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ABSTRACT This paper addresses the problem of fault-tolerant containment control (FTCC) for linear
multi-agent systems (MASs) with process faults. First, distributed observers for followers are designed by
utilizing their relative output estimation errors. Then, a new distributed adaptive FTCC law based upon
the output regulation theory is proposed, where a distributed adaptive observer is implemented to estimate
the synthesized information for leaders. It is shown that no matter whether there exist faults or not, all the
followers can asymptotically move into a convex hull formed by the leaders. Finally, an example is given to
illustrate the effectiveness of the designed distributed control law.

INDEX TERMS Fault-tolerant containment control, multi-agent systems, process faults, output regulation.

I. INTRODUCTION
Containment control can be seen as a consensus problem in
MASs with multiple leaders, aiming at driving all follow-
ers to a smallest convex region shaped by multiple leaders,
e.g., a safe zone for working followers. In the past several
years, the issue of containment control of MASs has been
widely studied, e.g., [1]–[3]. Some typical consensus proto-
cols, e.g., [4]–[6], have been extended to solve the contain-
ment control problems. Heterogeneity [7], time delay [8] and
packet dropouts [9] are also considered in the containment
control problems.

With the urgent demand of safety and reliability in
MASs, fault-tolerant control (FTC) problems of MASs have
received much attention recently. In general, faults in a
dynamic system can be classified into three types: process
faults, actuator faults, and sensor faults [10]. Process faults
[11]–[13] represent gross parameter changes in a model,
component faults or even a special kind of additive actuator
faults. When a process fault occurs in MASs, some model
parameters and state variables of subsystems may change
abruptly, which will further affect the cooperative behavior
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of MASs. Classical fault diagnosis (FD) methods, especially
observer-based approaches [14]–[17], provide a feasible way
to solve the FTC problems of MASs. For example, Menon
and Edwards [15] presented a fault estimation observer via
the sliding mode technique. Zhang et al. [16], [17] pro-
posed distributed fault estimation observers for MASs under
directed topology. It should be noted that these fault estima-
tion observers are only for MASs with no leader or single
leader, which are not applicable to MASs with multiple lead-
ers. In particular, Ye et al. [18] solved the containment control
problem ofMASs with multiple leaders and actuator faults by
designing a fault estimation observer.

It should be noticed that the output regulation frame-
work [19] provides a new method for solving the consen-
sus problem, which is also known as the cooperative output
regulation problem (CORP). Different from classical FTC
approaches [20]–[22], some FTC approaches based on the
output regulation theory have been proposed for MASs, e.g.,
[23], [24]. Qin et al. [23] constructed a unified framework
with FT and FTC for linear MASs with sensor faults. Deng
and Yang [24] solved a CORP of linear MASs with actuator
faults via a distributed finite-time observer. Note that there
exists only single leader in the MASs in [23], [24]. As far
as we know, few studies aim at solving the FTCC problem
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of MASs with multiple leaders and process faults based
upon the output regulation theory. This motivates the present
work.

Different from the existing results [18], [23], [24], an adap-
tive output regulation approach is proposed to solve the FTCC
problem of MASs with multiple leaders and process faults.
The salient features of this paper are as follows:
(1) To compensate for process faults existing in the fol-

lowers, state observers and fault estimation observers
are designed simultaneously by embedding a newmea-
surement error, which is based on the interaction gains
among leaders and followers. The FT process is not
needed due to the fact that the FTCC scheme depends
upon real-time fault estimation.

(2) To overcome a global condition, a new adaptive
observer is designed such that the synthesized informa-
tion of leaders can be estimated. By introducing adap-
tive feedback gains to replace fixed gains subject to the
eigenvalues of Laplacian matrices, this global informa-
tion of underlying topology is no longer needed.

(3) For the MASs with multiple leaders, we transform
the FTCC problem into the CORP in the presence of
process faults. The proposed FTCC strategy can be
simply extended to solve some general containment
control/trajectory tracking problems.

