. Scene data imagery is reconstructed using
Structure-from-Motion [18] by finding SIFT features [16] in
consecutive frames. Implementations discussed in this paper
demonstrated significant improvements in the effective and
accurate detection and mapping of gamma-ray sources, how-
ever, SIFT features require much power and heavy compu-
tational capabilities. Also, complexities in the environment
(illumination variations) could lead to erroneous correspon-
dence estimations, degrading reconstruction quality.

III. DESIGN OF THE GAMMA-RAY IMAGER
We designed a simple pan-tilt type gamma-ray imager as
our development platform and is shown in Fig. 1. This
is an upgraded version of our first generation gamma-ray
imager described in [17]. The unit is a combination of
a pinhole-type detector, tilting module, Point Grey CCD
vision camera, panning module, and a signal-acquisition-
and-processing unit (the term ‘‘gamma-ray imager’’ refers
to the full complete device in Fig. 1, and ‘‘detector’’
to the assembly shown in Fig. 2). The detector is com-
posed of a NaI(Tl) scintillator hybridized with a Hama-
matsu H10722 small photo-multiplier tube (sPMT), a 10 mm
diameter pinhole-type Lead (Pb) collimator, and a Tungsten
(W) radiation shield case (Fig. 2). The surrounding shield
is used to limit the radiation that reaches inside the pinhole.
The vision camera is arranged to be horizontally linear with

FIGURE 2. The design of gamma-ray detector: (a) internal structure,
(b) outer structure of complete detector.

FIGURE 3. CAD model of the device in an ideal situation. The gamma
detector lies on the right side and the vision camera on the left side.

the detector, connected to the tilting module that controls
the vertical 360◦ rotation. The panning module connects
detector+camera unit to the signal processing unit while
controlling 360◦ horizontal rotation.
The only conceptual sensor we used with the gamma

detector is the vision camera. The biggest challenge we had
while designing the imager was how to obtain nearly-similar
reconstruction capabilities as of state-of-the-art methods. The
independent rotation of the imager in horizontal and verti-
cal directions gave it a more standard stereo-type motion
behavior, allowing the detector+camera assembly to inter-
change their positions with another. We placed high accurate
brushless DCmotors inside panning-tiltingmodules to ensure
accurate symmetric rotations to the best of our knowledge.
The way of capturing stereo data while rotating the imager
is briefly described in our previous research work [17]. The
weight of the full unit is about 16kg and mounted on top of
a pedestal dolly providing support while moving around the
environment to capture images at multiple locations.

IV. 2D GAMMA-RAY IMAGING: STEREO LINE
EQUATION MODEL
In general, most pinhole-type mono gamma detectors follow
a common 2D gamma-ray imaging approach. In a typical
pan-tilt type detector, the contamination area is discretely
scanned to localize gamma-rays passing through the opening
of the collimator - known as the pinhole. These rays are sent
into interaction with the scintillator and are converted into
light photons detectable by the photomultiplier tube (PMT).
These photons are converted into electronic signals with
pulses and are recorded and mapped into pixel grey values
of a 2D image. The accuracy of this process mostly depends
on pan-tilt step interval, collimator length and diameter, and
sensitivity of the scintillator. The opening of the collimator
limits the field-of-view of the detector to a single pixel [12],
controlling the resolution of the image in 2D view.

89606 VOLUME 7, 2019



P. Rathnayaka et al.: Stereo Vision-Based Gamma-Ray Imaging for 3D Scene Data Fusion

FIGURE 4. Side-by-side comparison between ideal and real situations. The symmetry is retained in the
ideal situation (left), however, is not fulfilled in the real situation (right).

FIGURE 5. Rotating the device by 180◦ horizontally and vertically to change its position from right side to the left. Symmetry in
the ideal situation is not maintained, however, compensated by employing the proposed line equation model. Only the gamma
detector is shown for simple representation.

