
Received June 6, 2019, accepted June 23, 2019, date of publication July 3, 2019, date of current version July 22, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2926507

Weighted Tensor Nuclear Norm Minimization
for Color Image Restoration
KAITO HOSONO 1, (Student Member, IEEE), SHUNSUKE ONO2, (Member, IEEE),
AND TAKAMICHI MIYATA 1, (Member, IEEE)
1Chiba Institute of Technology, Narashino 275-0016, Japan
2Department of Computer Science, School of Computing, Tokyo Institute of Technology, Tokyo 152-8552, Japan

Corresponding author: Kaito Hosono (s1122276hu@s.chibakoudai.jp)

This work was supported by the JSPS KAKENHI under Grant JP19K04377.

ABSTRACT Non-local self-similarity (NLSS) is widely used as prior information in an image restoration
method. In particular, a low-rankness-based prior has a significant effect on performance. On the other hand,
a number of color extensions of NLSS-based grayscale image restoration methods have been developed.
These extensions focus on the pixel-wise correlation among color channels. However, a natural color image
also has a complex dependency, known as an inter-channel dependency, among local regions from different
color channels. As a result, color artifacts appear in a denoised image obtained by using the existing methods.
In this paper, we propose a novel non-local and inter-channel dependency-aware prior called the weighted
tensor nuclear norm (WTNN). The proposed prior is derived by incorporating inter-channel dependency to
low-rank-based NLSS prior. The WTNN is a low-rankness-of-the-third-order patch tensor, and we apply it
to the tensors constructed with non-local similar patches. It enables us to naturally represent the higher-order
dependencies among similar color patches. We propose an image denoising algorithm using the WTNN and
image restoration algorithm by using a non-trivial generalization of this algorithm. The experimental results
clearly show that the proposed WTNN-based color image denoising and restoration algorithms outperform
state-of-the-art methods.

INDEX TERMS Color image processing, image denoising, image restoration, nuclear norm, optimization,
tensor.

I. INTRODUCTION
Color image restoration is a fundamental task in image
processing that includes denoising, deblurring, inpaint-
ing, super-resolution, and compressed sensing restoration.
Restoring a color image requires prior knowledge of
the clean color image. Since we perform image restora-
tion by casting into an optimization problem, such prior
information needs to be represented as a regulariza-
tion function. On the other hand, neural-network-based
image restoration methods have been developed in recent
years [1]–[3] and their restoration performance are competi-
tive with state-of-the-art regularization-based methods. How-
ever, regularization-based methods still have the advantage in
that their whole process can be explained explicitly.

Existing regularization-based image restoration methods
are roughly classified into two classes by the prior informa-
tion to be used: local methods [4]–[9] that use the intrinsic
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sparsity of natural images and non-local methods [10]–[18]
that use their non-local self-similarity (NLSS). A local
method uses only the surrounding areas to restore a target
pixel, whereas a non-local method utilizes additional infor-
mation from many regions, local and distant, that are similar
to the target region. Non-local methods generally perform
better than local methods.
Weighted nuclear norm minimization (WNNM) is a mile-

stone work of a non-local grayscale image denoising that
has been followed by many extension methods [19]–[21].
The method represents NLSS by using the weighted nuclear
norm (WNN) of similar patch matrices. Each column of
a matrix comprises the components of a local region in a
grayscale image and similar non-local region. Since WNN
approximates the rank function, we can use the WNN of a
similar patch matrix to indicate similarities between similar
patches.

Recently, many approaches for extending existing local
methods for grayscale images to color (or multichan-
nel) image restoration have been proposed [22]–[25].
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However, only minor attention has been focused on extending
non-local methods for color restoration [26]–[28]. These con-
ventional non-local color image restoration methods usually
use the opponent color transform (OPT) as a decorrelation
process because the RGB channels of clean color images are
highly correlated. Each color channel is restored separately
after decorrelation. However, since the OPT is a pixel-wise
operation, it is ineffective against complex dependencies
among neighboring pixels from different color channels. As a
result, color artifacts appear in a denoised image. We call
this dependency inter-channel dependency, which cannot be
captured by OPT.