The reminder of this paper can be summarized as:
Section II gives some preliminaries and the FTCC problem
formulation for linear MASs with faults. In Section III, a dis-
tributed observer design method is first proposed. Then a
distributed adaptive FTCC law is developed to achieve the
output containment control. Section IV presents simulation
results to illustrate the validity of analytical results. Finally,
we draw a conclusion for this paper in Section V.
Notations: Through this paper,Rp andRn×m represent the

real sets of p-vectors and n × m matrices, respectively. The
n-vectors 1n and 0n have the same elements being 1 and 0,
respectively. In is the real identity matrix with n-dimensional.
diag(a1, · · · , an) is the diagonal matrix composed by the
entries ai, i = 1, · · · , n. The convex hull is represented by
Co(X ), which is the smallest convex polygon formed by a
finite point sets X . The term || · || represents the Euclidean
2-norm. And dist(x, C) = infy∈C ||x − y|| denotes the min-
imal distance from x ∈ Rn to the set C with respect to
Euclidean norm. The symbol⊗ denotes the Kronecker prod-
uct. The term λ(A) denotes the spectrum of a square matrix A.
In particular, λmin(A) is the minimum eigenvalue of A.

II. PRELIMINARIES AND PROBLEM STATEMENT
A. PRELIMINARIES
To analyze interactions between agents in MASs, we intro-
duce a communication graph G(V, E,A) to model the net-
work topology. The node set V = {1, · · · ,N } contains all
the agents, and the corresponding edge set E ⊆ {(i, j)|i, j ∈
V, i 6= j} describes the communication links among them.
An edge (i, j) ∈ E represents that agent i is able to obtain
the information of agent j. If the agent j can also receive the

information of agent i, then G is called undirected graph. For
a graph G, if there exists a directed path which is composed
by a sequence of edges of (i1, i2), (i2, i3), · · · , (ik−1, ik ), then
agent i1 is said to be reachable from agent ik . We can also say
that G contains a spanning tree with agent ik as its root node.
The adjacency matrix A = [aij] can be defined by selecting
the elements with aij = 1 if (j, i) ∈ E , while aij = 0 if
(j, i) /∈ E . Further, the Laplacian matrix of graph G is defined
as L = [lij] ∈ Rn×n, where lii =

∑n
j=1 aij and lij = −aij

if i 6= j. And the corresponding weighted Laplacian matrix
can be written as Lw = [lijwij] ∈ Rn×n with weight values
wij > 0. Then the following lemma for Laplacian matrix L
of undirected graph G can be obtained:
Lemma 1 ( [25]): The Laplacian matrix L has an eigen-

value λ1 = 0, and the remaining eigenvalues have positive
real parts if the graph G contains a spanning tree. For the
weighted Laplacian matrix Lw with wij = wji, the following
property can be satisfied:

xT (Lw ⊗ Im)x =
1
2

n∑
i=1

n∑
j=1

aijwij
∥∥xj − xi∥∥2 .

The Kronecker product of M ∈ Ra×b and N ∈ Rc×d is
represented by M ⊗ N ∈ Rac×bd , which has the following
properties:

1) (M ⊗ N )(Q⊗ T ) = (MQ)⊗ (NT ),
2) (M ⊗ N )T = MT

⊗ NT ,
3) (M + N )⊗ Q = (M ⊗ Q)+ (N ⊗ Q).

B. PROBLEM FORMULATION
In this paper, a linear MAS with process faults is considered,
which is composed of n follower agents and m leader agents.
The terms Vf and Vl are used to describe the sets of follower
agents and leader agents, respectively. A graph Ḡ = (V̄, Ē, Ā)
with V̄ =(Vl,Vf ) is introduced to describe the communi-
cation network, and the corresponding Laplacian matrix is
L̄ ∈ R(n+m)×(n+m). Moreover, an induced subgraph G1 can
be obtained by n follower agents and the edges between them,
and the Laplacian matrix of G1 is L1 ∈ Rn×n.

The n followers are subject to process faults, which can be
expressed as{

ẋi(t) = Axi(t)+ Bui(t)+ Efi(t)
yi(t) = Cxi(t)

, i ∈ Vf , (1)

where xi ∈ Rd , ui ∈ Rq, yi ∈ Rp are the state, the control
input and the measured output of follower i, respectively.
fi ∈ Rr denotes the process fault of follower i. A,B,C
and E are constant matrices. In particular, fi(t) represents
the additive actuator fault when E = B. In this paper, it is
assumed that the process faults are constant vectors with
slowly varying rate (i.e. ḟi(t) w 0 ) and only occur in the
followers.

The dynamics of m leaders with linear dynamics can be
described as follows:{

v̇k (t) = Svk (t)
wk (t) = Crvk (t)

, k ∈ Vl, (2)
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where vk ∈ Rh and wk ∈ Rp are the state and the measured
output of leader k , respectively. S and Cr are system matrices
with appropriate dimensions.

