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ABSTRACT Accurate classification and the effective recognition of driving styles are critical for improving
control performance of the vehicle powertrain. In this research, a set of driving style classification and
recognition methods is built based on the feature engineering. First, a specified road test is conducted
considering the influence factors, and meanwhile, the corresponding driving data is collected, followed
by a detailed evaluation of the driving styles. Then, the information entropy is applied to discretize the
driving data, including the speed, acceleration, and opening degree of the accelerator pedal, and 44 feature
quantities are extracted to characterize the driving style. By analyzing strong correlation and redundancy
among the constructed feature quantities, the principal component analysis (PCA) is employed to reduce the
dimension, and the fuzzy c-means (FCM) clustering algorithm is leveraged to classify the driving style. The
successful classification rate reaches 92.16%, which is improved by 9.81% in comparison with traditional
features. Finally, a parameter identification algorithm based on the support vector machine (SVM) is applied
to identify the classified driving style, and the recognition accuracy reaches 92.86%, which is improved by
7.15% in comparison with traditional features, proving the feasibility of the proposed algorithm.

INDEX TERMS Driving style classification, feature discretization, fuzzy c-means (FCM) clustering, support
vector machine (SVM).

I. INTRODUCTION
Nowadays, with the development of electrical and mechan-
ical technologies, driving experience of automobiles has
attained wide attention. In a vehicle, the powertrain con-
trol including the shifting rules design, braking and accel-
erating control, transmission control, and engine operation
optimization, has been widely researched to improve the
driving performance. In addition, the driving style identifica-
tion and corresponding adjustment of the powertrain control
and energy management strategies also play an important
role in improving the vehicle driving performance [1], [2].
An effective identification algorithm cannot only improve the
driver’s operation experience, but also supply the reference
for optimal control of the powertrain, thereby reducing the
fuel consumption and greenhouse gas (GHG) [3]–[5].

The associate editor coordinating the review of this manuscript and
approving it for publication was Rui Xiong.

In terms of driving styles, a main task is to conduct the clas-
sification and recognition. Currently, a variety of researches
have emerged to improve the identification precision based
on various algorithms. Typical classification methods include
the subjective definition and objective division based on
advanced algorithms [6], [7]. Currently, there are two com-
mon subjective definitions for the driving style. A typical
subjective definition method is the subjective questionnaire,
in which drivers are asked to fill in a special table [8]–[10].
Another method is called the level rules, which classify the
drivers according to few thresholds of operating actions, such
as the jerk and throttle position [7], [11]. However, the sub-
jective evaluation method based on simple logics may lead
to certain subjectivity, and the driving style cannot be objec-
tively defined.With the development of datamining andmod-
ern communication technologies, more andmore driving data
can be collected and numerous machine learning algorithms
are employed to classify driving styles with improvement of
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rationality and accuracy [12], [13]. In [14], [15], the driver’s
behavioral characteristics are studied by collecting informa-
tion from on-board GPS sensors and applying three different
approaches, i.e., the DP-means algorithm, hidden Markov
model (HMM), and behavioral topic extraction. As such,
the contextual scene detection is conducted and different
behaviors in each trip are identified. In [16], a fuzzy synthetic
evaluation method is introduced to classify thirty driving
styles into three different types, i.e., cautious, moderate and
aggressive. In order to overcome uncertainty of the driving
behavior and time-consuming limitation of manual mark-
ing when identifying the driving styles, a semi-supervised
learning algorithm is proposed based on the marked data
points [17].

Currently, a variety of existing advanced algorithms
are employed to recognize the driving styles, which can
be broadly divided into two categories: model-based and
learning-based [18]. A direct identification manner is to build
a driver model capable of characterizing the basic driving
behaviors. In [19], the HMM is leveraged to model and
predict the driving behavior because of its strong capabilities
of describing latent state in dynamic and stochastic processes
and dealing with time-series data. In [20], [21], three driving
styles are modeled and identified through the HMM based
on the braking characteristics. The other way is to directly
analyze the driving data using pattern recognition or data-
mining methods. In [22], a Bayesian nonparametric learning
method based on the hidden semi-Markov model is intro-
duced to extract primitive driving patterns according to the
time-series driving data. In [23], an inverse reinforcement
learning (RL) method is harnessed to learn individual driv-
ing styles for autonomous vehicles. To shorten calculation
time and improve recognition precision of driving styles, a
k-means clustering support vector machines (SVM) method
is developed to classify the driving style into two types,
i.e., aggressive and moderate [24].

