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ABSTRACT Hard turning has become an attractive alternative to the more time-consuming and costly
grinding technique. Unfortunately, high-quality prediction of the surface roughness generated during hard
turning is difficult due to the technical complexities involved. Hence, it is currently receiving much research
attention. The objective of this paper is to survey the current state of the soft computing techniques for
surface roughness prediction in hard turning. It focuses on three areas: data acquisition, feature selection,
and prediction model of surface roughness. First, the characteristics of hard turning and surface roughness
are introduced, and a framework of the soft computing techniques is presented. Then, the three key areas
are surveyed thoroughly. Finally, the recommendations and challenges faced by industry and academia are

discussed, and the conclusions are drawn.

INDEX TERMS Surface roughness prediction, soft computing techniques, hard turning, review.

I. INTRODUCTION

A. HARD TURNING

With the increase in demand for product individuality, manu-
facturers face increasingly challenging expectations, such as
increasing product quality and variability, decreasing product
life-cycles and, most importantly, lowering product costs [1],
[2]. Significant advances have been seen in the machinability
of hard processing materials in recent years. There are many
advantages in machining high-hardness materials compared
with softer materials, such as significant savings in cost,
increased productivity rates, improved surface quality, and
elimination of deformities caused by dynamic cutting tem-
peratures [3]. Hard turning is such a processing technology
and is defined as a machining process in which materials
with a hardness of 45-65 HRC (Rockwell scale. Based on
different hardness test scales, the hardness of materials can
be expressed as HRC, HRB, and so on.) are turned using
single-point cutting tools with high hardness and wear resis-
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tance [3]. The cutting tools used are usually made of polycrys-
talline cubic boron nitride (CBN) and ceramics [4]. Most hard
turning applications involve the manufacturing of bearings,
shafts, forgings, camshafts, gear-shafts, and cutting tools, due
to their high strength and wear resistance requirements [5].
In the fabrication of complex parts, hard turning can reduce
manufacturing costs by up to 30 times [6].

Compared with the conventional turning operations used
for softer materials, hard turning is unique in several key
ways, including the part’s hardness, the process parameters,
the cutting tool required, and the mechanisms involved during
chip formation. In hard turning, hardened steels are usu-
ally considered to be difficult-to-cut materials and, therefore,
care must be taken to choose suitable process parameters,
which usually have a relatively narrow range of accept-
able values. If inappropriate process parameters are selected,
the workpiece’s surface quality will deteriorate and tool life,
dimensional accuracy, and/or cutting stability will suffer [5],
[7], [8]. In addition, the cutting tools selected should have
excellent performance, mainly in terms of high indentation
hardness, high hot-hardness, high fatigue resistance, high
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abrasive wear resistance, and high physical and chemical
stability [9]. CBN and ceramic tools are favored for the hard
turning of hardened steels, which is widely accepted to be
superior to grinding, which is costly, for the cutting of various
difficult-to-cut materials, such as high-speed steels, hardened
steels, die steels, bearing steels, white cast iron, and alloy
cast irons [6]. The specific cutting forces encountered in hard
turning (force per unit, chip cross-sectional area) are larger
than those in conventional turning operations. Experiments
have shown that, compared with turning a material with
32 HRC hardness, the turning of AISI 52100 ball bearing steel
with 63 HRC hardness requires 50% greater cutting force
and 100% greater feed and thrust forces. When machining
hardened steel (45-55 HRC) with a CBN insert, experiments
have revealed that the radial thrust cutting force is the largest
among the three cutting force components [10]. In addition,
it is important to rigorously control the workpiece surface
quality during hard turning.

Davim and Figueira [11] investigated workpiece surface
quality in industrial hard turning practice and argued that
surface roughness will be obtained when average surface
roughness (Ra) < 0.8 um. This implies that the surface finish
produced by hard turning is only equivalent to that obtained
by grinding [12]. A potential alternative to traditional grind-
ing methods, hard turning has many distinct characteristics.
Hard turning has greater flexibility to produce a variety of
superior precision components and has the potential to pro-
cess complex geometries with the one set-up. The contact
area between the cutting tool and the workpiece is usually
several times smaller in hard turning than in grinding, which
creates lower temperatures. The high temperatures produced
in high-speed grinding penetrate deep into the workpiece,
risking thermal damage. In addition, hard turning has a higher
material removal rate than grinding, making the product fig-
uration more convenient and efficient. The average stress
over the entire contact length is greater in hard turning than
in grinding and may induce a relatively deep compressive
residual stress in the area around individual grain contacts.
High levels of compressive residual stress induced by hard
turning are beneficial to the contact fatigue strength of the
workpiece and can extend the contact fatigue life of bear-
ings and crankshafts [13]. Fig. 1 summarizes the differences
between traditional turning and hard turning.

B. SURFACE ROUGHNESS
Surface properties such as roughness play an important role in
the functional features of machined components. Understand-
ing hard turning surface roughness generation mechanisms
can help improve the workpiece surface quality [14]. Surface
roughness usually refers to deviations from the centreline
of the nominal surface. Workpiece surface morphology is
the result of the superimposition of deviations from distinct
orders.

As can be seen from Fig. 2, Deviation Type 1 (roughness)
is mainly related to the cutting edge shape and chip forma-
tion. Deviation Type 2 (waviness) is primarily related to the
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NS A

1st order deviation-Roughness

Superimpostioni

Surface roughness

2nd deviation-Waviness

3rd deviation-Shape error

FIGURE 2. Surface form deviations.

circularity and waviness of workpiece surface morphol-
ogy and is mainly caused by workpiece material inhomo-
geneities. Deviation Type 3 (shape error) is mainly related
to flatness and is caused by erroneous setups and work-
piece deformation. Based on the abovementioned theoretical
surface morphology and structure analysis, the hard turn-
ing cutting mechanism mainly depends on numerical sim-
ulation [15]-[18]. However, numerical simulation of hard
turning are mainly done to analyze certain key issues related
to processing performance, such as the influence of cut-
ting tool material, tool nose radius, workpiece material
and cutting parameters on the process efficiencies in terms
of cutting force, white layer, cutting temperature, surface
residual stress and surface integrity [19]. The mechanisms of
surface roughness formation are rarely discussed [20] and,
therefore, will not be discussed in this article.