The main objective of the fault-tolerant containment con-
trol problem is to develop a distributed adaptive FTCC law
such that follower agents will move into the convex space
spanned by leader agents. This space is also called convex
hull, and its definition can be described as:
Definition 1 ( [26]): A set C ⊆ Rn is convex if (1−λ)x+

λy ∈ V for any x, y ∈ C and any λ ∈ [0, 1]. The convex
hull Co(X ) of a finite set of points X = {x1, . . . , xn} is the
minimal convex set containing all points in X , i.e., Co(X ) =
{
∑n

i=1 αixi|xi ∈ X , αi ∈ R
+,
∑n

i=1 αi = 1}.

Then the definition of the FTCC problem in this paper is
given as follows:
Definition 2: Consider a linear MAS (1) and (2) under a

interaction topology determined by Ḡ. When some process
faults occur in follower agents i, i ∈ Vf , the FTCC problem
is solved under a distributed FTCC law ui, i ∈ Vf such
that follower-outputs yi, i ∈ Vf will move into the convex
hull formed by leader-outputs wk , k ∈ Vl as time goes to
infinity, i.e.,

lim
t→∞

dist(yi(t),Co(w)) = 0, (3)

where w = {w1, · · · ,wm}.
To reflect the real-time distances between agents, we give

the following output error vector

ei =
n∑
j=1

aij(yi − yj)+
m∑
k=1

bik (yi − wk ), i ∈ Vf , k ∈ Vl,

(4)

where bik = 1 if agent i, i ∈ Vf is reachable from the leader
k, k ∈ Vl , and bik = 0 otherwise. Then the following lemma
can be obtained.
Lemma 2: With Assumption 5, the term limt→∞ ei = 0

implies limt→∞ dist(yi(t),Co(w)) = 0.
Proof: The proof is much similar to that of

Lemma 2 in [7] and thus is omitted here.
Next, the following standard assumptions for the solvabil-

ity of FTCC problem are given:
Assumption 1: Matrix S has no eigenvalues with negative

real parts.
Assumption 2: The pair (A,B) is stabilizable and

rank(B,E) = rank(B).
Assumption 3: The pair (A,C) are observable.
Assumption 4: For all σ ∈ λ(S), the following equation

holds

rank
[
A− σ In B

C D

]
= d + p. (5)

Assumption 5: The induced subgraph G1 is undirected and
each leader k ∈ Vl has at least one directed path to each
follower i ∈ Vf .
Remark 1: Assumptions 1−5 are quite standard to solve

the CORP [19]. Assumption 1 is made for convenience and

without loss of generality. If the CORP is solvable by the
designed controller, then it is also solvable by the same
controller even if Assumption 1 is violated. This is because
the stability of the closed-loop system has nothing to do with
the exosystem and the output errors are only concerned with
asymptotic property of the closed-loop system. Assumption 2
guarantees that the system can be locally stabilized by a state
feedback control. rank(B,E) = rank(B) means that we can
find a matrix B∗ such that (I − BB∗)E = 0, and the detailed
proof is given in [11]. Moreover, under a special case of
additive actuator fault with E = B, the term rank(B,E) =
rank(B,B) = rank(B) still satisfies Assumption 2.
Assumption 3 is used to design the state observer for each fol-
lower. Assumption 4 is called the transmission zero condition
and this is a necessary condition to guarantee the existence of
the regulator equation, which will be elaborated in the next
section. Assumption 5 is a common condition to solve the
CORP, which is equivalent to the assumption of spanning
forest in [7], [27].

If Assumption 5 holds, the Laplacian matrix L̄ of the graph
Ḡ can be partitioned as follows

L̄ =
[
0m×m 0m×n
L̄2 L̄1

]
, (6)

where L̄2 ∈ Rn×m and L̄1 ∈ Rn×n. Then define a
square matrix Hk = 1

mL1 + 3k , k ∈ Vl with 3k =

diag(bi1, · · · , bnk ), k ∈ Vl . It should be noted that L̄1 =∑m
k=1 Hk = L1 +

∑m
k=13k , k ∈ Vl .

In order to analyze the properties of these matrices, the def-
inition of a well-known M -matrix is given.
Definition 3 ( [28]): Given a matrix A = [aij] ∈ Rn×n,

if all the eigenvalues of A have positive real parts and its off-
diagonal elements are nonpositive, i.e., A = [aij], aij ≤ 0,
i 6= j, then matrix A can be called an M -matrix.
It is obvious that L̄1 belongs to symmetric positive definite

and nonsingularM -matrix. Moreover, some properties of Hk
are given as follows:
Lemma 3 [29]: The matrices Hk and

∑m
k=1 Hk are

symmetric positive definite and nonsingular M -matrix if
Assumption 5 is satisfied. These matrices have the following
properties:

1) The eigenvalues of Hk and
∑m

k=1 Hk have positive real
parts.

