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ABSTRACT Artificial stent implantation is one of the most effective ways to treat vascular diseases.
However, commonly used metal stents have many negative effects, such as being difficult to remove and
recover, whereas bio-absorbable stents have become the best way to treat vascular diseases because of
their absorbability and harmlessness. It is very important in vascular medical imaging, such as optical
coherence tomography (OCT), to be able to effectively track the position of stents in blood vessels. This
task is undoubtedly labor-intensive, and it is inefficient to rely on experts to identify various scaffolds
from medical images. In this paper, a novel automatic detection method for bioresorbable vascular scaffolds
(BVSs) via a U-shaped convolutional neural network is developed. The method is composed of three steps:
data preparation, network training, and network testing. First, in the data preparation step, we complete the
task of labeling related samples based on expert experience, and then, these labeled OCT images are divided
into the original and masked OCT images (corresponding to X and Y in supervised learning, respectively).
Next, we train our data on a U-shaped convolutional neural network, which consists of five downsampling
modules and four upsampling modules. We can obtain a related training model, which can be used to predict
the related samples. In the testing stage, we can easily utilize the trained model to predict the input OCT data
so that we can obtain the relevant information about a BVS in an OCT image. Obviously, this method can
assist doctors in diagnosing the disease and in making important decisions. Finally, some experiments are
performed to validate our proposed method, and the IoU criterion is used to measure the superiority of our
proposed method. The results show that our proposed method is completely feasible and superior.

INDEX TERMS Stent implantation, vascular disease, optical coherence tomography, bioresorbable vascular
scaffolds, U-shape.

I. INTRODUCTION
Recently, bioresorbable vascular scaffolds (BVSs) have been
adopted in some coronary artery treatment regimes as the
latest stent type. In particular, they are currently the only type
approved by the Food and Drug Administration. However,
how to detect the position of BVS in a biomedical image
is always a difficult task. Traditionally, such a detection
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task mainly depends on experts in artery treatment, but such
manual detection is very time consuming and labor intensive.
In fact, the scale of biomedical images is very large, and a
pullback sequence of vascular imaging always consists of
dozens of images; therefore, to some extent, it is not effective
to use experts to manually detect stents. On the other hand,
deep learning methods have greatly progressed in the past
3 years, andmany novel network structures andmethods have
been proposed by dozens of scholars and researchers. In fact,
deep learning methods have been increasingly employed to
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solve biomedical problems, for instance, in the detection of
organ tissues, object acquisition and recognition, and assis-
tance in surgery.

In fact, for a vascular stenting surgery, it is very important
to determine whether the position of the implanted stent is
close to a vessel wall and, to some extent, to determine
whether the surgery is successful. In this paper, we conduct a
related task to attempt to solve the position dilemma of BVSs.
We propose a novel pipeline to detect BVSs, consisting of two
parts: data preprocessing and network training. We employ
the U-shaped network to detect BVSs.

The contribution of our proposed approach is mainly as
follows:

1) We employ several vascular stenting experts to con-
duct the related tagging job for BVC OCT images and
to build the related BVC OCT dataset. We split the
whole dataset into two parts according to the labels.
In this way, we can use supervised learning to train our
network.

2) We improve the whole structure of the U-shaped net-
work to be better suited to train biomedical OCT
images.

The remainder of the paper is organized as follows.
In Section II, we briefly review the related work on vascular
stents and neural networks. In Section III, we show our
proposed approach. Section IV shows the related algorithms.
Section V shows the results of our experiments. Finally,
in Section VI, we draw our conclusions.

II. RELATED WORKS
Many hundreds of thousands of stents have been implanted.
Intravascular optical coherence tomography (OCT) is an
important, emerging imaging technique. However, it may
take 16 hours or more to manually analyze hundreds of
images and thousands of stent struts from a single pull-
back. To solve this kind of time-consuming and labor-
extensive problem, many scholars have proposed many
different methods.