Although finite element simulation can easily obtain many
parameters that are difficult to observe during actual hard
turning, many practical imperfections, such as cutting vibra-
tions, tool breakage, and chip bonding, are not taken into
account. Therefore, in some cases, observations do not agree
with predictions [21]. Although a lot of literature suggests
that process parameters, such as workpiece and cutting tool
characteristics, have a decisive influence on the generation of
surface roughness [22], [23], their role in surface roughness
mechanisms remains unknown. As there are many factors
involved that have complex interactions, it is difficult to gen-
erate explicit analytical models for hard turning processes.

Therefore, in order to obtain more information related to
surface roughness states and effectively analyze it for online
surface roughness prediction, soft computing techniques,
or called indirect measurement methods in this article, are

89557



IEEE Access

K. He et al.: Soft Computing Techniques for Surface Roughness Prediction in Hard Turning: A literature review

[

— — — — — 'eCutting parameters |

Model building

-Static factor models
-Single dynamic factor models

eSensor signals | leWorkpiece Characteristics {
|-Cutting tool characteristics |

-

Feature extraction

oTime Domain: RMS, Average,[
eFrequency domain: Single harmonic, PDS, [
eWavelet domain: Wavelets, [

\

-‘Multi-dynamic factor models

.

Model libraries
= estimated

. 2

Surface roughness
rediction

eAccuracy level
oSingle value error
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widely employed in research and development. Such tech-
niques can predict surface roughness without interfering with
the hard turning process, thereby increasing efficiency and
allowing online adjustments [22]. To achieve this, machining
status information such as vibrations, cutting forces, images,
electric current, cutting heat, acoustic emissions, sound, and
chip formation [23]—-[25] can be used to monitor the quality of
the machining process. Based on feature extraction from such
data, a predictive model can be constructed and trained. After
that, the model can be used for surface roughness prediction.
Fig. 3 shows an overview of the soft computing techniques
relevant to this approach.

In the context of this technical framework, this paper is
organized as follows. Section 2 outlines possible data acquisi-
tion methods, which include direct and indirect measurement.
Section 3 presents the feature extraction methods that can be
employed to select or extract the features most meaningful
for surface roughness prediction. Section 4 describes the
prediction model of surface roughness in hard turning. The
challenges and opportunities associated with surface rough-
ness prediction in hard turning are discussed in Section 5, then
the key conclusions are presented in Section 6.
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Il. DATA ACQUISITION

A. CUTTING PARAMETERS

The cutting parameters in hard turning are process fac-
tors such as cutting speed, feed rate, and depth of cut.
These are crucial to attaining high surface quality [26]-[29]
and will yield the desired surface roughness of workpiece
(i.e. meet the technical specifications). However, predictive
models are largely dependent on the most significant param-
eters influencing surface roughness and do not include all
possible influences. In order to achieve this purpose, a sig-
nificant number of researchers have employed analysis of
variance (ANOVA) to estimate the relative contributions of
each process factor [30]. For the remainder of this paper,
the term cutting parameters refers to cutting speed (v.), feed
rate (), and depth of cut (ap).

Pontes et al. [31] employed cutting parameters as control-
ling variables to predict the surface roughness of turned AISI
52100 hardened steel. A design of experiments (DOE)-based
approach to the design of artificial neural networks (ANN5)
with a radial basis function (RBF) has been proposed for
surface roughness prediction. The varied cutting condi-
tions correspond to the operational limits provided by the
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toolmaker (Sandvik Coromant, 2009). In their experimental
study, training and testing datasets for an ANN with 720 cases
were obtained by designing an experiment with 60 runs.
Their research shows that the proposed RBF can achieve
a mean absolute error of 0.388% after being trained with
only 36 examples. Khamel et al. [12] investigated the effects
of cutting parameters on tool life, surface roughness and
cutting forces in the finish hard turning of 60 HRC AISI
52100 bearing steel with a CBN tool. The combined effects
of the cutting parameters on performance characteristics (tool
life, surface roughness, and cutting forces) were analyzed
by ANOVA. The results show that surface roughness and
tool life are strongly influenced by feed rate and cutting
speed while cutting force is influenced by the depth of cut.
Lalwani et al. [32] investigated the effect of cutting param-
eters on cutting forces and surface roughness in finish hard
turning of MDN250 steel. The results show that feed rate
has a significant effect on surface roughness. Cutting param-
eters were optimized by Asiltiirk and Akkus [3] to minimize
surface roughness (R, and R;) based on the Taguchi method
in the hard turning of AISI 4140 (51 HRC) with coated
carbide cutting tools. Using the statistical methods of signal-
to-noise ratio (SNR) and ANOVA, they showed that the feed
rate has the most significant effect on surface roughness
(R, and R;) at a reliability level of 95%. Saini et al. [33]
investigated the effects of cutting parameters on tool wear and
surface roughness. Experimental data were acquired during
the hard turning of hardened AISI H-11 steel and ANOVA
was utilized to determine statistical significance. Panda et al.
[9] investigated the optimization of cutting conditions on
surface quality characteristics (R;, R, and R;) in the hard
turning of EN31 steel. ANOVA was employed to deter-
mine which cutting parameters affected the surface quality.
Pontes et al.[34] used a dataset containing cutting parameters
acquired by DOE as input for RBF networks to predict surface
roughness. Agrawal et al. [35] performed 39 sets of trials to
study the effect of cutting parameters on surface roughness
in the hard turning of an AISI 4340 steel workpiece (hard-
ened to 69 HRC) under dry conditions. Cutting parameters
were employed by Bouacha et al. [36] as input variables for
response surface methodology (RSM) estimation of surface
roughness and cutting force components (Fy, F. and F) in
the hard turning of hardened AISI 52100 bearing steel with
a CBN tool. Using the Taguchi method, cutting parameters
were employed as input of ANN for surface roughness pre-
diction in the hard turning of AISI H13 steel with minimal
cutting fluid application [37]. Fnides er al. [38] employed
cutting parameters in a multiple regression model. The cut-
ting parameters of cutting speed, feed rate, and depth of
cut were optimized by ANOVA. Das et al. [29] employed
cutting parameters as input to quadratic models of surface
roughness during hard turning. ANOVA was employed to
optimize the cutting parameters, with the results showing that
feed rate is the principal cutting parameter influencing surface
roughness, followed by cutting speed.
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TABLE 1. Analysis of variance for surface roughness(R,).

