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ABSTRACT Mild cognitive impairment (MCI) is the early stage of Alzheimer’s disease (AD). In this paper,
we propose a novel voxel-based hierarchical feature extraction (VHFE) method for the early AD diagnosis.
First, we parcellate the whole brain into 90 regions of interests (ROIs) based on an automated anatomical
labeling (AAL) template. To split the uninformative data, we select the informative voxels in each ROI
with a baseline of their values and arrange them into a vector. Then, the first stage features are selected
based on the correlation of the voxels between different groups. Next, the brain feature maps of each subject
made up of the fetched voxels are fed into a convolutional neural network (CNN) to learn the deeply hidden
features. Finally, to validate the effectiveness of the proposed method, we test it with the subset of the AD
neuroimaging (ADNI) database. The testing results demonstrate that the proposed method is robust with a
promising performance in comparison with the state-of-the-art methods.

INDEX TERMS Alzheimer’s disease, convolutional neural network, hierarchical feature extraction, mild

cognitive impairment.

I. INTRODUCTION

Alzheimer’s disease (AD) is one of the most common degen-
erative brain diseases. There are more than 50 million people
in the world, who are suffering from Alzheimer’s disease
and other dementias [1]. The typical symptoms of AD are a
continuous decline in thinking, behavioral and social skills
that disrupt a person’s ability to function independently [2].
It is both a mental and financial burden on a family if there
is an Alzheimer’ disease sufferer [3], [4]. With the progress
of science and technology, medical health care has helped
to increase the average life of the human beings. But in
the past 20 years, only two types of drugs were discovered
to treat some symptoms of the disease [1]. Mild cognitive
impairment (MCI) is a decline in memory or other thinking
skills. People who have MCI would face a significant risk
of developing dementia. The primary MCI deficit is memory
and this condition is more likely to progress to dementia due
to Alzheimer’s disease. In its early stages, memory loss is
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mild, but with late-stage Alzheimer’s, individuals lose the
ability to carry on a conversation and respond to their environ-
ment. As a result, it will represent a significant contribution
to be able to diagnose Alzheimer’s disease at an early stage
to help delay deterioration [5].

As a safe, rapid accurate clinical diagnosis method with-
out any harm to human body, Magnetic resonance imag-
ing (MRI) is widely used in clinical diagnosis. In recent
years, artificial intelligence has shown great advantages in
computer aided diagnosis. We can extract meaningful fea-
tures from large dimensional MRI images by machine learn-
ing methods. Generally, the feature learning methods can
be divided into three categories which are regions of inter-
ests (ROIs)-based methods, voxels-based methods and patch-
based methods [6]. ROIs-based methods extract features in
regions that are parcellated based on anatomical or functional
atlas. Due to its small data size, it has been widely used in
the early research studies [7]-[9]. However, in ROIs-based
methods, features were extracted based on the overall changes
of each ROI where the subtle variations are barely covered.
The voxels-based methods can solve this problem because it
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can figure out the subtle changes in brain. However, voxels-
based methods incur a data set of high dimension which is
computationally expensive. Patch-based methods have been
proposed to make up for these short comings. Liu et al. pro-
posed a local patch-based subspace ensemble method [10].
The whole brain was segmented into a set of patches. Clas-
sifiers were used to learn the optimal sparse representation
by randomly select some subsets. And then a feature vector
were constructed with the voxel densities. Zhang et al. [11]
proposed a landmark-based feature extraction method. The
work was divided into two stages. In the first stage, the land-
marks were figured out by comparing the local morphological
differences. In the second stage, a regression forest was used
to find the landmarks in the testing data. The limitation of this
method is the number of training data and the error of detect-
ing landmarks may also affect the results [12]. Liu et al. also
proposed a landmark-based framework in his article. What
different is that he used a multi-instance convolutional neural
network (CNN) to learn the representation of each patch. And
then the features were concatenated together and fed into
another deep 3D CNN model. However, classification results
of this method are mostly limited by the number of the train-
ing data. Liu et al. proposed a 3-D texture feature learning
framework. To learn the best nodes and edge features, multi-
ple kernel classifiers were used. But they only used F-score
for feature selection [12]. There are also many scientists using
multiple modality data in their researches. Suk et al. proposed
to use a multi-modal Deep Boltzmann Machine (DBM) to
extract the latent features of the 3-D patches learned from
the MRI images and Positron Emission Tomography (PET)
data [6]. It worth mention that they made a fusion of the
3-D patches of MRI and PET images so than they can fetch
the representations that contains the correlations between the
multimode data. Liu et al. proposed to use a stacked auto-
encoders to learn the optimal representations of MRI and
PET data by randomly hiding one modality in the training
set. So that the features can reflect the interactions of the two
model of data.