Actually, a preliminary process when conducting classi-
fication and identification of the driving style is to deter-
mine characteristic variables. Choosing effective signals is
crucial since any further actions and subsequent results would
largely depend on it [25]. At present, characteristic param-
eters commonly employed to highlight the driving styles
include the vehicle speed, acceleration, opening degree of
the accelerator pedal, and jerk [16], [26]. Since the collected
feature quantities, such as the vehicle speed and acceleration,
are a series of continuous data, the first step is to translate
them into a number of feature variables. Many researches
are performed to discretize them based on statistical values
of their standard deviation, mean values and maximum val-
ues [4], [16], [27]. References [14], [16], [28] indicate that the
time percentage with different speed interval accounts for an
important influence on classification of driving patterns and
styles, and therefore it can be incorporated with additionally
acquired signals and statistical information to facilitate the
classification. However, the selection of the speed range is
usually determined based on experience. Few researches have

studied the distribution law of the speed based on the long-
time driving data with proper manners. To the best knowledge
of authors, there are few studies focusing on selection and
construction of characteristic parameters of the driving style,
which can be potentially beneficial to identification and clas-
sification of the driving styles. Motivated by this, the feature
engineering algorithm is firstly proposed in this study to
classify the driving styles by incorporating their influence
factors. Feature engineering refers to the process of trans-
forming raw data into the training data of the target model,
and its main purpose is to acquire better training features
and pave the road for more precise identification [29]. In this
paper, the characteristics of the driving style are statistically
analyzed, and then the information entropy is applied to
discretize the speed, acceleration and opening degree of the
accelerator pedal, so as to further excavate the distribution
law of these characteristics. Considering the strong correla-
tion and redundancy among those features, the principal com-
ponent analysis (PCA) is conducted to reduce the dimension
of the constructed features, and a set of features are selected
that can effectively characterize the driving style. Based on
this, the fuzzy c-means (FCM) clustering and SVM are lever-
aged to classify and identify the driving styles. Experimental
results demonstrate feasibility of the proposed classification
and pattern recognition algorithm.

The main contributions are attributed to the following two
aspects: 1) The information entropy is applied to discretize
the acquired driving data into different intervals. In this man-
ner, the distribution law of the driving data is more clearly
expressed. Based on the discretization results, 34 feature
quantities that can effectively characterize the driving style
are constructed. 2) The FCM and SVM are harnessed to con-
struct an efficient model thereby classifying and identifying
the driving style effectively.

The remainder of this article is structured as follows:
Section II details the road data acquisition process. Section III
analyzes the collected data based on the statistical methods.
In Section IV, the FCM clustering algorithm is proposed to
classify the driving style, and the SVM is applied to identify
the driving style, followed by validation by the experimental
results. Finally, main conclusions are drawn in Section V.

II. EXPERIMENT DESIGN AND DATA COLLECTION
The study of driving styles relies on precise acquisition of
road experiment data. Note that we neglect the uncertainty
induced by the road slope and weather variation. In this
study, a total of 51 drivers, numbered from 1 to 51 here-
inafter, are selected that age from 20 to 50 years old. Their
actual driving years range from 1 to 20. Meanwhile, three
professional driving assessors are engaged in evaluating each
driver’s operating style. The evaluation rules are as follows:
during the test, the experimenter drives the vehicle from the
starting point to the end according to the usual driving habits,
while the professional evaluator rides on the vehicle, and
evaluates the driving style of the experimenter by observing
the intensive process of the experimenter’s operation and the
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FIGURE 1. Experiment path.