Source DF  Seq.SS Adj.MS F Prob>F Cont.%

Ve 1 0.0085  0.1974  31.64 0.000 1.04
f 1 0.1279  0.2295  36.79 0.000 15.74
a, 1 0.0192  0.0431 691 0.027 236
Cs 1 0.1763  0.1116  17.89  0.002  21.69
[ *ay, 1 0.0385  0.0372 597 0.037 4.74
. 2 1 0.3307  0.3293  52.78 0.000 40.70
Cs xCs 1 0.0555  0.0555  8.90 0.015 6.83
Error 9 0.0562  0.0062 6.91
Total 16 0.8126 100

A schematic representation of the experimental setup and
data analysis used in this study are shown in Fig. 4. The
cutting parameters and surface roughness are determined by
a full factorial design and surface roughness testing, respec-
tively. Then, the experimental results of surface roughness
(R,) and cutting parameters are analyzed by ANOVA to
determine the significant factors using Minitab 15 software.

The surface roughness ANOVA is calculated at a signifi-
cance level (@) of 0.05 (95% confidence). The value (Cont.%)
in the last column of the ANOVA table indicates the statistical
significance of the corresponding response. For example,
as shown in Table 1, the main contributions are for the inter-
action f2 (40.70%), while for Cg it is 21.96% and for f it is
15.74%. In Table 1, v, is the cutting speed, f is the feed rate,
ay is the depth of cut, Cs is the signal feature extracted, and
x denotes interaction terms.

B. WORKPIECE AND CUTTING TOOL CHARACTERISTICS
In order to obtain more comprehensive state information
during hard turning processes, many factors other than the
cutting parameters can be employed to predict surface rough-
ness more accurately and efficiently. These include the char-
acteristics of the workpiece material and cutting tool.
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Aouici et al. [6] analyzed the effects of cutting parameters
and workpiece hardness on surface roughness and cutting
force components in the hard turning of AISI H11 steel
hardened to 40, 45 and 50 HRC using CBN 7020 (Sandvik
Company). ANOVA was employed for four-factor (cutting
speed, feed rate, depth of cut and hardness) and three-level
factorial experimental designs. The analysis showed that sur-
face roughness is influenced principally by feed rate and
workpiece hardness, while depth of cut and workpiece hard-
ness influence the cutting force components. Chinchanikar
and Choudhury [39] investigated the effects of workpiece
material hardness and cutting parameters on the performance
of coated carbide tools, including their cutting forces, surface
roughness, and tool life. ANOVA was employed to deter-
mine the most significant parameters, which showed that
surface roughness is significantly affected by the feed rate
and depth of cut. Mia et al. [27] employed cutting speed,
feed rate and material hardness as independent variables and
surface roughness (R;) and mean chip-tool interface tem-
perature (6) as responses. ANOVA was used to determine
the effects of control factors. They also used various cutting
speeds, feed rates, material hardness, and dry / high pressure
lubrication (HPC) as input for an ANN to predict surface
roughness in the turning of hardened EN 24T steel [40].
An experiment conducted by Azizi et al. [41] investigated
the effects of cutting parameters and workpiece hardness on
surface roughness and cutting force in the hard turning of
AISI 52100 steel. ANOVA was employed to determine the
significant parameters, with the results indicating that feed
rate, workpiece hardness and cutting speed have significant
effects on surface roughness; whereas the depth of cut, work-
piece hardness and feed rate have significant impacts on cut-
ting force components. The influence of hardness and spindle
speed on surface roughness (R,) in hard turning was studied
by using ANOVA, with the results showing that workpiece
hardness has a significant effect on surface roughness [42].
Fig. 5 shows the deeper correlation that workpiece hardness
affects surface roughness.

In addition to considering the characteristics of work-
piece materials, many studies have also discussed the effects
of cutting tool characteristics on workpiece surface rough-
ness [43]. Ozel et al. [44] and Tang et al. [45] investigated