The initial state of the upper part of our gamma imager is
shown as a CADmodel in Fig. 3. We call this state as an ideal
situation. Supposing the center-of-mass of the device (Og)
resembles the world coordinate system, the X -axis (Xdevice)
passes through the center of the scintillator and is perpendic-
ular to the Y -axis (Ydevice). We can represent the direction
vector of the collimator as a line (we call it as view-line
l), which is in parallel with Z -axis (Zdevice). Theoretically,
we can assume that gamma-ray projections from 3D space lie
along this view-line and the projected location can be shown
mathematically as in (1):

l : Eat + Eb, (1)

where Ea and Eb represent the direction vector of the collimator
and the center of the scintillator, respectively.

However, in real situations, it is difficult to proclaim that
the symmetric alignment we see in the ideal situation is
maintained. Aligning the scintillator center as perfect as in
ideal situation is constrained due to irregular rotations of the
motors used in panning and tilting modules. When rotating
the detector horizontally and vertically to change its position
from one side to the other (refer [17] to see how this rota-
tion is done), guaranteeing it would come to its designated
symmetric position is difficult. The detector can sometimes
reside in bit slanted positions, creating an angle between scin-
tillator center and the Xdevice. Fig. 4 depicts how sensors are
aligned in an ideal situation and misaligned in a real situation,

side-by-side (only the gamma detector is shown to minimize
visual difficulties).

In such real situations, we cannot use (1) directly to localize
3D projections of gamma-rays. Instead of trying to calculate
the mutual rotation and translation of the gamma detector
with respect to world coordinate system, we try to solve
this misalignment problem mathematically by modifying (1).
Taking Eb′ as the new intercepting point between the Xdevice
and the scnitillator, we can summarize this attempt as in (2).

l ′ : Ea(t + bz/az)+ Eb′ ≡ Eat ′ + Eb′ (2)

Through out this whole paper, we lay our main interest on
remedying the misalignment problem of the gamma detector
more than the vision camera. This is done for the purpose
of precise localization of gamma-rays passing through the
collimator. We applied (2) immediately after moving it from
either right side to left or left side to right. Fig. 5 shows such
an instance where the gamma detector is rotated by 180◦

in both horizontal and vertical directions to move it from
the right side to the left (only the movement of the gamma
detector is shown as we mainly concentrate on rectifying its
misalignment problem). If we take lr represents the view-line
of the collimator when the detector is at right side, we can
use (2) to summarize this view-line as:

lr : Ear t ′ + Ebr ′ (3)

Since we rotate the detector by known values in horizontal
and vertical directions (R(tilt) and R(pan)), we multiply them
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FIGURE 6. 2D imaging results of a Cs-137 gamma source before and after
interpolation.

with scintillator center and right view-line, to represent the
left view-line while compensating with the detector misalign-
ment problem. This new relationship of the detector when it
is moved into left side is mathematically shown in (4).

ll : R(tilt)R(pan)( Ear t ′ + Eb′r ) (4)

This novel line equation approach gave us the ability to
Localize almost the full energy of sources while managing
to solve partial 2D imaging problem discussed in previous
sections.

After properly localizing rays and converting them into
detectable signals, we can map them into the 2D coordi-
nate system to create a detailed 2D image. However, this
mapping is more discrete, giving a scattered representation
(top tier in Fig. 6). As of post-processing, we applied an
enhanced bilinear interpolation [26] to smooth discrete map-
pings. Some 2D imaging examples of a Cs-137 gamma source
are shown in Fig. 6. The top tier depicts direct 2D imaging
results of the source before interpolation and the bottom
tier depicts respective interpolated results. It is visible that
scattered/discrete representations of sources are properly pro-
cessed.

V. STEREO MATCHING FOR 3D GAMMA-RAY AND SCENE
RECONSTRUCTIONS
The motivation of 3D visualization of gamma-rays is
to bring the naked human eye a one-step closer to
seeing and identifying their contamination within the sur-
rounding environment [10]. Previously described state-of-
the-art methods use multi-sensors to capture contextual
scene/environment data and exploit real-time mapping the-
ories to fuse their reconstructions with spatial distributions of
radioisotopes. However, in this research work, we try to arrive
at this visualization by seeing it from a different perspective.