In this paper, we propose a new NLSS and inter-channel
dependency-aware prior called the weighted tensor nuclear
norm (WTNN). Our key observation is that a low-
rank-based non-local self-similarity prior can naturally
handle inter-channel dependency because the prior is con-
structed from the local regions of a color image. The
WTNN is designed to measure the non-local similarity
and the inter-channel dependency simultaneously. In par-
ticular, we first construct third-order tensors by exploring
the non-local similar patches from an input image. Then,
we apply tensor unfolding to convert each tensor into three
matrices. Interestingly, these matrices represent different
aspects of the inter-channel dependency, and they are fore-
casted to be almost a low-rank in noiseless images.

The WTNN is a non-trivial generalization of the WNN,
but is also a generalization of the local color nuclear norm
(LCNN) [29], which is the image restoration method that
uses inter-channel dependency and low rankness. The LCNN
exploits inter-channel dependency by using the WNN of
a local color matrix. Each column of a local color matrix
consists of the component of each color channel of a local
region. The LCNN minimizes the WNN of the local color
matrix; a non-local extension of this process included as a
part of the WTNN.

As the first application of our WTNN, we propose an effi-
cient algorithm for color image denoising. We also propose
a non-obvious extension of our denoising algorithm to the
general image restoration problem, which includes the image
denoising in its special case.

After finishing our work, we became aware of a state-of-
the-art color image denoising method [30], which refers to
our previous work [31], called the WTSTP (weighted tensor
Schatten p-norm and tensor `p-norm minimization). In the
WTSTP, a third-order input tensor is constructed by stacking
all color channels of all similar patches into one direction,
which means that the WTSTP is not a non-local general-
ization of LCNN, unlike the proposed WTNN. Furthermore,
the WTSTP focuses on image denoising problems, whereas
we propose an algorithm that can deal with general color
image restoration problems.

This paper is organized as follows. Section II introduces
some related works. Section III describes the notations and
definitions. Section IV defines the WTNN and proposes
its application to image denoising and image restoration.

Section V compares our method with state-of-the-art restora-
tion methods. Section VI concludes the paper.

The preliminary versions of this work without color image
restoration have appeared in conference proceedings [31].

II. RELATED WORKS
A. GRAYSCALE IMAGE RESTORATION USING
NON-LOCAL SIMILARITY
A NLSS is one of prior information of a natural image.
A formulation of a non-local similarity has many approaches.
In particular, low-rank approaches have been particular focus
in recent years. The low-rank approaches measure a NLSS
via the low rankness of a similar patch matrix, where each
similar patch is restored by low-rank matrix approximations.
However, such approximation is generally an NP-hard prob-
lem. Moreover, ideal similar patch matrices also require an
ideal clean image.

Therefore, a WNNM was proposed as a state-of-the-art
grayscale image denoising method. WNNM restores each
similar patch by solving a minimization problem defined by
the WNN instead of a low-rank matrix approximation. The
denoising process of WNNM can be separated into three
steps: 1) construction of similar patch matrices, 2) restoration
of each patch, and 3) reconstruction of the image from each
patch.WNNMcan recover better similar patchmatrices using
an iteration of these processes.

B. COLOR IMAGE RESTORATION USING
INTER-CHANNEL CORRELATION
Inter-channel correlation is prior information of a natural
color image that is frequently used in color image restoration.
That is, a correlation of each color channel represented by
a color transform for decorrelation and restoration for each
channel.

CBM3D is a color image denoising method that uses
inter-channel correlation. This method is an extension of the
block matching 3D filtering (BM3D), a non-local grayscale
image denoising method that uses block matching (simi-
lar patch exploring) and 3D filtering (combination of 3D
orthonormal transform and filtering). The algorithm of
CBM3D executes two processes; color transform for an input
image and BM3D denoising.

C. COLOR IMAGE RESTORATION USING
INTER-CHANNEL DEPENDENCY
Inter-channel dependency is a prior information of a natural
color image that differs from the inter-channel correlation.
The LCNN [29] is a representation of an inter-channel depen-
dency as the WNN of a local color matrix. A local image
denoising method using LCNN with some conventional reg-
ularization functions can suppress color artifact. However,
extending LCNN to a non-local method is not ovbious.

III. PRELIMINARIES
In what follows, let N, R and R+ denote sets of all non-
negative integers, all real numbers, and all nonnegative real
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numbers, respectively. We use small bold letters for column
vectors, large bold letters for matrices, and large calligraphic
letters for tensors.