TABLE 1. Subjective evaluation of driving styles.

subjective feeling of the professional evaluator during the
vehicle driving process. Finally, the current driving style was
chosen as themost evaluated driving style by three evaluators.

In order to consider influences of the road type, driving
condition and other factors that can affect the driving style,
the experimental driving route is carefully designed, as shown
in Fig. 1. The total length of the designed route is around
25 Km and the whole driving duration is about 40 minutes.
To satisfy diversity of road conditions, the selected route
involves the rural highway, national freeway and urban con-
gested conditions, and includes the curve road, straightway
and rampway. As can be seen in Fig. 1, sections AB and DE
are the typical rural highways, section BC is the urban con-
gested road, and section CD belongs to the freeway. Mean-
while, the selected path includes 22 curves. In order to make
the collected data include more road conditions and better
show the characteristics of the corresponding road conditions,
this paper chooses 12 o’clock a day as the starting time of the
experiment.

To reach a more convincible classification of the driving
style, three experts participated in evaluating the driving
style [30], [31], and judged the drivers’ style by observing
their operations according to their own evaluation. All the
drivers’ styles are divided into three grades, with −1, 0 and
1 being conservative, general and aggressive, respectively.
After collecting all the test data, the most voted value is
labeled as the style of the current driver. Since the study pri-
marily focuses on the impact of longitudinal driving behavior
influenced by the driving style, the data collected mainly
includes the speed, longitudinal acceleration and opening
degree of the acceleration pedal with acquisition frequency
of 10 Hz. After experiment, 51 sets of driver’s data are
acquired, as listed in Table 1, in which there are 10 aggressive
styles, 23 general styles and 18 conservative styles. We can

FIGURE 2. Box plot analysis. (a) Speed box plot; (b) Accelerator pedal
position; (c) Acceleration box plot.

find that most of drivers prefer to drive the car normally or
conservatively for safety.

In the next step, data analysis and classification are con-
ducted to feature the key factors of the driving style.

III. PREPROCESSING OF EXPERIMENTAL DATA
The collected data is analyzed by the box-line figures, and the
information entropy algorithm is employed to discretize the
vehicle speed, acceleration and opening degree of the acceler-
ator pedal. In this study, 44 feature variables representing the
driving style are constructed and the dimension of variables
is reduced by the PCA.

A. DATA ANALYSIS
In order to compare differences among drivers, the box-line
figures are plotted to depict the location and dispersion of
each driver’s habit, as shown in Fig. 2. Five marks existing in
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each line from top to bottom are the upper edge, upper quartile
line, middle line, lower quartile line, and lower edge, respec-
tively. Fig. 2 shows the distribution of the speed, acceleration
pedal position and acceleration of each driver.

As can be seen from Fig. 2 (a), the speed distribution of
drivers with different driving styles is different. Aggressive
drivers such as No. 3, No. 25 and No. 26 have wider box
lines, which indicates that their speed distribution range is
larger, and the median line and the upper quartile line are also
higher than other drivers, which indicates that the range with
higher speed is larger. Compared with general drivers such
as No. 14 and No. 15, conservative drivers such as No. 8,
No. 11 and No. 16 have lower middle and low quartile lines
and lower quartile lines, indicating that their speeds are more
distributed in low speed areas. It can be seen that different
styles of drivers have different speeds at different speeds.
Similar phenomenon occurs in the distribution of the acceler-
ator pedal position and acceleration. For the throttle opening,
the distribution law of different drivers under different throttle
opening is more different.

B. DISCRETIZATION OF CONTINUOUS ATTRIBUTION
Discretization of continuous attribution is essential for data
mining, and discretization results can directly correlate to the
learning efficiency [32]. Themain purpose of discretization is
to divide the continuous attribution into a number of unequal
ranges among units, each of which corresponds to a dis-
cretized value. Amongst them, some of characteristic values
represent continuous attribution. According to the existing
research and expert experience [15], [33], the vehicle speed,
acceleration and opening degree of the accelerator pedal show
great influence on the driving style. In this study, the infor-
mation entropy is applied for discretization of continuous
attribution, and the percentage of the data set in each interval
is calculated to construct the feature quantity characterizing
the driving style.