2) (Hk )−1 and (
∑m

k=1 Hk )
−1 exist and both are

nonnegative.

III. MAIN RESULTS
In this section, a new distributed adaptive FTCC law is
designed based upon the output regulation theory. Fig 1 shows
the distributed FTCC scheme. In Fig 1, we can see that
ith follower can communicate with jth follower and receive
the information from kth leader. The state and fault of each
follower can be estimated based on the information-exchange
between itself and its neighboring agents. Then the estimation
information can be embedded into the FTCC law to compen-
sate for the faults in the followers.
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FIGURE 1. Distributed FTCC scheme.

A. OBSERVER DESIGN
Inspired by the fault estimation algorithm [14], [16], dis-
tributed state observers and fault estimation observers for
followers are designed as follows:
˙̂xi(t) = Ax̂i(t)+ Bui(t)+ Ef̂i(t)− Hēi(t)
ŷi(t) = Cx̂i(t)
˙̂fi(t) = −0F

(
ēi(t)+ ˙̄ei(t)

) , i ∈ Vf ,

(7)

where x̂i(t) ∈ Rd and f̂i(t) ∈ Rr are the state estimation
and the fault estimation of follower i, i ∈ Vf respectively.
H ∈ Rd×p, 0 ∈ Rr×r and F ∈ Rr×p are observer gain
matrices to be designed. It is noted that 0 is a positive definite
symmetric matrix, i.e., 0 = 0T > 0. The measurement error
between followers can be defined as follows:

ēi =
n∑
j=1

aij
((
ŷi − yi

)
−
(
ŷj − yj

))
+

m∑
k=1

bik (ŷi − yi)

=C

 n∑
j=1

aij
(
exi−exj

)
+

m∑
k=1

bikexi

 , i, j∈Vf , k ∈Vl,

(8)

where aij and bik are entries of L1 and 3k defined in the last
section. Further, denote the error vectors of state observers
and fault observers as:

exi = x̂i − xi, efi = f̂i − fi. (9)

Then the derivatives of these error vectors can be obtained
respectively

ėxi = ˙̂xi − ẋi

= Aexi + Eefi

−HC

 n∑
j=1

aij
(
exi − exj

)
+

m∑
k=1

bikexi

 , (10)

ėfi =
˙̂fi − ḟi

= −0FC
n∑
j=1

aij
(
exi − exj

)

−0FC

 n∑
j=1

aij
(
ėxi − ėxj

)
+

m∑
k=1

bik ėxi

− ḟi. (11)

Let ex =
[
eTx1, · · · , e

T
xn
]T
, ef =

[
eTf 1, · · · , e

T
fn

]T
and

f =
[
f T1 , · · · , f

T
n
]T . The derivatives of these compact error

vectors can be written as

ėx =
(
In ⊗ A− L̄1 ⊗ HC

)
ex + (In ⊗ E) ef ,

ėf = −L̄1 ⊗ (0FC) (ex + ėx)− ḟ . (12)

We have the following theorem:
Theorem 1: Under Assumption 3, if there exist a symmet-

ric positive matrix P ∈ Rd×d and a matrices Y = PH
satisfying the following conditions:

ETP = FC (13)[
611 612

∗ 622

]
< 0 (14)

where

611 = In ⊗
(
ATP+ PA

)
− L̄1 ⊗

(
YC + CTY T

)
612 = −In ⊗ ATPE + L̄T1 ⊗ C

TY TE

622 = −2In ⊗ ETPE

then the estimation errors (10) and (11) of each follower will
converge to 0 asymptotically as time approaches infinity.