In this article, we propose a novel voxel-based hierarchical
feature extraction (VHFE) method. First, we extract the first-
level features by calculating the correlation between subjects
atavoxel level. Then, the features are processed in the form of
feature vectors and fed into a classifier to verify the effective-
ness of the features. Next, the morphological variation related
features are organized into a brain feature map. To capture
the deep hidden features of the whole brain, the brain feature
maps are fed into a convolutional neural network to learn the
deep global features.

The major contributions of the paper are as follows:

1) A novel voxel-based hierarchical feature extraction
method, which provides to be a more convenient and
effective method in AD diagnosis, is proposed.

2) Feature vectors are made up with voxels that are
selected in strict flow and non-registration is needed.
Furthermore, the effect of registration error on classifi-
cation results is avoided.
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3) The proposed method not only greatly reduces the data
dimension and calculation cost, but also covers the
subtle pathological changes at the voxel level.

The rest of the paper is organized as follows. Section II
details the data use in this research and its preprocessing.
Section III introduces the proposed method. Section IV eval-
uates the performance of VHFE and discusses the results.
Section V concludes the paper.

Il. DATASETS AND PREPROCESSING

We chose two datasets from the ADNI database to confirm
the framework proposed in this research. ADNI is a longitu-
dinal multicenter study designed to develop clinical, imaging,
genetic, and biochemical biomarkers for the early detection
and tracking of AD (http://adni.loni.usc.edu/).

A. DATASET

All the subjects in this research are selected from the ADNI
database. We choose two datasets (ADNI-1 and ADNI-2)
here to verify the method proposed in this article.

1) ADNI-1

The ADNI-1 database is composed of three different stages
of subjects: normal controllers (NC), mild cognitive impair-
ment (MCI), and AD. Particularly, we chose the structural
MRI data which were scanned with 1.5 Tesla SIEMENS
nuclear magnetic resonance scanner. Flip Angle is 8.0 degree;
Slice thickness of each image is 1.2mm, Echo time (TE)
is 3.6ms, inversion time (TI) is 1000.0 ms and repetition
time (TR) is 3000.0 ms. All the images were preprocessed
by GradWarp and B1 Correction with pro_ADNI_script [14],
then processed by ADNI pipeline with nonparametric
non-uniform intensity normalization (N3) algorithm for a cor-
rection of intensity inhomogeneity [10], [14]. Despite the ill-
formatted data, there are 1662 volumes remained including
785 NC, 542 MCI, 335 AD. The subject info is detailed in
Tablel.

2) ADNI-2

The T1 weighted structural images in ADNI-2 were scanned
with 3.0 Tesla SIEMENS nuclear magnetic resonance scan-
ner. The image Slice thickness is 1.2 mm, TE is 2.95 ms,
TI is 900.0 ms, and TR is 2300.0 ms. The data were
preprocessed a little different from that in ADNI-1. First,
the images were processed to correct gradient non-linearity
distortions [16]. Then, N3 algorithm was also implemented
here. Different from the ADNI-1database, there are four cat-
egories in ADNI-2 dataset including 1106 NC, 1320 early

TABLE 1. Demographic and clinical information Of Adni-1.

Number Age Gender(Female/Male) MMSE
NC 785 74.63+3.69 416/369 29.07+£1.32
MCI 542 78.86+5.35 193/349 26.56+2.63
AD 335 78.56+5.34 156/180 23.84+2.10
93753
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TABLE 2. Demographic and clinical information Of Adni -2.