Our proposed visualization approach consists of four
important steps: stereo image acquisition (both gamma-ray
and scene data images), disparity image creation and recon-
struction, ICP-based registration, and fusion. Fig. 7 summa-
rizes this work flow. As we have only a single vision camera
and do not use any other multiple or expensive sensors to
capture scene data, we exploited our device’s panning-tilting
capability for stereo image acquisitions. We freely moved
the imager in and around the environment from one place to
another localizing gamma-rays passing through the detector
and capturing corresponding scene images. Supposing the

FIGURE 7. Flow of the proposed 3D visualizing method.

gamma detector lies on the left side and the vision camera on
the right, we simultaneously capture a left gamma-ray image
and a right scene image. Then we rotate the detector+camera
unit by 180◦ vertically, and another 180◦ horizontally (inter-
changing two sensor positions with another) to capture the
right gamma-ray image and the left scene image. After stereo
images are acquired, we move the imager to another new
location.

Stereo vision/matching has been one of the persistent ways
of doing 3D reconstruction. The basis of general stereo vision
denotes the problem of solving for dense correspondences
between two viewpoints. Most of the previously introduced
methods aim at finding-and-tracking, and mapping-and-
localizing these correspondences - known as features in
continuous image sequences to know the relative pose of
the imager and to generate a 3D model of the surrounding
environment. The reconstructions of gamma sources (most
methods use the Maximum Likelihood Expectation Maxi-
mization -MLEMalgorithm for gamma reconstructions [27])
are fused with these 3D models. However, we do not see
the necessity of following the same 3D visualizing procedure
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TABLE 1. Setting parameters for SGM algorithm.

when having access to gamma and scene stereo images.
Instead of finding feature points and solving them using
SLAM systems, we used reprojected depth data of disparity
images to create detailed 3D reconstructions. We employed
the well known SGM algorithm [19], [20], with Census cost
function [32] to create disparity images of both the scene and
the source.

SGM algorithm performs a pairwise matching to find best
corresponding points between two images. In general, scene
images have lot of distinguishable features, easing disparity
estimation. But in contrast, gamma-ray images do not have
rich features other than their mapped intensities (Fig. 6),
leading into matching ambiguities. One solution is project-
ing a colored random 2D pattern from a projector, which
however, is not very effective as gamma cameras fail to
capture them. To remove mismatches from black background
regions, we applied a random salt-and-pepper pattern on the
visualized 2D images. This works as similar as projecting
a physical 2D random pattern. We applied this pattern only
on the background, masking-out the intensity regions. As
the number of point correspondences in untextured regions
increases, the quality of stereo matching also increases.

As for vision images, we projected the physical
colored random pattern to increase the number of corre-
sponding points and matching quality in low textured, repet-
itive and discontinuity areas. We create both left-disparity
and right-disparity images and perform left-right consis-
tency check (LR check) to densely remove mismatching
and occlusions. We also apply the well known weighted
median filter (WMF) [33], [34] to further remove erroneous
matches/outliers from these ill-posed regions while preserv-
ing edges in disparity results. Fig. 8(a) and 8(c) show dis-
parity images of a single-point Cs-137 gamma source (raw
disparity without LR check or filtering) and its surrounding
environment after LR check and WMF. Table 1 summarizes
the setting parameters for SGM for both gamma and vision
images that we have used in our experiments.

The relationship between 2D disparity d and 3D depth Z
can be shown as in (5):

d = bf /Z , (5)

where b and f represent the baseline and the focal length,
respectively. Once we know internal camera parameters,

FIGURE 8. Disparity results of a Cs-137 point source: (a) gamma source
raw disparity result without LR check or WMF, (b) left scene image,
(c) scene disparity result with respect to left scene image after LR check
and WMF.

FIGURE 9. Reconstruction results by reprojecting disparities into 3D
space: (a) gamma source reconstruction result, (b) scene reconstruction
result. The yellow arrow shows the camera location with X, Y, Z axes.

we can easily project disparities into the 3D space to create
a point cloud having X, Y, Z values for each pixel location.
Fig. 9(a) and 9(b) show reconstruction results of above dis-
parity images.