Proof: We can construct the following Lyapunov func-
tion candidate

V1(t) = eTx (In ⊗ P) ex + e
T
f

(
L̄−11 ⊗ 0

−1
)
ef . (15)

With (12), we can obtain the time derivative form of (15):

V̇1(t)

= ėTx (In ⊗ P) ex + e
T
x (In ⊗ P) ėx

+ ėTf
(
L̄−11 ⊗ 0

−1
)
ef + eTf

(
L̄−11 ⊗ 0

−1
)
ėf

=
((
In ⊗ A− L̄1 ⊗ HC

)
ex + (In ⊗ E) ef

)T
(In ⊗ P) ex

+ eTx (In ⊗ P)
((
In ⊗ A− L̄1 ⊗ HC

)
ex + (In ⊗ E) ef

)
+
(
−L̄1 ⊗ (0FC) (ex + ėx)− ḟ

)T (L̄−11 ⊗ 0
−1
)
ef

+ eTf
(
L̄−11 ⊗ 0

−1
) (
−L̄1 ⊗ (0FC) (ex + ėx)− ḟ

)
= eTx

(
In ⊗

(
ATP+ PA

)
− L̄1 ⊗

(
YC + CTY T

))
ex

+ eTf
(
In ⊗ ETP

)
ex + eTx (In ⊗ PE) ef

− 2 (ex + ėx)T
(
In ⊗ (FC)T

)
ef − 2eTf

(
L̄−11 ⊗ 0

−1
)
ḟ .

(16)
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Simple calculation yields

−ėTx
(
In ⊗ (FC)T

)
ef

= −eTx
(
In ⊗ A− L̄1 ⊗ HC

)T (
In ⊗ (FC)T

)
ef

− eTf (In ⊗ E)
T
(
In ⊗ (FC)T

)
ef

= −eTx
(
In ⊗ ATCTFT − L̄1 ⊗ CTHTCTFT

)
ef

− eTf
(
In ⊗ ETCTFT

)
ef

= −eTx
(
In ⊗ ATCTFT − L̄1 ⊗ CTY TE

)
ef

− eTf
(
In ⊗ ETPE

)
ef . (17)

Let ζ =
[
eTx , e

T
f

]T
, and time derivative of (15) can be

unified as

V̇ (t) = eTx
(
In ⊗

(
ATP+ PA

)
− L̄1 ⊗

(
YC + CTY T

))
ex

+eTx
(
In ⊗ PE − In ⊗

(
ATPE + PE

)
+L̄T1 ⊗ C

TY TE
)
ef

+ eTf
(
In ⊗ ETP− In ⊗

(
ETPA+ ETP

)
+L̄1 ⊗ ETY TC

)
ex

+ eTf
(
−2In ⊗ ETPE

)
ef

= ζ T6ζ, (18)

where 6 =

[
611 612
∗ 622

]
. We can see that if condition

(14) holds, the time derivative of (15) satisfies V̇1(t) <

−µ ‖ζ‖2 < 0, where µ = λmin(−6). The vector ζ is com-
posed of the estimation vectors ex and ef , which shows that
these estimation errors can guarantee asymptotic convergence
under the conditions (13) and (14).
Remark 2: The condition (13) can be transformed into the

following optimization problem by selecting a small enough
positive constant ϕ, which can also be found in [16], [30]:

minϕ, s.t.
[
ϕI ETP− FC
∗ ϕI

]
> 0. (19)

Remark 3: The faults considered in this section can also
be time-varying faults, i.e., ḟi 6= 0, i ∈ Vf . However,
the derivatives of faults should be bounded with a positive
upper bound f̄i, i.e.,

∥∥ḟi(t)∥∥ ≤ f̄i. This assumption is quite
general in the classical observer-based approaches [11], [14].
The time-varying faults will make the term ḟi(t) remain in
(12), and thus we have V̇1(t) < −µ ‖ζ‖2 + δ if 6 =[
611 612
∗ 622 + In ⊗M

]
< 0, where M = MT > 0 and δ is a

positive constant depending on
∥∥ḟi(t)∥∥. Then the error system

(12) is uniformly ultimately bounded.

B. FAULT-TOLERANT CONTROLLER DESIGN
Now we are ready to design a new distributed adaptive
FTCC law

ui(t) = K1x̂i + K2zi − B∗Ef̂i(t)

żi(t) = Szi +
n∑
j=1

aijkij9(zj − zi)+
m∑
k=1

bikkik9(vk − zi)

δi(t) = zi − ξi
k̇ij(t) = aijγij(δj − δi)T9(δj − δi)
k̇ik (t) = bikγikδTi 9δi

(20)

where x̂i(t) and f̂i(t) are generated by the observer (7). zi(t) ∈
Rnz is the vector associated with the information of leaders.
ξi(t) ∈ Rnz is generated by ξ̇ = (In⊗S)ξ with its initial value

ξ (0) =
∑m

k=1

(((∑m
j=1 Hjw

)−1
Hkw1n

)
⊗ vk (0)

)
, where

ξ =
[
ξT1 , · · · , ξ

T
n
]T and vk (0) is the initial value of vk , k ∈

Vl . Detailed descriptions for ξi(t) and Hkw will be given later.
K1,K2 and B∗ are the control gains satisfying Assumption 2
and Assumption 3. 9 is a positive definite matrix. γij, kij(t),
and kik (t) are defined to satisfy γij = γji > 0, kij(t) = kji(t) >
0, and kik (t) > 0 for i, j ∈ Vf , k ∈ Vl .