For the continuous attribution of each variable in the
database, its range can be divided into a number of intervals,
and each interval requires at least one sample. Thus, m sam-
ples can only be divided into m intervals, i.e., O(m). If there
are maximum amounts of attribute values in the frequency
distribution, then the entropy can be maximized. The fol-
lowing two conditions, i.e., minimization of the dimensions
and minimum loss of key information of the attribute value,
should be attained in terms of the discretization. Actually,
the information entropy represents the average amount of
information provided by each event. The information entropy
of a discrete random variable can be defined as:

H (X ) = −
∑
x∈X

p(x) log2 p(x) (1)

where x represents an event and p(x) denotes its probabil-
ity. Assume that the discrete value of a continuous random
variable X can be represented by a separate interval, and the
total number of intervals is k . In each interval, the probability
of X is p(i), and the entropy of the distribution of k discrete

FIGURE 3. Flowchart of feature discretization.

intervals is H (pk ). Reference [32] demonstrates that if the
two adjacent intervals, i.e., i and i + 1, are combined and
meanwhile H (Pk )−H (Pk−1) is minimized, then the merged
probability is monotonically non-decreasing. H (pk ) is a con-
cave function with respect to k, and reducing the interval
number k can minimize the change amount of H (pk ).
Based on it, this paper proposes an entropy-based dis-

cretization method for continuous attribution values. The
detailed processing flowchart is shown in Fig. 3.

ForK non-repetitive attribution values, they are first sorted
by size, and then divided into a number of intervals, each of
which corresponds to a non-repetitive value. In the next step,
the probability of each interval is calculated and the point
of demarcation is saved. Based on (1), the entropy H (pk ) is
calculated and then the adjacent intervals are combined to
minimize the entropy difference before and after merging.
Meanwhile, the entropy after merging is saved and the point
of demarcation is reset. In the above process, when two
adjacent intervals are merged, the interval with the smallest
entropy difference is selected as the interval of the merge.
The merging steps are repeated until the ending condition
is reached. In this manner, the discrete values and dividing
points of all continuous attributes are determined.

Based on the above analysis, determination of the stopping
point is critical to optimize the combined results. According
to the characteristics of information entropy function, this
study designs an optimal stopping point judgment method as
follows.

Since H (pk ) is a concave function of p and monotoni-
cally increases as k , the increase rate gradually decreases
when k approaches its maximum value. Meanwhile, when
the entropy reaches the maximum point v1, the corresponding
number of intervals can also attain the maximum value. From
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FIGURE 4. Feature Discretization. (a) Velocity discretization; (b) The
discretization of the opening degree of accelerator pedal; (c) Acceleration
discretization.

this point of view, if a line L is plotted from the starting
point v2 of the entropy function curve to v1, all the points
should locate above L. Consequently, the furthest point v0
can be found in the inflection point and at this moment,
an optimal balance can be reached between the entropy loss
and moderate interval amounts.

In this manner, v0 can be considered as the termination
point when merging the neighboring intervals. By drawing
a vertical lineH from any point on the function curve to L,
we can attain:

h = (kmax − 1)H (p)− Hmax(p)(k − 2) (2)

where kmax denotes the maximum interval number, which
is also the number of non-repetitive attribution and Hmax(p)
means the corresponding maximum value. Obviously, the

TABLE 2. Discretization results of speed, acceleration and accelerator
pedal degree.

maximum value of L is located at v0, by which the optimal
interval amounts can be solved. Detailed discretization results
can be shown in Fig. 4.

As can be seen from Fig. 4 (a), in the process of the
speed discretization, when the interval merging time is 101,
h reaches a maximum value of 431.5, and the interval dis-
cretization result is optimal. The number of generated inter-
vals is 13. Similarly, for discretization of the acceleration
and opening degree of the accelerator pedal, the interval
merging times of 124 and 94 are finally determined as the
interval emerging points, h equals 489.9 and 251.9, and the
numbers of generated intervals are 9 and 12, respectively.
Table 2 shows the final discretization results of these three
variables.