We repeated the same procedure atmultiple locationswhile
moving the imager from one place to another. We used the
point-to-point ICP algorithm [21], [22] to merge and aggre-
gate individual point clouds of scene contexts and gamma-ray
sources separately. An identity matrix is used to represent
the initial transformation relationship between two merges.
Finally, these two aggregated point clouds are fused together
to create a more detailed 3D model.

VI. EXPERIMENT RESULTS
In this section, results of distance measurements to
gamma-ray sources and reconstructions employing our pro-
posed 3D scene data fusion are presented. We performed our
experiments using Cs-137 single-point gamma-ray source in
a disclosed gamma facility, and LED light sources inside our
laboratory. All the experiments are performed offline using a
general purpose 64 bit windows10 desktop with an Intel(R)
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FIGURE 10. Configuration setup for distance calculation.

Core(TM) i7-7700 CPU at 3.60GHz, and 16GB RAM. We
perform a quantitative analysis between calculated distances
with respect to ground truth readings. Reconstruction and
time complexity results of our method are qualitatively
compared with the results obtained by the block matching
algorithm [31] in OpenCV library [30].

A. 3D DISTANCE CALCULATION
We performed 3D distance estimation experiments as a math-
ematical way of identifying the existence and understanding
the location of gamma-ray sources. In order to calculate 3D
distances, we need to have stereo camera parameters of the
gamma detector. Calibrating vision cameras is straightfor-
ward, where a series of calibration images are solved by the
well known Zhang camera calibrationmethod [29]. However,
this method cannot be applied directly on gamma detectors
as capturing calibration images is not possible. We have
proposed a better stereo gamma detector calibration method
in our previous research work [17].

Fig. 10 shows an instance of this distance calculation using
a Cs-137 point source. The imager is kept at 2m away from
the source, andmoved it gradually to amaximum of 10m. The
results are summarized in Fig. 11. We used a high accurate
Bosch GLM-250 laser range finder to calculate the ground
truth values. The calculated distances are compared quantita-
tively with respect to these ground truth readings. The total
average error for all experiments was about 0.7048%. We are
not going to discuss about distance calculation experiments
in details; as this paper’s main target is to exemplify 3D
reconstruction and visualization of sources. More experi-
ments and result discussions for distance calculation using
different experiment setups are summarized in our previous
research [17].

In among experiment setups, we use the eight-LED
source configuration (Figure 11 in [17]) to simulate and
check how well our proposed line equation model behaves
in more complex scenarios. As summarized in our pre-
vious article, the average error before applying the pro-
posed line equation for the P8E1 experiment was 2.09%
(refer Table 5 in [17]). However, after applying, the average

FIGURE 11. Comparing calculated distances with ground truth readings of
a Bosch laser range finder.

FIGURE 12. Qualitative distance analysis of 8-LED configuration.
Calculated distances with and without applying proposed line equation
model are compared with each other and ground truth values.

FIGURE 13. A forward representation of the Cs-137 source: (a) source is
completely covered by a thick cardboard box, making it difficult to
identify by the camera image, (b) an erroneous visualization of the source
by overlaying isotopes above the scene image.

error reduced to 1.003(%). This quantitative analysis derives
the accuracy of the line equation model even under diffi-
cult environment situations. These results are summarized
in Fig. 12.

B. SCENE DATA RECONSTRUCTION
We performed two types of 3D visualizing experiments, one
using the CS-137 gamma source, and the other using an LED.
For simplicity, we captured stereo data at only three locations.
To test the performance accuracy of our method, We covered
the source completely from a thick cardboard box, making it
invisible to our naked eye. If we follow the conventional way
of overlapping 2D source distribution over vision images,
Fig. 13 shows how overlapping of 2D distribution of the
source with the scene looks like. This simple visualization is
completely wrong as it induces that the source is distributed
on above the cardboard.
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FIGURE 14. Stereo image acquisition by keeping the imager at three positions in the environment.