Consider the following weighted Laplacian matrix L̄w,
which can be transformed from the Laplacian matrix L of
the graph Ḡ by regarding the adaptive gains kij(t) and kik (t)
as weight values

L̄w =
[
0m×m 0m×n
L̄2w L̄1w

]
, (21)

where L̄1w =
∑m

k=1 Hkw with Hkw =
1
m
L1w +3kw, k ∈ Vl .

Obviously, the matrices Hkw and
∑m

k=1 Hkw still satisfy the
properties in Lemma 3.

Next, the main theorem is given to deal with the FTCC
problem.
Theorem 2: Given a MAS governed by (1) and (2) sat-

isfying Assumptions 1−5 and conditions (13)−(14). Then
for any initial values xi(0), i ∈ Vf and vk (0), k ∈ Vk ,
the FTCC problem is solved under the control protocol (20)
if the following regulator equation{

XS = AX + BU
0 = CX − Cr

(22)

has a unique solution (X ,U) with K2 = U − K1X .
Proof: Let x = [xT1 , · · · , x

T
n ]

T , z = [zT1 , · · · , z
T
n ]
T , δ =[

δT1 , · · · , δ
T
n
]T
, xc =

[
xT , zT

]T
, χ =

[
xTc , ζ

T
]T . With the

FTCC law (20), we have the following closed-loop system in
block matrix form

χ̇ = Acχ + Bc

=

[
511 512
0 514

] [
xc
ζ

]
+

[
Bc1
Bc2

]
, (23)
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where

511 =

 In ⊗ (A+ BK1) In ⊗ BK2

0 In ⊗ S −
m∑
k=1

Hkw ⊗9

 ,
512 =

[
In ⊗ BK1 E

0 0

]
,Bc1 =

[
0∑m

k=1 Hkw1n ⊗9vk

]
,

514 =

[
In ⊗ A− L̄1 ⊗ HC In ⊗ E

0 −L̄1 ⊗ (0FC)

]
,

Bc2 =
[

0
−
(
L̄1 ⊗ (0FC)

)
ėx

]
.

Under Assumption 2, A + BK1 can be designed to be
Hurwitz by the pole placement technique. The stability of sys-
tem (23) is trivially equivalent to the stability of the following
system based on the fact that the system ζ̇ = 514ζ + Bc2 is
stable

ż =

(
In ⊗ S −

m∑
k=1

Hkw ⊗9

)
z+

m∑
k=1

Hkw1n ⊗9vk . (24)

The compact vector form of ξi(t) is given by:

ξ =

m∑
k=1



 m∑
j=1

Hjw

−1 Hkw1n
⊗ vk

 . (25)

Let v̄k = 1n ⊗ vk . One can deduce that ξ can be generated
by ξ̇ = (In ⊗ S)ξ with the initial value being ξ (0) =∑m

k=1

(((∑m
j=1 Hjw

)−1
Hkw1n

)
⊗ vk (0)

)
, which has the

same dynamics as ˙̄vk = (In⊗S)v̄k but with the different initial
value 1n ⊗ vk (0). Let δ = z− ξ, then we have

δ̇ =

(
In ⊗ S −

m∑
k=1

Hkw ⊗9

)
δ. (26)

We can further construct a Lyapunov function candidate as
follows:

V2 =
1
2
δT δ +

1
4m

n∑
i=1

n∑
j=1

(
kij−c

)2
γij

+
1
2

n∑
i=1

m∑
k=1

(kik−c)2

γik
,

(27)

where constant c is determined later. Then we can obtain time
derivative of (27 ):

V̇2(t) = δT δ̇ +
1
2m

n∑
i=1

n∑
j=1

(
kij − c

)
k̇ij

γij

+

n∑
i=1

m∑
k=1

(kik − c) k̇ik
γik

= δT

(
In ⊗ S −

m∑
k=1

Hkw ⊗9

)
δ

+
1
2m

n∑
i=1

n∑
j=1

aijkij(δj − δi)T9(δj − δi)