We denote the set of proper lower semicontinuous convex
function RN

→ R as 00(RN ). The proximity operator of f ∈
00(RN ) is defined as

proxf : RN
→ RN

: x 7→ argmin
y∈RN

f (y)+
1
2
‖x− y‖22, (1)

where ‖ · ‖2 is the `2 norm (the Euclidian norm).
The indicator function with a convex set S ⊂ RN is

described as

ιS : RN
→ R ∪ {+∞}: x 7→

{
0 (x ∈ S)
+∞ (otherwise).

(2)

The WNN is defined as

‖ · ‖w,∗ : Rnv×nh → R+ : X 7→
nm∑
k=1

wkσk (X ), (3)

where nm = min(nv, nh), σk (X ) ∈ R+(k = 1, · · · , nm) is the
k-th largest singular value of X, and w = [w1, · · · ,wnm ]

>
∈

Rnm
+ is the weight vector that satisfies 0 ≤ w1 < w2 <

· · · < wnm .
The proximity operator of the WNN cannot be defined

because the WNN is usually a non-convex function. There-
fore, we introduce the pseudo proximity operator, a non-
convex case of Eq. (1). The pseudo proximity operator of
theWNN prox‖·‖w,∗ (X) can be characterized by the following
minimization problem :

min
Y∈Rnv×nh

‖Y‖w,∗ +
1
2
‖X− Y‖2F , (4)

where ‖ · ‖F is the Frobenius norm (the Euclidian norm of a
matrix). Prob. (4) has a closed form solution [32] as follows

X̃ = USw(6)V>, (5)

where X = U6V> is the singular value decomposi-
tion (SVD) of X, and Sw(6)i,i = max(6i,i − wi, 0) is a
weighted soft-thresholding operator.

In this paper, we assume that an observation model can be
described as

ȳ = Ax+ v, (6)

where ȳ ∈ R3n, A ∈ R3n×3n, x ∈ R3n, and v ∈ R3n are
an observation image (with n pixels and 3 color channels),
a degradationmatrix, an original image, and an additive white
Gaussian noise with standard deviation σn, respectively. This
observation model is a generalization of a popular image
restoration model include inpainting, deblurring, and com-
pressed sensing. For example, if A is a diagonal matrix with
0 or 1 diagonal elements, Eq. (6) is an observation model of
an image inpainting problem.

The alternative direction method of multipliers
(ADMM) [33] is an algorithm for solving the following

convex optimization problem

min
u∈RN ,y∈RN ′

{f (u)+ g(z)} s.t. z = Lu, (7)

where f ∈ 00(RN ), g ∈ 00(RN ′ ), and L ∈ RN ′×N . For any
z(0), d(0) and any ρ > 0, the iterative process of ADMM
is given by Algorithm 1. ADMM is widely used in image
restoration methods based on image prior information.

Algorithm 1 The Iterative Process of ADMM

Input: z(0), d(0), ρ
1: while A stopping criterion is not satisfied do
2: uk+1 = argmin

u
f (u)+ ρ

2 ‖z
k
− dk − Lu‖22

3: zk+1 = prox 1
ρ
g(Lu

k+1
+ dk )

4: dk+1 = dk + Luk+1 − zk+1

5: k = k + 1
6: end while

Output: uk

IV. WEIGHTED TENSOR NUCLEAR NORM FOR
IMAGE RESTORATION
A. DEFINITION OF WTNN
Let y ∈ R3n be a vectorized input color image. For the vec-
torized j-th local image patch (R× R pixels) of the s-th color
channel yj,s ∈ RR2 (s = 1, 2, 3) in input image y, we can
search for its M non-local similar patches y(l)j,s ∈ RR2 (l =

1, · · · ,M and y(1)j,s = yj,s) in the large area around it on the
basis of the Euclidian distance between patch vectors. Then,
we stack those non-local similar patches into a third-order
patch tensor Yj ∈ RR2×M×3. We denote this tensor as similar
patch tensor. The flowchart of its construction is shown
in Fig. 1.