| Workpiece hardness |

AN
| Cutting force |<— Tool geometry |
L l

| Vibration —-I Surface residual area height |

| Surface roughness |

FIGURE 5. Map of the effect of workpiece hardness on surface roughness.
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the effects of cutting edge geometry, workpiece hardness,
feed rate and cutting speed on surface roughness and forces
in the finish hard turning of AISI H13 steel using CBN.
Four-factor (hardness, edge geometry, feed rate and cutting
speed) and two-level experiments were conducted and ana-
lyzed by ANOVA. Yurtkuran et al. [46] employed cutting
parameters and coating conditions in a predictive model of
R, in the hard turning of X40CrMoV5-1 steel with CBN tool.
An optimization study with analysis of signal-to-noise (S/N)
ratios was conducted to reveal their relationships. Manivel
and Gandhinathan [47] used the tool nose radius and cut-
ting parameters as independent variables to predict surface
roughness and tool wear. ANOVA and S/N ratios were used
to optimize the independent variables. Cutting parameters
and cutting tool angle were employed by Vishal ef al. [21]
and Meddour et al. [48] as input for an ANN that predicted
cutting forces and surface roughness. The effects of cutting
parameters on cutting forces and surface roughness were
evaluated by linear regression. Cutting parameters and tool
geometry, were employed by Karpat and Ozel [49] as input
of ANN for multi-objective prediction. The input parame-
ters were optimized according to the multi-objectives by the
dynamic neighborhood particle swarm optimization method-
ology. Ferreira et al. [50] investigated the effects of cutting
speed, feed rate, and use of conventional and multi-radius
ceramic tools on surface roughness in the hard turning of AISI
H13 steel. ANOVA showed that the multi-radius ceramic tool
and feed rate had the strongest effects on surface roughness.
Singh and Rao [43] employed cutting speed, feed rate, rake
angle and nose radius as factors to predict surface roughness
based on response surface methodology. These parameters
were optimized using ANOVA, with the results indicating
that feed rate is the dominant factor affecting surface rough-
ness, followed by nose radius, cutting speed and rake angle.
Fig. 6 shows the deeper correlation that tool characteristics
affects surface roughness.

C. SENSOR SIGNALS

Although the cutting parameters and workpiece/cutting tool
characteristics are more critical and easier to obtain than other
factors, they are static parameters that cannot reflect dynamic
changes in surface roughness during hard turning processes
[51]. In order to effectively capture dynamic information
related to surface roughness, sensor signals can be exploited

Cutting edge geometry|

Tool
characteristics

Tool nose radius | —3

Rake angle
Approach angle

FIGURE 6. Map of effect of tool characteristics on surface roughness.

Surface residual
i Surface roughness
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TABLE 2. Factors affecting the workpiece surface roughness in hard turning.

Significant
Factors Type 7Yes E ;NOD References
cutting speed cutting parameter [] 24,38, 31, 36, 3, 12, 33,34, 37, 30, 35, 7
feed rate cutting parameter ] 24,38, 31, 36, 3, 12, 33,34, 37, 30, 35, 7
depth of cut cutting parameter [] 24,38, 31, 36, 3, 12, 33,34, 37, 30, 35, 7
workpiece hardness material characteristics @ 24,42, 6, 1,41, 39
tool geometry cutting tool characteristics 24,44, 49, 21, 46, 47
cutting vibration sensing signal 56, 53, 60, 52, 54
cutting force sensing signal 24,54,57
audible sound sensing signal ] 58, 54
cutting temperature sensing signal ] 56

for surface roughness prediction, such as cutting vibrations,
temperatures, and forces etc.

Cutting vibration signals are widely used because they are
directly related to surface roughness and are easy to obtain
[52]. Hessainia et al. [53] employed tool vibration in the
radial and tangential directions, and cutting parameters such
as cutting speed, feed rate, and depth of cut as the main
inputs for surface roughness prediction in the hard turning
of 42CrMo4 hardened steel. He et al. [52] used cutting
parameters and cutting vibration signals to predict surface
roughness based on a detailed analysis of the workpiece sur-
face formation mechanism. The ANOVA analysis was carried
out for a 5% significance level, i.e., for a 95% confidence
level. The results showed that the vibration signal affects sur-
face roughness in a considerable way. Deshpande et al. [54]
employed cutting vibrations, forces, and sound, along with
cutting parameters, to estimate surface roughness in the turn-
ing of Inconel 718 on a computer numerical control lathe
machine. The cutting forces are measured using piezoelectric
dynamometer. The sound generated at the tool-chip interface
was measured with a microphone probe. The vibrations were
measured using noncontact-type laser doppler vibrometers.
Delijaicov et al. [55] studied the influence of cutting vibra-
tions on surface roughness. The cutting vibrations were col-
lected by a piezoelectric dynamometer close to the tool and
workpiece interface.

An attempt was made by Arulraj et al. [56] to combine
cutting temperature with cutting parameters as input for an
ANN to predict surface roughness in the hard turning of
H13 tool steel hardened to 43 HRC. The cutting tempera-
ture was measured using an Amprobe (IR750) infrared ther-
mometer and test results showed it to be effective. Process
parameters (tool edge geometry, workpiece hardness, cutting
speed, feed rate and cutting length) and cutting force were
used as inputs for an ANN by Ozel and Karpat [24] to predict
surface roughness and tool wear during hard turning. ANOVA
results showed that workpiece hardness, cutting length, and
some interaction terms were less significant effect on surface
roughness. Grzesik [57] used a piezoelectric dynamometer
to measure cutting forces to determine the plowing energy
and friction coefficient and reveal the spring-back effect of
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surface roughness. The audible sound emitted during hard
turning was found by Frigieri ef al. [58] to be a valuable
source of information for surface roughness diagnosis. Sound
emissions are collected by a microphone installed close to the
cutting tool in the cutting area. Compared with the other mon-
itoring signals used for surface roughness prediction, such as
cutting vibration signals, cutting force signals and electric
current signals, the sound that comes from the machining
process is easily accessible and audio microphones are easy
to install. The acoustic signals, however, are vulnerable to
interference noise produced by external circumstances, which
increases the complexity of signal processing. Mia et al. [59]
collected the time () gap between the minimum quantity
coolant lubrication pulsing with the cutting parameters to
predict the surface roughness based on a devised least square
support vector machines (LS-SVM). Table 2 summarizes the
factors that affect workpiece surface roughness.

Although information collected by sensors can be effec-
tively used to monitor dynamic changes in surface roughness,
it must be processed by a complex signal processing system
involving acquisition, filtering, and feature extraction.