Consequently, the discretization features can be calculated,
as:

ij =
Tj
Ttrip
× 100% (3)

where Tj denotes the time of interval vehicle speed, accel-
eration and opening degree of the accelerator pedal listed
in Table 2, and Ttrip means the cycle total time.

Based on the determined interval, probability distributions
of the opening degree of the accelerator pedal, vehicle speed
and acceleration are calculated and shown in Fig. 5. It can be
observed that the conservative driver’s speed distribution is
higher from 5 to 9 and lower from 11 to 13. The probability
of the general driver is almost uniformly distributed in each
interval. For the aggressive driver, the distribution is signifi-
cantly higher from 10 to 13. For the acceleration probability,
the distribution of conservative drivers accounts for a larger
proportion from 1 to 4, whereas the distribution of aggressive
drivers becomes larger from 7 to 9. The distribution law
of the opening degree of the accelerator pedal is similar to
that of the acceleration. Therefore, it can be concluded that
the discretization method proposed in this paper can effec-
tively characterize the distribution law of the raw data. The
built features are qualified in distinguishing different styles
of drivers, thereby facilitating more effective identification
among different types of drivers.
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FIGURE 5. Feature Discretization.

C. FEATURE PARAMETER DIMENSION REDUCTION
Related findings in [4], [16], [27] show that most studies
select ten variables, including the mean values and stan-
dard deviation of the vehicle speed (vm, vstd ), acceleration
(am, astd ), degree of the jerk (jm, jstd ), opening degree of
the accelerator pedal (pm, pstd ) and opening degree rate of
the accelerator pedal (pdm, pdstd ), as traditional features to
classify and identify the driving styles. By considering these
10 traditional variables and adding 34 new ones, 44 char-
acteristic variables are selected to characterize the driving
styles, as detailed in Table 3. The 34 new variables include
the percentage of the interval vehicle speed to the total speed
range (v1 to v13), the percentage of the interval acceleration
to the total acceleration interval (a1 to a9) and the percentage
of the interval opening degree of the accelerator pedal to the
total opening degree interval (p1 to p12). Nevertheless, too
many parameters will no doubt increase complexity of the

TABLE 3. Driving styles parameters.

clustering model. In fact, there exists strong coupling among
these vectors of data, such as the speed, acceleration and
opening degree of the accelerator pedal. Consequently,
the PCA is employed to simplify the dimension of the con-
structed feature variables by explaining the strong correlation
and deleting redundant characteristic variables.

The key purpose of the PCA is to transform raw data
into several new independent components with minimization
of the information loss. These principal components can
represent most information of the raw data and are usually
expressed by linear combination of raw variables. Supposing
that p feature parameters are set to characterize the driv-
ing styles, denoted as x = (x1, x2, · · · , xp)′, and assuming
that the expectation and covariance of x exist, expressed as
E(x) = µ and var(x) = 6, we can attain a linear transforma-
tion, as

y1 = a11x1 + a12x2 + · · · + a1pxp = a′1x
y2 = a21x1 + a22x2 + · · · + a2pxp = a′2x
...

yp = ap1x1 + ap2x2 + · · · + appxp = a′px

(4)

where a1, a2, · · · , ap are unit vectors. By sorting a1, the vari-
ance of y1 can be maximized. Supposing that λ1 ≥ λ2 ≥

· · · ≥ λp ≥ 0 are eigenvalues of 6 and t1, t2, · · · , tp are
corresponding unit orthogonal eigenvectors, we can calculate
the variance of y1, as:

var(y1)=
p∑
i=1

λi(a1′t i)2≤λ1
p∑
i=1

(a1′t i)2=λ1a1′a1 = λ1 (5)

From (5), it can be known that when a1 equals t1, y1 = t1′x
has the largest variance and the maximum value is λi. Now,
y1 = t1′x is called the first principal component. Similarly,
λi and its main component yi = t i′x can be found. The results
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FIGURE 6. Contribution rate of the PCA.

obtained by the PCA in terms of the characteristic parameters
describing the driving style are shown in Fig. 6.