Our proposed regularization function, named the weighted
tensor nuclear norm (WTNN), is defined as

‖ · ‖w,γ ,∗ : RR2×M×3
→ R+ : X 7→

3∑
m=1

× γm‖unfoldm(X )‖wm,∗, (8)
where γm is the positive constant satisfying

∑3
m γm = 1,

γ = [γ1, γ2, γ3]>,w = [w>1 ,w
>

2 ,w
>

3 ]
>, wm is the weight

vector of each WNN, and unfoldm(·) is the m-th mode tensor
unfolding operator. unfoldm(·) : Rt1×···×tN → Rtm×Im is
defined as the map from tensor elements (i1, · · · , iN ) to the
corresponding matrix elements (im, j), where Im =

∏N
k=1
k 6=m

tk ,

j = 1+
N∑
k=1
k 6=m

(ik − 1)
k−1∏
l=1
l 6=m

tl . (9)

B. APPLICATION TO COLOR IMAGE DENOISING
The color image denoising recovers an original color image
x ∈ R3n from a corrupted observation

ȳ = x+ v, (10)
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FIGURE 1. Construction of a patch tensor Yj from an input image y.

FIGURE 2. The operation of the tensor unfolding for the similar patch
tensor.

where v ∈ R3n is an unknown additive white Gaussian noise
with standard deviation σn. Please note that the model is a
special case of Eq. (6) (A = I).

Since we expect the RGB color channels of a natural image
to be highly correlated, we use the opponent color trans-
form C as an (approximate) decorrelation transform before
the denoising process. As we described above, despite the
color transforms statistically decorrelating the color channels,
transformed color channels still have inter-channel depen-
dency, requiring them to be jointly processed.

We constructed similar patch tensors Yj for the decorre-
lated input image y = Cȳ. Thus, the obtained tensors satisfy
Yj = Xj + Vj, where Xj and Vj are the similar patch tensors
of an unknown original color image and an unknown additive
white Gaussian noise, respectively.

By using the WTNN regularization, our color image
denoising (i.e., estimating a clear patch tensor Xj from a
corrupted patch tensor Yj) is formulated as the minimization
problem

min
Xj∈RR2×M×3

‖Xj‖w,γ ,∗ +
1
2
‖Yj − Xj‖

2
2, (11)

where ‖ · ‖2 is the `2 norm of a tensor defined as

‖ · ‖2 : RR2×M×3
→ R : X 7→

√√√√√ R2∑
i=1

M∑
j=1

3∑
k=1

(X )2i,j,k . (12)

Eq. (11) is equivalent to the pseudo proximity operator of
WTNN prox‖·‖w,γ ,∗

(Yj).
We use the weight setting proposed in [14] for our WTNN

denoising. The weight vector wm is determined as

(wm)k = σ 2
n c
√
M/(σ̂k (Xj,m)+ ε), (13)

where c ∈ R+ is a constant, ε = 10−16 is added to avoid
dividing by zero, Xj,m = unfoldm(Xj), and σ̂k (Xj,m) is the
estimation of σk (Xj,m) using the same estimation method in
the implementation of the WNNM that is provided by the
authors of [14].

The simple color image denoising algorithm using WTNN
is thus described in Algorithm 2. However, the denoising
performance of this algorithm is poor because of the dif-
ficulty of extracting similar patches due to the noise. Ideal
similar patches could be obtained if the image was noiseless.
However, there is intrinsically a chicken-and-the-egg prob-
lem because obtaining an ideal clean image also requires
an ideal similar patches. Therefore, our denoising algorithm
executes similar patch extraction and denoising on the basis
of these patch clusters in an alternating manner. The same
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Algorithm 2 Simple Color Image Denoising by WTNN
Input: Noisy image y, Noise level σn
1: for Each patch yj in y do
2: Extract similar patches from y
3: Make similar patch tensor Yj
4: Determine weight vector w via Eq. (13)
5: Estimate Xj via Eq. (11)
6: Reconstruct x̂ from Xj
7: end for

Output: Estimated image x̂

approach is generally used in non-local image denoising
methods [10]–[18].

The proposed whole color image denoising algorithm is

thus described inAlgorithm 3. DWTNN(y(p), σ (p)
n ) is a simple

color image denoising method described in Algorithm 2 for
noisy image y(p) and noise level σ (p)

n . We apply the inverse
opponent color transform C−1 at the end of our denoising
algorithm to return a denoised image to RGB color space
from an opponent color space.