Wang et al. [1] proposed a novel method based on a
Bayesian network and graph searching. In detail, they com-
pleted a study stage via a Bayesian network, and then a graph
search was performed on enface projections using minimum
spanning tree algorithms. The depths of all struts in a pullback
were simultaneously determined using the graph cut method.
However, this method is only suitable for OCT images of
metallic stent struts, rather than OCT images of bioresorbable
vascular scaffolds (BVSs). In addition, several studies on
metallic stent detection in OCT images have been published
[2]–[8]. Specifically, Xu et al. [2] proposed a 2D ridge detec-
tor, and they focused on a restricted category of cases inwhich
stents appeared as elongated ridges due to very thick tissue
coverage. In [4], Tsantis et al. applied probabilistic neural
networks to detect stent struts based on many struts features
extracted using continuous wavelet filters. However, because
this method used images obtained from femoral arteries,
the performance of this approach in clinical intra-coronary

OCT images may be unknown. Additionally, Lu et al. [5]
adopted bagging decision trees as the classifier for an initial
screen of candidate struts and achieved promising results in
a moderately sized validation dataset. Such classification-
based approaches can utilize human expert knowledge and
can easily combinemultiple features for decision-making and
are potentially more robust. In [6], Wang et al. employed a
single A-line analysis to capture the signatures of individual
scaffolds. Mandelias et al. [7] extended the wavelet-based
detection method and achieved a higher accuracy and shorter
processing time, but the size of the validation data set was
small (only 4 pullbacks). Nevertheless, all of these methods
used local image features of individual struts for detection
without considering the continuity of the cylindrical shape of
the scaffolds. In addition, for bioresorbable vascular scaffolds
(BVSs), it is difficult to achieve a good performance using
these methods because it is more difficult to extract and
describe the features of OCT images of BVSs than those of
metallic stents. Previously, there exist few studies on auto-
matic BVS analysis (including detection); Wang et al. [9]
presented a greyscale-basedmethod, which extracted the grey
and gradient features and employedmany different thresholds
to directly segment the BVS struts. In particular, this method
can hardly be generalized because the intensity and contrast
vary across images. Lu et al. [10] proposed a two-step frame-
work for a scaffold analysis: using an AdaBoost detector
for strut detection and employing dynamic programming for
strut segmentation. However, while struts are structurally
incomplete or under several blood artifacts, the detection
performance is often poor and thusmakes the subsequent seg-
mentation and malapposition analysis inaccurate. In addition,
Huang et al. [11] also presented a detection method for BVS
in IOCT based on region growing. However, to obtain a good
performance, this method requires many samples or pull-
backs, and the requirements for quality in IOCT are high.

In recent years, a deep learning framework has achieved
excellent results in the computer visual object detection and
recognition domain [12], and it has attracted increasing atten-
tion and led to research or studies based on this framework.
Unlike traditional machine learning methods that depend on
manually designed features, in deep learning approaches,
novel representation patterns or models are automatically
learned from low-level features to high-level semantics,
which often makes the detection performance more correct
and robust. Cao et al. [15] proposed a deep learning-based
detection method for BVS struts in IOCT images; it uses
the R-CNN framework [13], [14], which is another famous
framework in deep learning, to achieve the representation
of the features. In addition, a prevalent network family in
deep learning, known as a U-shaped convolutional neural
network (U-Net) [16], has achieved significantly excellent
performance gains in object segmentation and recognition.
U-Net studies object features by using many convolutional
neural networks during training and employing them for
detection afterwards. In this paper, we attempt to use U-Net
to achieve the detection and segmentation task of BVS struts.
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FIGURE 1. The overview of our proposed method.

Compared with the method proposed in [15], our proposed
method does not require two steps to complete the segmen-
tation task; additionally, our proposed method consumes less
time than the method proposed in [15], while excellent results
are capable of being achieved. If any segmentation task is able
to effectively finish, it must be assured that the target object
has been completely and accurately detected.

III. OVERVIEW OF PROPOSED APPROACH
In this section, the overview of the proposed approach is
shown. Our approach comprises three parts, i.e., data prepa-
ration, data training and data testing. The main structure of
the proposed method is as follows ( Figure 1).
Data preparation is an important step and is the foundation

of the following steps. In the training step, by better and com-
pletely achieving the relevant training task, we can provide
training model data to predict the input OCT image in the
testing stage. In the testing stage, the prediction result can
be obtained to help doctors diagnose the disease or decide
whether vascular surgery was successful.

In the following section, the details of the proposedmethod
are shown.

IV. DETAILS OF THE PROPOSED METHOD
A. DATA PREPARATION
The flow of data preparation is shown in Figure 2. We obtain
relevant IOCBVS images from eight pullbacks. Then, we ask

experts to label these BVS images. In this paper, the LabelMe
tool is used to tag the related BVS positions. In fact, it is
very hard for full labeling to completely identify a BVS
position using a serials of polygons, even for a very pro-
fessional expert. The reason is obvious: every piece of
the BVS image describes only a viewpoint of the OCT
pullback; therefore, some BVSs may be obscured by some
obstacles, such as vessel walls. In particular, the label-
ing polygon only abstractly represents the closest position
of a BVS.