As can be seen in Fig. 6, the cumulative contribution rate
of the first eight principal components is 90.83%, which
satisfies the requirement of more than 85%. As such, the first
eight principal components are selected to characterize the
driver’s style, which provides a solid basis for the cluster
analysis of the driving style.

IV. CLASSIFICATION AND RECOGNITION
OF DRIVING STYLE
In this study, the FCM is employed to classify the driving
style, followed by the identification conducted by the SVM.

A. CLASSIFICATION OF DRIVING STYLE
The cluster analysis can automatically classify the sample
data, and an advantage is that it does not need to determine the
classification criteria in advance. The FCM exhibits superior
advantages in resolving classification uncertainty and fuzzy
problems. The samples with concentrated distribution can be
divided into multiple categories simultaneously to obtain the
optimal clustering result.

The FCM is mainly based on the c-means algorithm,
and the square function of the weighted error is substituted
with the intra-class error square function, then the objective
function can be calculated, as:

J (U ,V ) =
c∑
i=1

ω∑
k=1

µδikd
2
ik (6)

where c means the amount of classes, ω denotes the sam-
ple amount, U is the membership matrix of each center of
the sample, V is the vector of each cluster center, and µik
expresses the membership degree of the center of the sample.
dik is the norm distance of the sample to the center, which
is generally expressed in terms of the Euclidean distance. δ
presents the fuzzy weighted index, which is usually two by
default.

The purpose of the FCM algorithm is to find a set of mem-
bership matrix and cluster center to ensure that the objective
function reaches the minimum value, which is essentially an
optimization problem. Detailed formulations are expressed

FIGURE 7. Objective function value based on optimized feature
quantities.

TABLE 4. Classification results of driving styles.

TABLE 5. Comparison of classification results based on optimized feature
quantities.

as:

µik =
1

c∑
j=1

(
dik
/
djk
) 2
δ−1

(7)

vi =
ϕ∑
k=1

µδikxk

/
ϕ∑
k=1

µik i = 1, 2 . . . c (8)

where xk is the kth sample vector, vi is the ith cluster center
vector. By iterating (7) and (8), a set of optimal U and V can
be found. According to the dimensionality reduction results
of the PCA, the total 51 drivers’ styles are clustered by the
FCM, and the results are shown in Fig. 7 and Table 4, respec-
tively. Fig. 7 shows the variation of the objective functionwith
iteration during the clustering process. When the iteration
reaches 15, the objective function begins to stabilize, indi-
cating that the clustering process takes effect. Table 4 shows
the results after clustering.

Combining with the driving data, we can find that the
third type of driver presents characteristics including higher
vehicle speed, faster variation rate of the vehicle speed, larger
acceleration, larger degree of jerk, and larger throttle opening
and changing rate of the throttle opening. However, the char-
acteristics values of the first type of driver are relatively
small, and meanwhile the second one locates in the middle.
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FIGURE 8. Objective function value based on traditional feature
quantities.

TABLE 6. Comparison of classification results based on traditional
features.

Therefore, these three drivers belong to conservative, general
and aggressive types, respectively.

The classification results of the driving styles based on the
FCM are compared with the results of subjective evaluation,
as shown in Table 5. It can be found that Nos. 12 and 45 who
are defined as aggressive drivers are classified into the general
type; No. 40 who belongs to the general type is classified
as a conservative type; and No. 9 who is assumed as the
conservative type is classified into a general type. The overall
classification accuracy of the driving style is 92.16%.

In order to validate whether the discretized features have a
positive effect in clustering the driving styles, ten traditional
features (top 10 feature variables listed in Table 3) that have
not been optimized are selected for comparison. After the
dimension reduction by the PCA, the first eight principal
components, of which the accumulated contribution rate is
99.64%, are selected and the driving style is clustered by the
FCM. Fig. 8 shows the variation of the objective function dur-
ing the clustering process, and Table 6 lists the classification
result after the clustering process.