Number Age Gender(Female/Male) MMSE
NC 1106 74.63£3.69 554/552 29.10+1.25
EMCI 1583 76.86+4.97 570/1013 28.37+1.48
LMCI 1304 76.53+5.35 639/665 27.19+£2.23
AD 366 78.58+5.38 138/228 21.8444.10

mild cognitive impairment (EMCI), 987 late mild cognitive
impairment (LMCI), and 305 AD. The subject info is detailed
in Table2.

B. PREPROCESSING

As mentioned above, in order to verify the validity of the
method, we selected subjects form two subsets from the
ADNI database. Then a strictly preprocessing pipeline was
implemented. Firstly, the T1 images were normalized to a
template space and segmented into gray matter (GM), white
matter (WM) and cerebrospinal fluid (CSF). After the quality
check step, we smoothed the GM images with the smooth
module in SPM12. We preprocessed all the data with voxel-
based morphometry (VBMS) [17] which is a neuroimaging
analysis technique that uses statistical methods of statisti-
cal parameter mapping to study local differences in brain
anatomy [18]. Then, we used AAL [19] to segment the vol-
ume into 126 regions of interests (ROIs). After throwing away
the regions belong to the cerebellar, we got 90 regions for
every subject [20].

Ill. PROPOSED METHOD

In this section, we proposed a VHFE method to mine inner
region abnormalities in structural MRI images. The data
processing flow chart is demonstrated in Figurel. Firstly,
we preprocessed all the structural MRI images as described
above. Then we picked all the voxels in each region and fed
them into a matrix respectively. The ROIs were parcellated
based on the AAL template and it results in there being dif-
ferent number of voxels in each region. We used the Kendall’s
correlation coefficient to select the most irrelevant voxels
between different groups of subjects as the feature of the
first stage. Fifty voxels were selected from each region. Then
all the voxels of each region make up the whole brain map.
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FIGURE 1. The proposed data processing flow chart.
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The brain map were then fed into CNN to learn the deep
hidden feature inner or between subjects as the feature of
the second stage. Finally, the result of a softmax classifier
is used to evaluate the efficiency of the proposed framework.
The schematic diagram is shown in Figurel.

A. INNER-REGION FEATURE SELECTION

After the preprocessing procedure, the data remained in the
GM volume stands for the voxel intensity. Due to the AAL
template we used to parcellate the GM into 90 ROIs. The
number of voxels differ in each of these ROIs. Some contains
only a few hundreds of voxels while some can be more than
ten thousand. The original methods used to average the data in
each ROIs and then fed them into an SVM classifier to make
judgments. But here, we resliced all the voxels in each ROIs
into a vector with the same rule, according to the scanning
order and the row each voxel was in. That is, if there is
vn voxels in the n-th ROIs, y, € {y1,%2,%3,---, Valpen-
N stands for the number of the voxels in each ROI. As the
feature extracted in the first stage are used to make up the
whole brain feature map, we chose the number of ten percent
of the voxels in the smallest ROI as the baseline for the
number of features extracted from each ROI. Finally, we used
Pearson correlation, Kendall’s rank correlation and Spearman
correlation to figure out 50 of the most irrelevant voxels in
the ROIs to figure out the most irrelevant voxels in each
ROI among groups. For the n-th voxel, we also construct a
feature matrix {I'1, I'2, '3, .. ., ['i};;, Where i represents the
number of subjects in each groups. We used Kendall’s rank
correlation to pick out 50 of the most irrelevant voxels in
the ROIs. In statistics, the Kendall rank correlation coeffi-
cient, commonly referred to as Kendall’s tau (7) coefficient,
is a statistic used to measure the association between two
measured quantities. Comparing with the Pearson correlation
coefficient which can only measures linear dependence rela-
tions, the Kendall’s correlation coefficient, is more suited for
use in image processing where stationarity cannot usually be
advocated. The Pearson correlation and Spearman correlation
were also used to validate the assumption.