Algorithm 3 Color Image Denoising by WTNN
Input: Noisy image ȳ
1: Initialize x(0) = C(ȳ), y(0) = C(ȳ), σ (0)

n = σn
2: for p = 1 : P do
3: Iterative regularization y(p) = x̂(p−1) + δ(y− x̂(p−1))
4: for Each patch yj in y(p) do
5: if p 6= 1 then
6: Estimate local noise level σ (p)

n =
λσ

(0)
n
r2
‖yj −

x̂(p−1)j ‖
2
2

7: end if
8: end for
9: Simple image denoising using WTNN x̂(p) =

DWTNN(y(p), σ (p)
n )

10: end for
Output: Estimated image C−1(x̂(P))

Due to the similar patch extraction in Algorithm 3,
we need to solve Prob. (11) several times for all similar
patch tensors for the current estimated image. Because the
unfolding operator was contained in WTNN, we need an
operator splitting method (e.g., ADMM) to solve Prob. (11).
However, such algorithms require a high computational cost
because three SVD operations of an unfolded tensor are
required for one iteration of these algorithms, making the
entire color image denoising algorithm impractical. There-
fore, we propose an inexact but computationally efficient
solution to Prob. (11):

X ∗j =
1
3

3∑
m=1

refoldm(UmSγmwm (6m)V>m) (14)

instead of usingADMM,whereYj,m = Um6mV>m is the SVD
of Yj,m and Yj,m = unfoldm(Yj).

C. APPLICATION TO COLOR IMAGE RESTORATION
Attempting to estimate the original image from the observa-
tion model Eq. (6) with A 6= I is reffered to as color image
restoration. Obtaining an efficient algorithm to achieve this
means that we can solve many image restoration problems
with only one algorithm by choosing appropriate A.
Since A 6= I, decomposing the whole restoration process

into patch-level processing and finding similar patches from
the corrupted observation are infeasible. Thus, we cannot
apply the color image denoising method shown in Algo-
rithm 3 to solve general color image restoration problems.
On the other hand, the third line of the ADMM (shown in

Algorithm 1) is a proximity operator. If Eqs. (1) and Eq. (11),
and f is considered to be a regularization term, we can say
that the proximity operator is corresponds to the denoising
process. The assumption enables us to apply the ADMM in
an unofficial manner to solve the WTNN-based color image
restoration problem. This kind of approach is called the plug
and play ADMM (PnPADMM) [34].

From these observations, we proposed a non-trivial exten-
sion of our denoising algorithm to solve the image restoration
problem described as Algorithm 4.

Algorithm 4 Color Image Restoration by WTNN

Input: y, DWTNN(·), A, ρ1, ρ2
1: for k = 1 : K do
2: uk+1 = argmin

u
f (u)+ ρ2

2 ‖z
k
− dk − u‖22

3: zk+1 = DWTNN(uk+1 + dk , ρ1
ρ2
)

4: dk+1 = dk + uk+1 − zk+1

5: end for
Output: Restored image uk

The PnPADMM usually requires more than 100 iterations.
Thus, we employ Algorithm 2 instead of Algorithm 3 as
the denoiser in Algorithm 4. Since Algorithm 4 requires
significant computational cost, using it as the denoiser
in Algorithm 4 makes whole algorithm computationally
unmanageble. We will show that the effectiveness of the
PnPADMM using our simple denoising method in the next
section.

V. EXPERIMENTAL RESULTS
A. COLOR IMAGE DENOISING
In this section, we verified ourmethod’s performance through
numerical experiments. We used 12 natural color images
(256 × 256 [pixel]) shown in Fig. 3 as original images.
We added zero-mean additive white Gaussian noises with
standard deviation σn (generated by using pseudo-random on
Matlab 2018b) to those original images to generate observa-
tion images. The parameters of the proposed algorithm were
set as in Table 1 for each noise level. The values of γ and c
were chosen empirically, and the values of other parameters
(R,M ,P, σ, and λ) were the same as the default parameters
of the published implementation of the WNNM [14].
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FIGURE 3. 12 natural color images.

FIGURE 4. Denoised results of ‘‘Airplane, ’’ σn = 20.

FIGURE 5. Denoised results of ‘‘Balloon, ’’ σn = 20.

TABLE 1. Parameters of proposed method in denoising experiments.