After the experts complete the labeling task for every
OCT image, the labeled data are shown to experts to further
confirm the final result. In this step, an expert can modify
their labeling result to optimize the final result. If the expert
finds some incorrect labeling information, a related revision
task will be performed. The purpose of the above jobs is to
enhance the quality of the samples.

Furthermore, a segmentation job is conducted to obtain
the relevant masked OCT images. Masked OCT images are
black-white images, for which the white pixels denote the
BVS information. More specifically, a pixel-to-pixel opera-
tion can be used to handle these masked images to restore the
labeling information to the OCT image.

Last, but not least, we can obtain the related training and
test datasets, which are divided into two different datasets
according to a 70:30 ratio, respectively.
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FIGURE 2. The flow of the OCT image preparation. The main steps
comprise four steps: Labeling by experts, data label visualization,
segment-labeling OCT images and creating the training and test datasets.

TABLE 1. The detailed parameter information of the proposed U-shaped
network.

B. U-SHAPED NETWORK
In essence, the U-shaped network is a two-stage network. The
first stage performs a downsampling task, and the second
stage conducts an upsampling job. In particular, the down-
sampling module is composed of two convolutional opera-
tions and one max pooling operation. The parameter infor-
mation can be seen in Table 1.

In addition, the structure of the proposed U-shape network
is shown in Figure 3. There are five downsampling modules
and four upsampling modules. In addition, the upsampling
module consists of a convolution transpose operation, and its

FIGURE 3. The structure of the proposed U-shaped network, which
consists of five downsampling modules and four upsampling modules.

FIGURE 4. The flow of train our OCT data using Proposed U-shape
network.

purpose is to scale up the image by decreasing the quantities
of patches obtained by downsampling.

C. TRAINING AND TESTING TASKS
Previously, the data preparation and network acquisition steps
were performed; in this section, the training and testing tasks
are scheduled to finish the automatic BVS detection job.
The basic flow for training the proposed U-shape network is
shown in Figure 4. The process of the training network is as
follows.
(1) The architecture of the proposed network is obtained;

as mentioned above, the network consists of five down-
sampling modules and four upsampling modules.

(2) Set the parameters of the network to relevant values.
Because there does not exist a pre-training model based
on the proposed network, intuitively, we adopt a nor-
mally distributed random function to initially assign
the related parameters. Obviously, it may take more
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time to finish the job of training our network. However,
the samples are very limited; therefore, very little effect
may have been placed on our network.

(3) Start the training task, and save the trained model.
Before we start to perform the training job, we must
perform some operation to input a uniform OCT
image of the same size to the proposed network.
Obviously, a larger number of input images would
yield better results, but it will be more time consuming.
Considering different conditions, in this paper,
the sized of the input OCT image is 256× 256.

V. EXPERIMENTS
In this section, we perform the related experiments to validate
the proposed approach.

A. ENVIRONMENT
We implement our proposed approach in Python. Moreover,
we use the open source TensorFlow library to complete the
network learning job. In addition, the program is executed
on a PC under Windows 10 with an Intel Core I7-7700HQ
processor with 8 GB of physical memory and an NVIDIA
GeForce GTX 1060 GPU with 6 GB of memory.

To train the network, we collected 8 related OCT pullbacks
fromTongji Hospital, Shanghai, China. In particular, there are
100 frames for every pullback, and we can obtain an OCT
image from every frame of a pullback. Finally, we divide
these samples into training and test datasets (i.e., 70% vs.
30%, respectively). Next, the related experimental results are
shown to validate our proposed method.

B. TRAINING TASK OF NETWORK
The loss function is an important criterion from which to
measure the performance of the training network. In the
training stage, we validate the training result after every
epoch. In this paper, we use 500 epochs. The comparative
results between the training loss and the validation loss can
be seen in Figure 5.

FIGURE 5. Comparison between the training loss and the validation loss
on a logarithmic scale.

From Figure5, it is not hard to find that the training loss
gradually becomes smaller than the validation loss as the
training epoch increases. In fact, for a qualified training

model, the value based on the training loss indicator should
be better than the value based on the validation loss. In addi-
tion, the smaller the difference between the training loss and
the validation loss is, the better the performance of training
model.