IIl. FEATURE SELECTION

After data acquisition, feature selection is a critical issue.
Signals obtained during hard turning are generally cutting
vibrations, cutting forces, audible sounds, and cutting temper-
atures. The application of these signal features is discussed
in the time domain, frequency domain, and time-frequency
domain. Hessainia et al. [53] employed vibration accelera-
tion amplitudes in the radial and tangential directions and
cutting parameters as input to predict surface roughness.
Meddour et al. [60] used tool vibrations, cutting parameters
and the tool nose radius for surface roughness prediction in
the hard turning of AISI 52100 steel. A correlation between
tool vibrations and surface roughness was revealed. Cutting
temperature, as well as cutting parameters, was employed
by Arulraj et al. [56] as input to an ANN to predict surface
roughness in hard turning. The test results showed that an
ANN based on cutting temperature made better predictions
than one that was not. Ozel and Karpat [24] employed the
three force components with other cutting parameters to
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predict surface roughness and tool wear. The amplitude of the
cutting force was used as direct input to an ANN to acquire
the workpiece surface roughness.

In addition to extracting features from the time domain,
many researchers have also extracted features from the fre-
quency and time-frequency domains. Frigieri et al. [58]
extracted mel-frequency cepstral coefficients (MFCCs) from
audible sound emissions for surface roughness diagnosis in
hard turning. They separated the sound signal into several
frames and calculated the energy spectrum for each frame.
Each energy frame was filtered using a triangular filter bank.
A discrete cosine transform (DCT) was applied to the natural
logarithm of the mel spectrum, which resulted in MFCCs
(Eq. 1). Experiments with the turning of AISI 52100 hardened
steel verified the validity of this feature.

L—1
Tm
=Y log Gy (1 (— 2+ 1 )
cx (m) ; og (i () cos (- @1 +1)
Vk=1,...K )
where m =1, 2, ..., C and C is the number of desired

coefficients.

He et al. [52] extracted multidirectional fused features
from cutting vibration signals acquired during hard turning.
The cutting vibration signals were acquired by three PCB
acceleration sensors placed close to the tooltip. The cutting
vibrations in the x, y, and z directions were processed based
on independent component analysis (ICA) and singular spec-
trum analysis (SSA). The correlation of the cutting vibrations
was removed using ICA and the dynamic changes in surface
roughness were detected by SSA. The extracted fusion fea-
ture Cy can be formulated as follows (Eq. 2).

o — 2o lETS
> IET3

where E” € {E*, EY, E*} is the elementary matrix that the
cutting vibration corresponds to 1, € {ny, ny, 1.} is a weight
vector obtained by the correlation analyses of E” and R,.r
e{x, y, z} denotes the three coordinate directions. Experi-
mental studies show that the proposed combined features are
more effective for workpiece surface roughness prediction
than single-signal characteristics.

Our recent statistical analysis, obtained by consulting
39 relevant studies in detail (most of them published from
2012-2019), revealed that the cutting parameters currently
used for surface roughness prediction in hard turning account
for a large proportion of the input data. The cutting param-
eters are still the most important parameters for surface
roughness prediction in hard turning, followed by sen-
sor signals and cutting tool/workpiece characteristics. Most
of the features extracted from sensor signals are concen-
trated in the time domain, followed by the frequency and
time-frequency domains. Notably, in the time-frequency
domain, fewer features are extracted. The descriptors are
shown in Fig. 7.

(@)

89562

/"-—_“I

-~ ~,
—~ (Time-fi 3
_ = {Time-frequency} |

Sensor signals domain

25% I 5% . I

Cutting parameters
+

TR

Cutting parameters
42%

Cutting parameters

Workpiece hardness
15%

Cutting parameters
+

Cutting tool geometry
18%

FIGURE 7. Input data selection for surface roughness prediction in hard
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IV. PREDICTIVE MODEL

Predictive models of surface roughness are widely employed
in the study of hard turning and visual machining pro-
cesses. Many studies have shown that it is a powerful and
efficient tool with which to understand surface generation
mechanisms, optimize machining parameters, and identify
surface accuracy without costly trial-and-error experiments
[14], [43], [53], [61]. In order to effectively implement online
monitoring of surface roughness during hard turning, many
researchers have focused on developing models that take into
account the different factors influencing hard turning, which
are governed by the relative movement between the tool-tip
and workpiece. Fig. 8 shows the development of surface
roughness predictive models.

Compared to dynamic signals, some static factors, such as
cutting parameters, workpiece characteristics and cutting tool
characteristics, are more accessible. Therefore, some stud-
ies on surface roughness prediction take into account static
parameters and assume that the geometric surface profile
is mainly influenced by cutting speed, feed rate, depth of
cut, tool geometry and workpiece hardness. Linear regression
models and ANNSs are widely used in this field.

Khamel et al. [12] proposed a quadratic model of cutting
forces (Fy, F. and F)), tool life (T) and surface roughness
(R,) using coded variables that correspond to the cutting
parameters. After eliminating terms with no significant effect
on the responses according to ANOVA, quadratic models
were developed to predict the cutting forces, tool life, and sur-
face roughness. Saini et al. [33] developed a response surface
methodology (RSM) to predict surface roughness and tool
wear for various cutting conditions in the finish hard turning
of AISI H-11 steel. Aouici et al. [6] also developed a RSM
to predict surface roughness and cutting force components in
the hard turning of AIST H11 steel with 40, 45 and 50 HRC
using CBN. Four factors (cutting speed, feed rate, depth of
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FIGURE 9. Estimated response surface of surface roughness parameters versus Vc, f and ap.

cut and hardness) were analyzed by ANOVA and the terms
with significant effects on the surface roughness and cutting
force components were used in the final quadratic models.
Chinchanikar and Choudhury [39] proposed a multiple linear
regression model for predicting cutting forces, surface rough-
ness, and tool life by using the workpiece material hardness
and cutting parameters as input arguments during the turning
of AISI 4340 steel of various levels of hardness.