As can be seen, the third type of the driver’s style is char-
acterized by the high average speed, large acceleration, large
degree of jerk, and large opening degree of the accelerator
pedal, therefore it belongs to an aggressive type. In addition,
the characteristics of the first type are low, consequently it is a
conservative type; and the second type of driver belongs to the
general type. The classification results are shown in Table 7.

It can be observed from Table 7 that for the aggressive
types, there are 3 misclassifications for Nos. 12, 38, and
45; and for the general driver, there are 4 misclassifications,
i.e., Nos. 1, 6, 30 and 40. The overall classification accuracy
rate is 82.35%. The two classification results show that both
conservative and aggressive drivers are easily clustered into

TABLE 7. Comparison of Classification Results Based on Traditional
Features.

general drivers, whereas the general drivers are more likely
to be clustered into conservative drivers. To a certain extent,
this is because that most of aggressive drivers are particularly
aggressive when driving the vehicle. As shown in Fig. 2,
drivers such as Nos. 3, 25, and 26 are much superior to other
drivers in all indicators. At the same time, the clustering
result based on all the features is 9.81% higher than the
average recognition rate of the traditional features, and the
algorithm can effectively classify the behavior of Nos. 1, 6,
30 and 35. However, these drivers are clustered incorrectly
by partial features, and all features can effectively correct the
false clustering results. It proves that the feature discretization
based on the information entropy can effectively optimize
the traditional feature quantity, thereby improving the clas-
sification accuracy of the driving style. Based on the above
discussion, the information entropy can better discretize the
characteristics of the speed, acceleration, and opening degree
of the accelerator pedal and the obtained discrete interval can
effectively represent distribution rules of the raw data. The
constructed characteristic values can supplement extra infor-
mation of the traditional algorithm, thus enhancing clearer
classification of the driving style and improving the classi-
fication precision.

B. RECOGNITION OF THE DRIVING STYLE
The SVM can well adapt to the high-dimensional space and
is suitable and effective to solve high nonlinear problems.
Moreover, it can provide satisfactory generalization for pat-
tern classification, and consequently it is qualified for classi-
fying the driving styles. The key idea of SVM is to maximize
the interval between the support vector and classification
hyperplane.

Given training vectors xi ∈ Rh, i = 1, . . . , l in two classes,
and a vector y ∈ R, yi ∈ {−1, 1} , the support vector can find
the solution of the following optimization problem [34], as

min
w,b,ξ

1
2
wTw+ C

I∑
i=1

ξi,

subject to yi(wTϕ(xi)+ b) ≥ 1− ξi,

ξi ≥ 0, i = 1, . . . l. (9)

where C is a penalty factor to balance the accuracy and
complexity of the model, and ξi is the slack non-negative
variable. Here, the Lagrange factor is introduced to resolve
this optimization problem, and one can easily obtain the
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FIGURE 9. SVC parameter selection graph (Optimal c = 1, g = 0.25 CV
Accuracy = 100%). (a) Contour map; (b) 3D view discretization.

following Wolfe dual format of the primal quadratic
programming problem, as

min
αi

1
2

I∑
i,j=1

αiαjyiyjk(xixj)−
I∑
i=1

αi,

subject to 0 ≤ αi ≤ c, i = 1, . . . i,

yTα = 0. (10)

SVM works in the feature space F via the nonlinear map-
ping function ϕ : Rh 7→ F , which can be defined implicitly
by a kernel function K (xi, xj) = ϕ(xi)Tϕ(xj). At the optimal
point of (10), we can get either αi = 0, 0 < αi < C , or
αi = C . The input vectors for αi > 0 are indexed as the sup-
port vectors. These is only one important information from
the perspective of classification, as they define the decision
boundary, and yet the rest of the inputs may be ignored. For
a binary classification problem, the decision function of the
SVM [34] can be expressed as

f (x) = sgn(
NS∑
i=1

αik(xi, x)+ b (11)

where αi is the corresponding weight of support vector xi,
x is the input pattern to be classified, and Ns is the number of
support vectors and b is the bias.