We compared the denoising performance of our pro-
posed algorithm with CBM3D [26], a state-of-the-art color
image denoising method that uses non-local similarity and
color transform. Table 2 summarizes the PSNRs of denoised
images by using the proposed method and CBM3D.

As shown in Table 2, our denoising algorithm outper-
formed CBM3D with the test images. Figs. 4, 5, 6, and 7
show four images from the denoising results. These results
show that our method suppresses color artifacts more than
CBM3D.

B. THE EFFECTIVENESS OF THE INEXACT SOLUTION
To analyze the effect of using the inexact solution Eq. (14)
instead of solving Prob. (11) with ADMM, we compared
denoised images obtained using inexact solution Eq. (14) and
those obtained by exact solution Prob. (11) using ADMM.
Hereafter, we call the formerly denoised images ‘‘inexact
results’’ and the latter ones the ‘‘exact results.’’ The param-
eters of ADMM were chosen as the number of iterations
N = 5 and the step size parameters ρ = 1. As shown
in Table 3, the denoising performances of these versions are
quite similar. However, the averaged CPU time required to
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FIGURE 6. Denoised results of ‘‘Mandrill, ’’ σn = 20.

FIGURE 7. Denoised results of ‘‘milkdrop, ’’ σn = 20.

TABLE 2. Comparison of denoising performance of CBM3D and proposed
method (PSNR[dB]).

produce the inexact results is almost five times shorter than
that required to produce the exact results. These results show
that the inexact solution Eq. (14) is a reasonable and effective
solution.

TABLE 3. Comparison of the inexact and the exact results in terms of
PSNR[dB] and CPU time [sec] ( σn = 20).

C. COLOR IMAGE INPAINTING
In this section, we validate the effectiveness of our image
restoration algorithm by comparing it with the PnPADMM
that uses the CBM3D as a denoising function (PnPADMM+
CBM3D).
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FIGURE 8. Inpainting results of ‘‘Airplane,’’ missing rate is 40%.

TABLE 4. Parameters of simple denoising function in proposed algorithm.

TABLE 5. Inpainting performance comparison between PnPADMM +

CBM3D and proposed method (PSNR [dB]).

We experimented with the 12 test images shown in Fig. 3
as original images. The goal of color image inpainting is to
restore missing pixels. Missing of pixels are caused by object
removal or sensor malfunction. The observation model of the
image inpainting problem uses a diagonal matrix with 0 or 1
diagonal elements as a degradation matrix. We used a degra-
dation matrix determined pseudo-randomly and depended on
the missing rate as a degradation matrix A. In this experi-
ment, we assumed that the observation image was not cor-
rupted with noise. Therefore, we chose f (u) = ιS (u) with
S = {u ∈ R3n

| Au = y}.

The parameters of the PnPADMM for each method were
set to ρ1 = 100, ρ2 = 400, and K = 100. Table 4 details the
parameters of the denoising function of our method.

We compared the image inpainting performance of our
method with PnPADMM + CBM3D. Table 5 shows that
our method was more objectively effective. The inpainting
result images shown in Fig. 8 show that the color artifact
suppression performance of our method was higher than that
of PnPADMM + CBM3D.

VI. CONCLUSION
In this paper, we proposed a novel color image non-local
prior called the WTNN that we applied to the color image
denoising method and the general color image restoration
method. The WTNN can evaluate NLSS and inter-channel
dependency simultaneously from a similar patch tensor. The
tensor is constructed from a similar patch group searched for
across an input color image.

In the color image denoising method, we introduced an
inexact solution to the WTNN minimization method for
reducing increased computational cost with an iterative algo-
rithm. The experimental results showed the effectiveness of
our WTNN-based image denoising method through com-
paring it to the CBM3D in terms of the quantitative and
perceptual evaluation.

Furthermore, in the image restoration method, we pro-
posed combining aWTNN-based simple color image denois-
ing and the PnPADMM. We achieved a low computational
cost by using a simple color image denoising algorithm
instead of the whole color image denoising algorithm as a
denoiser of the PnPADMM. The simple color image denois-
ing is a non-iterative image denoising method that uses the
WTNN. The experimental results exhibited the effectiveness
of the proposed method in color image inpainting.

We will enable the automatic setting of our method’s
parameters in future work.
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