A multiple linear regression model of surface roughness
and cutting force was developed by Azizi et al. [41] that used
cutting speed, feed rate, depth of cut and workpiece hard-
ness as predictors. The model was validated using ANOVA.
Panda et al. [9] utilized multiple linear regression analysis
to predict surface quality characteristics (R,, R;, and R;)
in the hard turning of EN 31 steel hardened to 55 HRC.
Yurtkuran er al. [46] developed a first-order mathematical
model for surface roughness prediction that used multiple
regression analysis based on the optimization of hard turning
cutting conditions. Manivel and Gandhinathan [47] proposed
a full quadratic regression model to predict surface roughness
and tool wear, with the optimized parameters acquired by
ANOVA and S/N ratio analysis. Fnides et al. [38] developed a
multiple regression method for surface roughness prediction.
The model was based on the dominant cutting parameters
acquired by ANOVA. Singh and Rao [43] developed a RSM
for surface roughness prediction in the finish hard turning of
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bearing steel. First- and second-order models were compared,
with the former considered adequate for representing the hard
turning process.

The RSM was analyzed and modeled by
Bouacha et al. [36] to predict surface roughness and cutting
forces during hard turning. The combined effects of cutting
parameters on surface roughness and cutting forces were
analyzed by ANOVA. Using the L27 Taguchi orthogonal
experiment, a quadratic model of surface roughness and
cutting forces is developed as follows:

Y = ao—i—ZaX —i—Za”X +Za,,XX (3)

i<j

where Y is the desired response (surface roughness, cutting
forces), ag is a constant, and a;, a;; and a;; denote the linear
coefficient, quadratic and cross-product terms, respectively.
X; denotes the coded variables corresponding to the cutting
parameters. ANOVA was employed to analyze the signifi-
cance of the regression and the individual model coefficients
to verify the goodness-of-fit of the model obtained. A 3D
response surface corresponding to each variable is illustrated
in Fig. 9 [36].

By eliminating terms with no significant effect on the
responses, the final quadratic models in terms of actual

89563



IEEE Access

K. He et al.: Soft Computing Techniques for Surface Roughness Prediction in Hard Turning: A literature review

factors are as follows [36]:

Ro = 0.29-0.01- Vo +14.41 - f—33.68 - f2—0.01 -V, - f
(R2 — 99.1%; R? (ajus) = 98.9%) o

Fp = 936—4 .V, —5068 - f —778 - ap+18718f2+1932 - @’
+4480 -1 - a, (R2 — 97.3%; R? (ajus) = 96.3%) (5)

In contrast to the multiple linear regression used in most
studies, a novel random forest regression was presented and
applied by Agrawal et al. [35] to predict surface roughness.
It employed cutting parameters as independent variables in a
machining process for the first time. This model was found to
be more accurate than multiple regression models. In addition
to linear regression equations, artificial intelligence models
have also been employed for workpiece surface roughness
prediction in hard turning. ANN models estimate surface
roughness with high accuracy, are more stable and converge
much faster than multiple linear regression models. In many
cases, regression models developed using DOE techniques
failed to correctly predict minimal roughness values [62].
Zare Chavoshi and Tajdari [42] developed ANN and regres-
sion methods for modeling of surface roughness in hard
turning. The input parameters were hardness and spindle
speed, and laboratory studies showed that the ANN was
preferred for the prediction of surface roughness during hard
turning. Pontes et al. [31] developed a DOE-based approach
for the design of ANNs with an RBF in a systematic way.
It was used for surface roughness prediction in the turning
of AISI 52100 hardened steel. DOE was employed to select
the levels of the factors and optimize the network structure.
However, the proposed strategy cannot be extrapolated to
other network structures. The impact of the interactions of
factors on network performance remains to be investigated.
An ANN model was proposed by Beatrice et al. [37] to
predict surface roughness parameters in the hard turning of
H13 tool steel hardened to 45 HRC. Experimental investi-
gation showed that an ANN consisting of three neurons in
the input layer, two hidden layers with seven neurons each,
and one neuron in the output layer (3-7-7-1) produced the
lowest MSE value. Hard turning cutting forces and surface
roughness were measured by Sharma et al. [21] using an
ANN with one hidden layer with 20 neurons and selection
of 323 epochs. The validity of the model was tested with
experimental data and found to be 76.4% accurate. Karpat and
Ozel [49] employed an ANN to construct the non-linear rela-
tions between machining parameters, including tool geom-
etry and the performance of interest (surface roughness,
productivity, and residual stress). The output of the ANN
was multi-objective, and the input parameters were optimized
by the dynamic neighborhood particle swarm optimization
methodology. The results indicate that the methodology is
efficient in solving multi-objective optimization problems
that have conflicting objectives. Pontes et al. [34] proposed
a radial base function neural network for R, prediction in the
hard turning of SAE 52100 steel. The cutting speed, feed, and
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depth of cut were employed as controlling variables. A central
composite design (CCD) was conducted using three points:
(i) a full factorial design with 23 runs, (ii) six axial points,
and (iii) four center points, which resulted in 18 runs. Using
three replicates for each run and augmenting the design with
six face-centered runs, the entire design comprised 60 runs.

A typical RBF neural network is composed of three layers:
an input layer composed of three radial units, a hidden layer
(represented by function f;(x)) and an output layer, as shown
in Fig. 10. An RBF network has k radial units in the interme-
diate layer and one output, as given by:

k
y = wihi (Ilx = wl?) +wo (©)
i=1

where x is an input vector, u the hyper-center of radial units,
f; s the activation function, w; is the weight value, and wy is
a constant.