We used a random forest (RF) regression framework
to check the features we captured from each ROI in the
first stage. First, the average values of each of the ROIs
were put together for a new feature vector {41, 8, .. ., &,
.-+, 890}ke 1.2.....90- Then, the new vector was labeled and
fed into a random forest (RF) regression framework to check
out the effectiveness of the selected voxels. The result can be
seen from Table 3 and Table 4. The fusion of the top 50 most
irrelevant voxels in the ROIs made up the whole brain map
for each subjects. Then the brain map were labeled and then
fed into the convolutional neural network to learn the deep
hidden features of the subjects.

B. BRAIN MAP FORMULATION AND CLASSIFICATION

CNN is a kind of deep, feed-forward neural network. In the
past years, CNN has shown its superiority in feature learn-
ing especially for large dimensional data. As the traditional
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FIGURE 2. The convolutional neural network.

neural network, CNN is composed of the input layer, the out-
put layer, convolutional layers and subsampling layers. Each
layer contains different number of nodes with learnable
weights and bias. Each neuron performs a dot between inputs
and weights. The results of the operation is determined by
different types of activation functions. The pooling layer
here averaged the sampled data for dimensionality reduc-
tion. CNNs exploit spatially-local correlation by enforcing a
local connectivity pattern between neurons of adjacent layers.
Weight sharing greatly reduces the number of weights used
for training. In each convolution layer, the outputs of its
previous layer are convolved with a learnable kernels. Then
the feature map was formed by the activation function as the
outputs. Generally, the formula can be described as

Bt (S )
where N; represents the number of the input maps and f'is the
activation function.

The pooling layer reduces the dimensionality of the inputs
by a down-sampling operation. The subsampling layer is to
divide the feature map of the output of the convolutional layer
into several regions, each region is represented by the value
of the region. More formally,

yf =f (,deown (yf_l> + bf) , )

where f is an activation function and down(-) represents the
function of the sub-sampling.

The backpropagation technique here uses a feedforward
structure to propagate errors in the neural network in order to
adapt the weights. Backpropagation is a method of achieving
gradient descent in neural networks. The output layer error is
defined as

4 4
57 =d" —y;, 3)

where hidden layer error signal is written as
5O — (Q(i))TB(iJrl) % Ag® 4)

where 0 represents weights of layer i. The 8 represents
the back-propagated error signal, which is used to update the
activation values in layer i and Aa'” represents the gradients
of the activation function in layer i.

The CNN we implemented in this article is shown in
Figure 2 which included three convolutional and three sub-
sampling layers. The Linear Unit (Relu) activation function
was adopted in each convolutional layer. After each pooling
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FIGURE 3. The features fetched by the first convolutional layer on
classification of AD/NC in ADNI-1.
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FIGURE 4. The feature fetched by the second convolutional layer on
classification of AD/NC in ADNI-1.
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FIGURE 5. The features fetched by the third convolutional layer on
classification of AD/NC in ADNI-1.

layer, we set fully connected layers behind the last pooling
layer. A 64-bit 16GB RAM PC with a 8GB GTX1080 GPU
was used in our test. We set the learning rate to 0.5 and the
threshold we set for the loss function is 0.001.

IV. RESULTS AND DISCUSSION

In order to validate the proposed method in this article,
we download data from the ADNI-1 and ADNI-2 dataset
respectively. In ADNI-1 dataset, there are three categories
of subject. So we separate them into three groups to do the
binary classification: AD vs NC, AD vs MCI, MCI vs NC.
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In the ADNI-2 dataset, there are four categories of sub-
jects. And then there should be six matched groups: NC vs
EMCI, NC vs LMCI, NC vs AD, EMCI vs LMCI, EMCI
vs AD, LMCI vs AD. In the experiment, the each dataset
was randomly shuffled and then partitioned into two part.
We randomly selected 20 percent of each groups as test-
ing data which were absolutely separated from the train-
ing data. In order to insure the robustness of the result,
the cross-validation was applied. Each time, the rest of
data was divided into 5-folds. Among them, one fold was
taken as the validation data to make sure that the exper-
iment is not locally optimal and the other data used for
training. The final result is the average of ten repeated
tests.