Hence, in the training stage, the trained model is qualified
to correctly predict the result.

C. TEST TASK OF NETWORK
Previously, a training model was performed with a related
task to measure the performance of the proposed network.
The IoU (Intersect of Union) indicator is used to measure
the accuracy of the prediction result. The IoU indicator is as
follows (equation 1).

IoU (P,A) =
∑

α∈P,β∈A

2(α) ∩2(β)
2(α) ∪2(β)

(1)

where the terms P and A represent the predicted result and
the actual result (ground truth), respectively. In addition,
the variable α, β is the BVS in the corresponding OCT image.
Additionally, the function 2 is used to compute the area of
the relevant BVS. The operations ∩ and ∪ are the intersect
and union operations, respectively, for every BVS between
the predicted and the actual masked images.

However, as mentioned above, in performing the labeling
task for OCT images, we only approximate the position of
BVS using some polygons. More specifically, some mistakes
may exist, and it is almost impossible to perfectly label the
position of an BVS in an OCT image. Because there are many
factors that affect our final labeling result to some extent, such
as some obstacles obscure part of the BVS (e.g., vessel walls
and blood).

FIGURE 6. Comparison between the IoU of seg and the IoU of the
bounding box results.

To better evaluate our proposed method, the bounding box
of a BVS is used to evaluate the accuracy of the results.
In fact, in the predicted and actual results, for every BVS
(i.e., the white points in results), we directly complete the
comparative result with the IoU indicator: we called it the
IoU of seg (for a masked image, every BVS is seen as a seg).
In addition, a bounding box of every seg is performed, which
is referred to as the IoU of bbox. The related result can be
seen in Figure 6.
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FIGURE 7. Time consumption of the prediction task with different
numbers of samples.

FIGURE 8. Comparison between the predicted and actual results.

From Figure6, it is not hard to find that a better result is that
from IoU of bbox. Conversely, the IoU of seg method yields
poor results. The explanation of this result is that our predic-
tion result obtained only the approximated position of a BVS,
rather than the same position. In practice, the approximated
result based on the prediction is enough because the actual
position of a BVS is also an approximated representation.

Therefore, the accuracy of the proposed method is com-
pletely superior and feasible. That is, the design requirements
can be met.

Furthermore, we conducted another experiment to evaluate
the computational time of the prediction. Obviously, the time
consumption of the prediction is very important; above all,
users do not tolerate that relevant predictions that take too
long. In general, an expert spends approximately one minute
to label fifty OCT images. Therefore, for the same number
of images, the prediction time should not be greater than one
minute.

The results of time consumption experiment are shown
in Figure 7.

In Figure 7, we can see that the time consumption stabilizes
as the number of samples increases. Moreover, as the number

of samples increases, the time consumption sometimes pro-
gressively decreases, and it is always less than one minute.
Obviously, the prediction speed is faster than that of an expert,
not to mention an ordinary person.

Finally, the test results are shown in Figure 8, and a com-
parative result is shown in every row. It is not hard see that
based on the predicted results of our method, the approxi-
mate position of every BVS is almost achieved. Certainly,
the predicted size of a BVS is sometimes smaller than the
actual (ground truth or benchmark) size because the number
of training samples is insufficient.

VI. CONCLUSION
In this paper, we complete the automatic detection of BVSs
in OCT images. We propose a novel U-shaped network, with
five downsampling modules and four upsampling modules.
In addition, to conduct the relevant training and testing jobs,
we perform a related data preparation task. Experts labeled
the data and segmented the labeled data into the original
data and the masked data. The masked data are used as
the ground truth to evaluate the predicted result of the net-
work. Additionally, we adopt the IoU indicator to evaluate
the accuracy of the proposed method. Furthermore, because
the labeling information is abstract and approximated using
simply polygons, we utilize the bounding box of the predicted
target results to evaluate and achieve better results. Finally,
experiments are used to show the superiority and feasibility
of the proposed method.

However, our proposed method still need to be improved in
order to achieve better results. In the future, we plan to further
improve the accuracy of the proposed method. The solutions
include adding complexity of the network, enlarging the scale
of the training samples, and integrating the proposed method
to form an application. In this way, the proposed method can
handle actual data and help surgeons and doctors solve some
tedious and labor-intensive jobs.
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