Surface roughness is determined by the cutting parameters
and by irregularities, such as cutting tool geometry, tool
wear, cutting vibration, workpiece hardness, cutting heat,
cutting fluid, and workpiece material properties [49]. The
process-dependent nature of roughness formation, as well as
the numerous uncontrollable factors that influence it, makes
it difficult to predict surface roughness accurately. The most
common practice is to select the conservative process param-
eters as mentioned above. However, this route neither guaran-
tees the desired surface finish nor attains high metal removal
rates. Therefore, a single dynamic signal combined with
cutting parameters has been considered in the modeling of
surface roughness. These dynamic signals are mainly cutting
vibrations, cutting temperature, and acoustic signals. Hes-
sainia et al. [53] developed a quadratic model associated with
a response optimization technique to predict surface rough-
ness based on cutting parameters and tool vibrations. Mia and
Dhar [26] proposed a RSM to predict surface roughness and
average chip-tool interface temperature based on significant
factors obtained by ANOVA. Arulraj et al. [56] developed
an ANN model to fuse cutting temperature with cutting
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parameters to predict surface roughness in hard turning. The
ANN model including cutting temperature was superior to
that without sensor fusion. ANN architectures are illustrated
in Fig. 11.

A Gaussian mixture model (GMM) as developed by
Frigieri et al. [58] to perform surface roughness diag-
nosis. Based on the corresponding clustering technology
of the underlying sound, the GMM model was parame-
terized by A = (w;, ui, £;), which are estimated using
the expectation-maximization (EM) algorithm. The mixture
weights, means, and variances for each iteration of A were
re-estimated (A = (W;, 7t;, %;)) using the respective formula:

r T e —_
_ 1 = — Zt:lp(l|xtv)‘-) Xt
Wi==) pli|XsA), ;= ys
l TZI: (| t ) l Zthlp(i|7t,)»)
52 _ ZlT=lp(l|?ts )") 7)t =2
i T = i @)
Zt:]p(l|xls)")

where 7), is a D dimensional feature vector, the model was
validated and its diagnostic accuracy reached 98.125%.

In view of the surface formation being affected by cutting
parameters and irregularities, it is difficult to fully reflect
variations in surface roughness using only single dynamic
signal that is a low level of imitation of human brain infor-
mation processing [63]. Multi-sensor data fusion systems can
effectively compensate for such shortcomings.

Ozel and Karpat [24] utilized an ANN and regression
model to predict surface roughness and tool flank wear in
finish hard turning. The inputs were workpiece hardness, cut-
ting speed, feed rate, axial cutting length, and mean values of
three force components Fy, Fy, F; (N) measured during finish
hard turning, which were optimized by ANOVA. The results
show that ANN with cutting force inputs yielded better results
than neural networks without cutting force inputs, and com-
pared to the regression models, the neural network models
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provided better predictive capabilities. He et al. [52] proposed
a hybrid model to evaluate surface roughness in hard turn-
ing using a Bayesian inference-based hidden Markov model
and least-squares support vector machine (HMM-SVM). The
model inputs are cutting parameters, multidirectional fusion
features, which are extracted from three cutting vibration
components x, y, z in three-dimensional space and optimized
by a proposed five-step iterative algorithm. Experimental
studies show that the proposed hybrid model can be used
accurately for surface roughness prediction in cases with
missing samples. Deshpande et al. [54] proposed a regression
model to predict surface roughness using cutting parameters
along with cutting force, sound, and vibration in turning of
Inconel 718. The prediction results of regression models with
fusion data input are compared with that developed using only
cutting parameters. Fine association of fit between measured
and estimated surface roughness is confirmed by the former.
He et al. [65] also proposed a coupled hidden Markov model
to monitor surface roughness accuracy grade by using three
cutting vibration components x, y, z in three-dimensional
space to analyze the effect of the sensor layout on the moni-
toring accuracy. The fusion features, extracted by a singular
spectrum and wavelet analysis, as well as the cutting parame-
ters, constitute the input information to the system. The case
study shows that the coupled hidden Markov model with
multi-sensor data fusion inputs yielded better results than that
with single sensor data inputs.

Single dynamic signal processing or low-level multi-sensor
data processing imitate information processing by the human
brain at a low level. However, multi-sensor information
fusion systems maximize access to the target detected by the
effective use of multi-sensor resources [40], [64], [65]. There
is a fundamental difference in the information processing
methods required for multi-sensor fusion and single signals.
The key is that multi-sensor information fusion is more com-
plex and usually occurs at several levels. A representation
of this multi-sensor information fusion architecture is shown
in Fig. 12. It can be seen that there are three levels of represen-
tation in the multi-sensor information fusion model: the first
is the data fusion level, in which the task is to acquire raw
data from the environment for data-level fusion; the second
is the feature fusion level, which obtains a symbolic level of
inference about the data; and the third is the decision fusion
level, where possible decisions are assembled according to
the information gathered. More often, surface roughness in
hard turning is predicted based on the analysis of multiple
parameters, either from the same type of sensor or from a
completely separate one. Multi-sensor fusion systems can
greatly improve the accuracy and reliability of online work-
piece surface roughness prediction in hard turning [56]. Since
hard turning machining exhibits a unique behavior, which is
different than regular turning operations, multi-sensor data
fusion model for surface roughness prediction in hard turning
is less than that for surface roughness prediction in traditional
turning. Table 3 presents the multi-input models applied for
surface roughness prediction in hard turning.
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V. RECOMMENDATIONS AND CHALLENGES

Compared with conventional turning, hard turning requires
fewer production steps, saves energy, and reduces machining
time. The surface roughness is a vital index that must sat-
isfy the technical specifications. Soft computing techniques,
being efficient online prediction methods, have been the focus
of much research. Although much effort has been made to
study the data acquisition, feature selection and modeling
of surface roughness, many of these concepts are highly
complex and have large numbers of interacting factors, thus
preventing high surface quality from being attained. Techno-
logical advances in the fields of sensors and signal process-
ing can solve these issues to a certain extent. Accordingly,
the main recommendations and challenges in hard turning are
summarized as follows.