A. CLASSIFICATION RESULTS

Feature maps of each convolutional layer are shown in
Figure 3, 4, 5. Table 3 and Table 4 shows the results of three
different inputs based on Pearson correlation, Kendall cor-
relation, Spearman correlation respectively and the results
of the baseline on different groups. The column named
“RF+mean” refers to the results of the baseline. From
the Table 3 and Table 4 we can see that the most
irrelevant voxels we selected based on three correlation
coefficients provide a better result than the baseline. Specif-
ically, the Kendall’s rank correlation increase 8% on clas-
sifying AD and MCI, more than 20% in classifying AD
from NC, and almost 16% in classifying NC from MCI
compared to the baseline. The Pearson correlation and Spear-
man correlation also performed a much higher classification
result on ADNI-1. On ADNI-2, the Kendall’s rank correla-
tion also increase the accuracy much more than other fea-
ture selection methods. Specially, it increases 10.5% (AD
vs NC), 8% (AD vs EMCI), 6.5% (NC vs EMCI), 15.9%
(NC vs LMCI) and 7% (EMCI vs LMCI) compared to the

baseline. Even though Pearson correlation and Spearman
correlation offer better performance than the original method,
the Kendall’s rank correlation seems better in most instances.
The receiver operating characteristic (ROC) curves for the
classification of the features extracted by the Kendall’s rank
correlation methods in different groups were shown in Fig 6.
The true positive rate (TPR) stands for the proportion of
positive instances identified by the classifier to all positive
instances. The false positive rate (FPR) stands for the propor-
tion of all negative instances where the classifier mistakenly
considers a positive class. The area under the curve (AUC)
is 0.97 in classifying AD from NC, and we also got 0.9 and
0.8 when identifying MCI from NC and AD respectively,
which proves that the feature we extracted is positive.

The features we selected at the first stage were validated
to be effective. So we fused all the regions together to con-
struct the brain feature map. Then we used a convolutional
neural network to learn the voxel-based deep hidden fea-
tures inner and between each group. The results can be seen
from Table 5 and Table 6. In Table 5, the column named
“CNN + Raw” means that the input data was just prepro-
cessed as described in session III. Then we resliced the three-
dimensional GM images into a series of two-dimensional
images. Then these images were fed into the convolutional
neuro network to learn deep hidden features as well. Spe-
cially, the number of subjects remained constant in all of
these competing methods but, due to the different feature
selection method, the number of images in the method lists
in the column™ CNN + Raw” is much more than the others.
As a result, the computation time of the proposed method is
almost 57 seconds. However, it takes almost 20 minutes when
put the resliced GM images in the CNN framework.

As shown in Table 5, the proposed method obtains a result
of 97.8% (AD vs MCI), 99.7% (AD vs NC), and 97.7%
(NC vs MCI) with the Kendall’s rank correlation was done in

TABLE 3. Performance comparison on three different classification tasks with different feature selection methods in ADNI-1.

ADNI1 RF + mean RF +Pearson RF + Kendall RF +Spearman RF +Pearson + Kendall + Spearman
AD vs MCI 62.9+3.1 61.0+11.3 70.9+7.5 69.5+8.0 70.9+9.8
AD vs NC 69.4+1.8 87.2+7.9 90.9+6.8 87.0£9.8 89.7+6.1
NC vs MCI 59.4+1.9 77.2+11.8 76.5+11.8 81.1+8.1 753489

TABLE 4. Performance comparison on three different classification tasks with different feature selection methods in ADNI-2.

ADNI2 RF + mean RF + Pearson RF + Kendall RF + Spearman  RF + Pearson + Kendall + Spearman
AD vs NC 74.9£1.6 83.9+£7.2 85.4+7.2 83.4+7.9 78.5+15.3
AD vs LMCI 76.2£1.9 68.7+7.1 66.5+10.3 66.8+9.5 71.3+7.7
AD vs EMCI 80.7+1.8 83.6+8.8 88.8+4.4 83.4+9.8 81.8+13.7
NC vs EMCI 59.6+1.2 60.8+6.0 66.1£6.0 62.4+7.5 59.4+8.7
NC vs LMCI 52.1+1.4 66.5+7.4 68.0+7.3 67.1£9.2 66.6+9.6
EMCI vs LMCI 57.3+1.6 64.6+7.4 64.3+8.1 60.5+£9.5 62.5+9.0
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FIGURE 6. Receiver operating characteristic (ROC) curves for RF + Kendall in classifying AD from NC on ADNI-1.