−
c
2m

n∑
i=1

n∑
j=1

aijkij(δj − δi)T9(δj − δi)

+

n∑
i=1

m∑
k=1

kikbikδTi 9δi −
n∑
i=1

m∑
k=1

ckikbikδTi 9δi

= δT

(
In ⊗ S −

m∑
k=1

Hkw ⊗9

)
δ

+
1
m
δT (L1w ⊗9) δ −

c
m
δT (L1 ⊗9) δ

+

m∑
k=1

δT (3kw ⊗9) δ − c
m∑
k=1

δT (3k ⊗9) δ

= δT

(
In ⊗ S − c

m∑
k=1

Hk ⊗9

)
δ. (28)

Since matrices Hk and 9 are positive definite, we can
choose a sufficiently large constant c such that V̇2(t) < 0
for any δ 6= 0. Thus the system (23) is asymptotically stable.
When time goes to infinity, δi(t) = zi(t) − ξi(t) → 0. So
adaptive parameters kij(t) and kik (t) are bounded. Moreover,
limt→∞ k̇ij(t) = 0 and limt→∞ k̇ik (t) = 0 imply that the
adaptive parameters kij(t) and kik (t) will tend to some con-
stants when time goes to infinity.

Let x̃i = xi−Xξi, êi = yi−Crξi. Define the compact vec-
tors ê =

[
êT1 , · · · , ê

T
n
]T
, x̃c =

[
x̃T , δT

]T
, χ̃ =

[
x̃Tc , δ

T
]T .

The term limt→∞ ê = 0 implies limt→∞ dist(yi(t),Co(w)) =
0 by replacing Hw by Hkw in Lemma 2. Then the system (23)
can be rewritten as:

˙̃χ = Acχ̃ + B̃c

=

[
511 512
0 514

] [
x̃c
ζ

]
+

[
B̃c1ξ
0

]
,

ê = (In ⊗ C) x̃c + (In ⊗ (CX − Cr )) ξ, (29)

where

B̃c1 =
[
In ⊗ (−XS + AX + BK1X + BK2)

0

]
. (30)

If conditions (13) and (14) hold, we have limt→∞ ζ (t) = 0
for i ∈ Vf . If the regulator equation (22) has a unique solution
(X ,U) with K2 = U − K1X , we can further deduce that
limt→∞ x̃c = 0, and thus limt→∞ ê = 0. The proof is
completed.
Remark 4: The distributed observer for each follower

proposed in [31] is designed as follows:

żi(t) = Szi + α

 n∑
j=1

aij(zj − zi)+
m∑
k=1

bik (vk − zi)

 . (31)

It should be pointed out that the constant should satisfy
α > Rmax(S)/Rmin

(∑m
k=1 Hk

)
, and the term R (X) repre-

sents the real part of matrix X . So α depends on the eigen-
values of matrices S and Hk , which contains a global nature
of interconnection topology. The distributed observer given
in the second equation of (20) in this paper can provide the
synthesized information of multiple leaders. The adaptive
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laws in this distributed observer can adaptively tend to some
appropriate values. Therefore, we overcome a global condi-
tion by replacing a large constant α by adaptive gains.
Remark 5: The matrix equation (22) is called regulator

equation in output regulation theory [19]. The solvability of
the regulation equation is necessary for the solvability of the
output regulation problem. Assumption 4 gives the existence
condition for the solution of regulator equation (22). We can
see that the first equation of (22) is a Sylvester equation,
which has a unique solution if S andA+BK1 have no common
eigenvalues. Under Assumption 2, we select an appropriate
gain matrix K1 by the pole placement technique such that
A+ BK1 is Hurwitz. Thus Assumption 1 and the exponential
stability of A+ BK1 guarantee the existence of X , satisfying
the first equation of (22). Then the gain matrix K2 can be
further obtained by solving the equation (22).
Remark 6: The proposed control law (20) can be extended

to solve some general CORPs. For example, for the CORP of
MAS with single leader in the presence of process/additive
actuator fault, our controller is still effective by defining the
number of leaders as m = 1. More generally, if there is no
fault in followers, i.e., f (t) = ḟ (t) = 0, we can simply
obtain a new state feedback controller by replacing x̂i by xi,
which can be further applied to solve the CORP ofMASswith
single/multiple leaders.

FIGURE 2. Topology of the multi-vehicle system.