In this paper, the radial basis function is applied as the
kernel function to establish the model. According to the
principle of the SVM, the penalty factorC and kernel function

FIGURE 10. The driving style recognition result based on the SVM
(accuracy = 92.8571%).

FIGURE 11. The driving style recognition result based on traditional
feature quantities (accuracy = 85.71%).

parameter g are crucial to influence prediction precision of
themodel. In this study, the grid search algorithm is employed
to find the ladder values for C and g. For the fixed C and g,
the training set is used as the original data set to obtain the
predicted mean square error by the K-fold cross validation
(K-CV) method. Finally, C and g that minimize the mean
square error (MSE) of the prediction result of the training set
are selected as the optimal parameters. It is necessary to point
out that multiple sets of C and g may exist corresponding to
the smallestMSE, andwe select the groupwith the smallestC
as the final parameter, since larger C may lead to occurrence
of over learning.

Based on the FCM algorithm, the clustered drivers are
renumbered, in which we can find samples 1 to 8, 9 to 29 and
30 to 51 belong to aggressive, general and conservative types,
respectively. In this paper, 70% data is used for training
and the remaining 30% data is applied for validation [34].
We selected samples 1 to 6, 14 to 26 and 34 to 51 as the
training set. Based on the K-CV method, C and g finally
converge to 1 and 0.25 after trial and error.

By updating the SVM model according to the optimal C
and g, the final validation results are shown in Fig. 10. As can
be seen, the red dots index real categories, and blue dots
denote the categories identified based on the algorithm. The
accuracy of the overall prediction result is 92.86%, and only
sample 2 is recognized incorrectly. As such, the effectiveness
of the built strategy is validated.
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In order to verify whether the constructed stylistic features
of driving style have a positive effect on the classification
results. For the same training set, test set and parameter opti-
mization SVM model, the traditional features (top 10 feature
variables listed in Table 3) are applied to recognize driving
style, and the recognition results are shown in Figure 11.

From the figure, it can be seen that the correct rate of driv-
ing style recognition by using traditional features is 85.71%,
and the number 2 and 6 drivers are misidentified. Therefore,
compared with the traditional feature variables, the proposed
feature quantities will improve the recognition accuracy
by 7.15%.As such, the effectiveness of the built strategy is
validated.

V. CONCLUSION
This paper applies the feature engineering to classify and
identify the driving styles. First, the driving data that charac-
terizes the driving style through the designed road test are col-
lected. Then, based on the information entropy, the velocity,
acceleration and opening degree of the accelerator pedal are
discretized to construct 44 feature quantities that essentially
reflect their distribution characteristics. By comparing the
distribution of drivers with different styles under the con-
structed features, we can see that the constructed features can
effectively describe the distribution of the original data and
distinguish the three types of driving styles. Subsequently,
the PCA is introduced to reduce the dimension of the con-
structed feature quantities. In this manner, a set of feature
quantities that can effectively characterize the driving style
are obtained, and the FCM algorithm is applied to classify the
driving style. The results show that the classification accuracy
of the constructed feature quantities is 9.81% higher than the
traditional algorithm. After that, the driving style is identified
by the SVM algorithm, of which the main parameters are
optimized, and the recognition accuracy of the constructed
feature quantities is 7.15% higher than the traditional fea-
tures. The validation results prove the effectiveness of the
proposed feature-based driving style classification method.
Therefore, we conclude that the proposed algorithm can
supply a solid foundation for development of advanced algo-
rithms, bywhich the powertrain controlling performances can
be improved with consideration of the driving styles.

Next step, more identification and experiment in terms of
the driving styles will be carried out and the corresponding
energy management strategies of hybrid electric vehicles will
be researched by incorporating identification results of the
driving styles.
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