TABLE 5. Performance comparison of the proposed method with different feature selection methods in ADNI-1.

ADNI1 CNN + Raw (%) CNN + Pearson (%)  CNN + Kendall (%)  CNN + Spearman (%)
AD vs MCI 93.89+4.40 96.00+2.90 97.80+1.30 98.60+0.02
AD vs NC 95.44+0.40 99.50+0.80 99.70+0.70 100.00+0.00
NC vs MCI 95.38+0.30 98.80+1.20 98.90+1.00 96.90+0.80

TABLE 6. Performance comparison of the proposed method with different feature selection methods ON ADNI-2.

ADNI2 CNN + Raw (%) CNN + Pearson (%) CNN + Kendall (%) CNN + Spearman (%)
AD vs NC 96.91+0.01 99.40+1.10 98.60+2.90 98.30+0.50
AD vs LMCI 97.14+0.01 97.40+0.70 99.80+0.50 98.60+0.50
AD vs EMCI 97.81+0.00 100.00+0.00 99.80+0.50 99.50+0.80
NC vs EMCI 95.44+0.08 99.00+0. 80 99.60+0.40 99.10+0.50
NC vs LMCI 94.43+0.17 97.80+0. 50 98.40+0.30 99.30+0.60
EMCI vs LMCI 94.84+0.03 96.70+0. 60 98.00+0.70 97.70+0.50

TABLE 7. Classification performance for different groups on ADNI-1.

ADNI1 Accuracy score (%)  Precision score (%) Recall score (%) F1 score (%)
AD vs MCI 97.2+2.1 96.1+2.8 98.4+2.2 97.2+2.0
AD vs NC 99.4+1.5 98.8+2.8 100.0+0.0 99.4+1.4
NC vs MCI 98.9+1.0 99.4+0.9 98.5+1.3 98.9+1.0

TABLE 8. Classification performance for different groups on ADNI-2.

ADNI2 Accuracy score (%) Precision score (%) Recall score (%) F1 score (%)
AD vs NC 98.6+0.5 100+0.0 97.2+1.0 98.6+0.5
AD vs LMCI 99.7+0.7 99.7+£1.0 99.7+£1.0 99.7+0.7
AD vs EMCI 100+0.0 100.0+£0.0 100.0+£0.0 100.0+£0.0
NC vs EMCI 99.7+£0.3 99.9+0.2 99.5+0.5 99.7+0.3
NC vs LMCI 98.5+0.5 99.0+0.4 98.0+0.9 98.5+0.5
EMCI vs LMCI 98.0+0.6 98.9+0.01 97.2+0.8 98.0+0.6

the first phase. We can see that when the data were selected
using the Spearman correlation at the first phase, we even got
a 100% accuracy when classifying AD from NC. The confu-
sion matrix of each group which processed by the Kendall’s
rank correlation algorithm can be seen from Fig7. The first
column in the first row and the second column in the sec-
ond row stands for the number of Represent the number of
subjects which were correctly classified. It means the accu-
racy is higher when it is getting yellow. Table 6 shows that
the proposed method shows a stable advantage on ADNI-2.

VOLUME 7, 2019

It enhanced the accuracies by 1.7% (AD vs NC), 2.66% (AD
vs LMCI), 1.99% (AD vs EMCI), 4.16% (NC vs EMCI),
3.97% (NC vs LMCI) and 3.16% (EMCI vs LMCI) compared
with the method we proposed in the previous article [18].
Table 7 and Table 8 record the performance of the pro-
posed method on ADNI-1 and ADNI-2 respectively with the
pre-feature selection method of Kendall correlation. Each
experiment was repeated ten times and the results here are
the average value of ten tests. It is worth noting that, the
proposed method showed an outstanding performance both
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FIGURE 7. The confusion matrixes with three binary classifications on ADNI-1.