IV. SIMULATION EXAMPLE
Consider a multi-vehicle system composed by three leader
vehicles and three follower vehicles. Fig. 2 shows the com-
munication topology among agents. Clearly, the leaders are
labeled as nodes 1, 2 and 3 and the followers are labeled as
other nodes. Three followers can be described as follows:

ẋ1i = x2i
mẋ2i = ui + fi
yi = x1i

, i ∈ 4, 5, 6, (32)

where x1i ∈ R2 and x2i ∈ R2 represent the position and
velocity of vehicle i, respectively. yi ∈ R2 is the position
output. ui ∈ R2 and m ∈ R are the torque input and the
mass of vehicle i, respectively. fi ∈ R2 represents the faults
occurring in the followers. In this example we choose m = 1

such that E = B =
[
0 1

]T
, which means additive actuator

fault occurs in the followers.
Three leader vehicles with autonomous linear dynamics are

given as follows:
v̇1k = v2k
v̇2k = 0
wk = v1k

, k ∈ 1, 2, 3, (33)

where v1k ∈ R2 and v2k ∈ R2 represent the position and
velocity of vehicle k, respectively. wk ∈ R2 is the position
output.

The faults of each follower are given as follows:

f14 = f24 =

{
0, 0 ≤ t < 5
2, t ≥ 5

,

f15 = f25 =

{
0, 0 ≤ t < 15
0.5, t ≥ 15

,

f16 = f26 =

{
0, 0 ≤ t < 25
1.5, t ≥ 25

. (34)

Obviously, the Laplacian matrix L̄ is

L̄ =


0 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 3 −1 −1
0 1 0 −1 3 −1
0 0 1 −1 −1 3

 . (35)

Choose the following initial values of all the vehicles

v11(0) = [2, 0.1]T , v21(0) = [0.21, 0.21]T ,

v12(0) = [3, 0.3]T ,

v22(0) = [0.23, 0.23]T , v13(0) = [4, 0.2]T ,

v23(0) = [0.20, 0.20]T ,

x14(0) = [0.3,−0.8]T , x24(0) = [0.12, 0.18]T ,

x15(0) = [1,−0.6]T ,

x25(0) = [0.23, 0.34]T , x16(0) = [1.6, 0.8]T ,

x26(0) = [0.27, 0.42]T .

For each follower, the gain matrices of (7) are obtained by
Theorem 1:

H =
[
1.6065
1.8938

]
, F = 0.1259, 0 = 6.5.

The feedback gain matrices in the controller (20) can be
designed as follows:

K1 =

[
−10 0 −8 0
0 −10 0 −8

]
,

K2 =

[
10 0 8 0
0 10 0 8

]
,

B∗ =
[
1 0 1 0
0 1 0 1

]
.
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FIGURE 3. State estimation errors.

FIGURE 4. Faults and fault estimation curves.

Fig. 3–Fig. 6 show the simulation results. Fig. 3 shows
two components of the state estimation errors of follower
i, i ∈ 4, 5, 6. Fig. 4 shows two components of faults and

fault estimation curves. It is easily from Fig. 3 and Fig. 4
that the proposed distributed state observer and fault estima-
tion observer are effective. The trajectory formed by all the
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FIGURE 5. Trajectories of all vehicles under FTCC law.

FIGURE 6. Adaptive parameters.

vehicles is presented in Fig. 5 (a). It is observed that with
the time goes to infinity, all the follower vehicles (red nodes)
will move into the triangular convex region spanned by the
three leader vehicles (black nodes). The corresponding two
components of all containment errors êi, i = 4, 5, 6, as shown
in Fig. 5 (b), will go to 0 asymptotically. Moreover, the adap-
tive parameters kij(t), i = 4, 5, 6; j = 1, 2, 3, 4, 5, 6 in (20)
are shown in Fig. 6, which will approach some constants as
time goes to infinity. The simulation results show that all
the vehicles can achieve containment control regardless of
faults, which demonstrate that the proposed FTCC law (20)
is effective.

V. CONCLUSION
In this paper, the FTCC problem of linear MASs with pro-
cess faults has been investigated based upon the output

regulation theory. Distributed observers have been introduced
to estimate the state and fault for each follower. The cor-
responding existence conditions of the observers have been
presented in terms of linear matrix inequalities. The estima-
tions have been embedded into a new distributed adoptive
FTCC law to compensate for the performance degradation
caused by process faults. We have proved that if the regulator
equation has a unique solution, the FTCC problem can be
solved under the designed control protocol. In the future,
we will take into account the fault-tolerant control problems
of more complicated heterogeneous MASs associated with
the directed communication graphs.
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