(1) Cutting parameters are easier to obtain and more
critical than other factors. However, more recent studies
have shown that workpiece/cutting tool characteristics are
also significant factors affecting surface roughness. There-
fore, more effort should be made in investigating the inher-
ent causal relationship between workpiece/tool properties
and surface roughness to obtain further critical informa-
tion for surface roughness prediction. Moreover, compared
with static factors(cutting parameter, workpiece/cutting tool
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characteristic), the application of dynamic factor (sensor
signal) is currently very limited.

(2) In the current literature, the optimization of cutting
conditions for a certain level of surface roughness is mainly
based on ANOVA analysis. However, regarding state mon-
itoring in hard turning processes, it is often necessary to
optimize multiple goals. Intelligent optimization algorithms,
such as genetic algorithms, particle swarm optimization and
shuffled frog leaping algorithms, which are mainly employed
for multi-objective optimization in engineering problems,
could be used in conjunction with the developed models to
predict surface roughness and related factors. However, very
few similar approaches have been found.

(3) With regard to online surface roughness prediction, fea-
ture selection remains a critical issue. Most feature extraction
in current literature is focused on the time domain; while
in the wavelet domain, fewer features have been extracted.
Wavelet-based feature extraction methods are also powerful
tools for condition monitoring in manufacturing processes,
as demonstrated by many studies. It is critical to further study
feature extraction methods in the wavelet domain for surface
roughness prediction in hard turning.

(4) Surface roughness predictive models in most studies
are static models, using inputs that are static parameters that
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TABLE 3. Arguments of Models for Surface Roughness Prediction in Hard Turning.

Independent factors Models Responses References
work material hardness, cutting response surface methodology cutting forces, surface roughness 6, 39, 41
parameters

cutting parameters response surface methodology surface roughness, cutting force 36
cutting parameters response surface methodology surface roughness, flank wear 33
cutting parameters random forest regression surface roughness 35
cutting parameters response surface methodology surface roughness, cutting force, tool wear 12

cutting parameters ANN surface roughness 31,33
cutting parameters multiple regression model surface roughness 38
cutting parameters ANN surface roughness, cutting force 37

cutting parameters, tool geometry ANN surface roughness, cutting force 21,48
cutting parameters, tool geometry response surface methodology surface roughness, tool wear 47
cutting parameAt ers, FOO] geometry, and response surface methodology surface roughness 60

cutting vibration

cutting parameters, tool geometry ANN surface roughness, productivity, residual stress 49
cutting parameters, cutting temperature ANN surface roughness 56
acoustic signals GMM surface roughness 58
cutting parameters, cutting vibration HMM-SVM surface roughness 52
cutting parameters, force, sound, vibration multiple regression surface roughness 54

cutting parameters, cutting vibration response surface methodology surface roughness 53,55
cutting parameters, force ANN surface roughness 24

* Cutting parameters refer to cutting speed (v.), feed rate (f), and depth of cut (a,).

assume that the geometric surface profile in hard turning is
determined by cutting speed, feed rate, depth of cut, cut-
ting tool geometry, and workpiece hardness. Compared with
dynamic factors such as cutting vibrations, cutting tempera-
ture and acoustic signals, it is difficult for static parameters
to reflect dynamic changes in surface roughness and reveal
surface formation mechanisms during hard turning processes.
Therefore, surface generation models need to be integrated
with more dynamic factors.

(5) Most current studies have concentrated on using
information fusion models based on multiple linear regres-
sion and artificial neural networks. However, other infor-
mation fusion models, such as hidden Markov models,
Bayesian networks, dynamic Bayesian networks, support
vector machines, Dempster-Shafer theory, and their com-
binations, while being employed to deal with dynamic
uncertainty by many researchers, have not been further
exploited to provide more effective fusion models of hard
turning.

VI. CONCLUSIONS

The current work presents a review of the soft computing
techniques used for predicting surface roughness in hard
turning processes. In recent years, a great deal of research
activity has been conducted and many interesting results
have been produced. The main information concerning soft
measurement techniques for surface roughness prediction in
hard turning can be summarized as follows.

(1) Most data employed for surface roughness prediction in
hard turning are static factors such as cutting parameters, tool
geometry, and workpiece hardness. Dynamic signals picked
up by sensors are also employed to some extent, such as
cutting vibrations, cutting forces, audible sounds, and cutting
temperatures.
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(2) As is evident from the references, the optimization of
input factors for surface roughness prediction in hard turning
depends mainly on ANOVA analysis. ANOVA investigates
how important factors affect the response, allowing the devel-
opment of polynomial models that include the factors under
consideration and their statistical significance.

(3) Generally, most of the features extracted from dynamic
signals, such as cutting vibrations, cutting forces, audible
sounds, and cutting temperatures, are mainly concentrated
in the time domain. However, in the time-frequency domain
(the wavelet domain, for example), fewer features have been
extracted and developed in current literature.

(4) As was revealed by the referenced papers, most of
the predictive models of surface roughness in hard turning
are static models and single dynamic models, which mainly
take into account some static parameters or a single dynamic
signal. However, multi-dynamic factor models, which could
be ideally used in fusion with more static and dynamic fac-
tors, need to be introduced for a more realistic depiction of
surface roughness generation. Furthermore, currently, surface
roughness prediction in hard turning is more inclined to
multi-objective prediction. In addition to the surface rough-
ness of the workpiece, it also includes cutting force, tool wear,
tool life, and so on.
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