FIGURE 15. Reconstruction results of scene and gamma-ray images after reprojecting disparity images
created with respect to left image.

To employ our proposed visualizing method, we captured
stereo images at three positions by moving the imager freely,
starting from right to left. Stereo scene and gamma-ray
images are shown in Fig. 14 and their respective reconstruc-
tions are in Fig. 15. As shown in Fig. 15(a) we deliberately
cropped a few 3D points at the left side of left and mid-
dle reconstructions. This is done purposefully to remove a
few number of flying points that affected the reconstruction
quality. Individual scene and gamma-ray reconstructions are
merged with each other separately based on point-to-point
ICP and fused together to create a complete and detailed 3D
model. A front and top view of this complete 3D model is
shown in Fig. 16. The results of the experiment we performed

using the LED source are summarized in Fig. 17. In addi-
tion, a qualitative reconstruction comparison of the results
obtained by our proposed reconstruction and block matching
for the covered source is summarized in Fig. 18. Recon-
struction result of block matching contains a few erroneous
mismatches appeared due to incorrect matches between point
correspondences. Comparing reconstruction results empha-
sizes the accuracy of our approach over the block matching
algorithm.

The integration of point clouds using ICP consumes some
time. The total execution time for disparity creation and scene
fusion ranged from 5 minutes up to 10 minutes; depending
on the complexity of the scene. As of this reason, currently,
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FIGURE 16. A front and top view of the fused 3D model for Cs-137 source.
The model solves the visual ambiguity of overlaying 2D isotopes above
vision images. Gamma source shown in red color lies behind the obstacle.

FIGURE 17. A front and side view of the fused 3D model for LED source.
The model helps to distinguish the source location with its environment
context.

FIGURE 18. Qualitative comparison between two reconstruction results.
left: SGM-based reconstruction, right: block matching-based
reconstruction.

the proposed scene fusion is performed offline. The estimated
time for SGM-based approach was about 8 minutes, where it
was about 11 minutes for Block matching-based approach.

VII. CONCLUSION
Scene data fusion with gamma-ray source reconstructions
provides unprecedented capabilities in identifying actual
locations of sources that are relevant for the application
in many radioactive researches. This paper demonstrated a
modest scene data fusion technique using a pan/tilt type
gamma-ray imaging system. Unlike most state-of-the-art
imagers, we did not integrate multiple or high expensive
contextual sensors such as, LiDAR or Kinects to reconstruct
scene environment.We integrated only a single vision camera
along with the gamma detector and captured stereo images by
rotating the imager horizontally and vertically, while moving
it in and around the environment. We proposed a noval line
equation model to properly localize gamma sources passing
through the opening of the collimator, while compensating

misalignment problems of the gamma detector. Instead of
using SLAM techniques as in most existing methods, we pro-
posed a modest reconstruction approach by reprojecting dis-
parity images created based on stereo matching technique in
computer vision into 3D space.We employed the well-known
SGM algorithm as our base to create dense disparity images
for both the gamma source and its surrounding scene envi-
ronment. We calculated depth values at each pixel location of
disparity results to update a 3D point cloud. We moved the
imager freely around the environment to capture data at mul-
tiple locations, and merged respective reconstructions with
each other using point-to-point ICP algorithm. We finally
fused separately merged reconstructions of the source and
the scene together to visualize the complete source shape
and its distribution in the environment. We demonstrated that
this approach can be easily used to remove visualizing ambi-
guities when overlapping 2D isotopes on above scene data.
Currently, the proposed methods are validated for gamma-ray
sources with simple geometries, and both 2D visualizations
and 3D reconstructions are performed offline. As futurework,
we are planning to extend our studies into sources that are
widely distributed in the environment, while capturing data at
more than three locations, and GPU parallelizing individual
processes to achieve near real time running capabilities. Also,
in addition, we are planning to improve reconstruction merg-
ing quality by employing color ICP, instead of using point-
to-point ICP.
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