TABLE 9. Performance comparison of the proposed method with the
state-of-the-art methods On ADNI-1.

ADNI1 AD vs MCI AD vs NC NC vs MCI
Chupin et al. [22] 73.48 80.51 71.94
Ahmed et al. [23] 74.51 86.40 76.29
Suk et al.[6] 88.98 93.05 83.67
Khedher et al. [25] 84.59 88.96 82.41
Dai et al. [24] 85.92 90.81 81.92
Liu et al. [26] 90.85 95.24 86.35
Proposed method 97.80+1.30 99.70+0.70 98.90+1.00

in distinguishing MCI from NC and EMCI from NC. Table 9
shows that our proposed method performed best on the
three kind of binary classification on ADNI-1. Specially,
we got an accuracy improvement of 12.55% compared to the
state-of-the-art methods in classifying MCI from NC. It is
very important and meaningful for diagnosing MCI from NC
at an early stage. Also, we got 4.5% and 6.95% improvement
in classifying NC vs MCI and AD vs MCI respectively.

B. DISCUSSION AND LIMITATIONS

Rigorous comparison and verification were done to verify the
effectiveness of our proposed method: (1) At the first step,
after the preprocessed data was segmented into GM, WM
and CSF, the GM images were parcellated into 90 regions
of interests (ROIs). We take the average of each ROIs as
the baseline, which means that the data named “ROI-mean”
stands for the one no feature selection was done. Then we
picked out 50 most irrelevant voxels in each ROI, and take
the average data of them to feed into our trained random
forest model to judge the validation of the features. It should
be emphasized that we parcellated the GM images based on
the AAL template. That leads to the number of voxels in
each ROI differs one from the other, so we take the aver-
age value of all the voxels as the baseline. To be contrast,
we averaged the selected 50 most irrelevant voxels as well.
Table 2 and Table 3 detailed the advantages of the selected
features. (2) To catch the most typical features, we calculated
three different correlation coefficients between each group.
The fused feature was extracted out at the same time. (3) Our
ultimate objectives were to construct the whole brain map
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and extract the hierarchical features within and between the
subjects. Table 4 and Table 5 show the result of the proposed
method with three different kinds of correlation coefficients.
(4) Finally, we compared the proposed method with six state-
of-the-art methods.

Compared to the traditional ROIs-based methods [28],
the proposed VHFE method can capture more subtle changes
in each ROI. Not the same as the conventional voxels-
based methods, a dimensionality reduction was done after
a data driven distinguish feature learning [12] [30]. The
first-level feature we extracted not only contains the voxel-
level subtle differences between subjects, but also maintained
the anatomically functional integrity with the ROIs-level
dimensions [31] [32]. Besides, unlike the patch-level meth-
ods proposed by Suk and Shen etc., there is no need for
registration in our VHFE method. Therefore, errors caused by
registration of the test data based on the location of landmarks
are avoided [11], [12]. The hierarchical feature extraction
method we proposed can not only capture the local features
in each ROI by the feature extraction method in the first
stage. In the second stage, the brain feature map can also help
learn the global distinct information among different groups.
However, there is still much to be improved. First, the features
we selected in the first stage only compared the relationship
between groups, we can also take the inner-relationships
in ROIs into consideration. Secondly, we did not take the
complementarity between multimodal data into consideration
and our future work should be try to fix on this point. Thirdly,
we will try to test and refine our approach on multiple types
of data to improve the universality of the approach.

V. CONCLUSION

In this article, we proposed a VHFE method by two stage
of procedure. In the first stage we selected the most irrele-
vant voxels in each ROIs to construct a feature vector. Then
the feature vectors made up the brain feature map used for
learning deep hidden features inner and between subjects.
Specifically, we proposed to find the most informative voxels
as the presentation of each ROI. The error caused by matching
the position of voxel in the test phase is avoided. In the second
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stage the CNN can help figure out the subtle changes in deep
hidden levels. We selected two subsets of ADNI database
to verify our proposed method. The results of the proposed
method showed significantly better performance than those
from the state-of-the-art methods.
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