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ABSTRACT Advanced Geostationary Radiation Imager (AGRI) is one of the main payloads of the
second-generation geostationary orbit meteorological satellite, FengYun-4A. Typically, the existence of
variable stripe noise in the water vapor band remote sensing images of the AGRI greatly affects many
applications, such as cloud detection, especially as one full disk image is separated into ten sub-images
for transforming as soon as possible, so the denoising algorithm, which can reduce variable stripe noise and
is adaptive to process using sub-images, must be built. In this paper, we propose an adaptive wavelet filter for
image denoising. This approach introduces a new parameter termed weight sum variance of digital number
probability (WSVODP), which is used to indicate the appropriate wavelet filter coefficients. WSVODP is
only sensitive to the difference of observation targets of different sensors. Thus, our approach can learn
appropriate wavelet filter coefficients fast and exactly. We built a real-world remote sensing image dataset
from AGRI on FengYun-4A, and the experimental results on this dataset show that the proposed approach
could effectively reduce the variable stripe noise from different observation targets. At the same time, an edge
compensation method, which is fitted to the scanning model of the AGRI, is suggested to avoid ringing
artifacts. Many applications, such as cloud detection with denoised images, show very good results. The
proposed approach reduces the stripe noise adaptation, so the result is very steady even if the stripe noise
varies with different targets, and edge compensation ensures that there are no obvious ringing artifacts in the
full disk image joined by the ten sub-images.

INDEX TERMS Geostationary meteorological satellite, water vapor, stripe noise, non-uniformity, wavelet
filter, image measurement, denoising.

I. INTRODUCTION
The FengYun-4 (FY-4) geostationary meteorological satellite
is a 2nd generation geostationary meteorological Chinese
satellite. The first FY-4 satellite named FY-4A was launched
successfully on Dec. 11 2016. An Advanced Geostationary
Radiation Imager (AGRI) is one of the main payloads on
FY-4A, as shown in table1, whose characters are very similar
as that of the apparatus of other countries. It is very impor-
tant for observing the area from E40◦ to E160◦. There are
4 sensors for every infrared channel. It is found that obvious
stripe noise exists in the water vapor (6.9µm-7.3µm) image
of AGRI. The stripe noise leads to very poor performance
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such as in cloud detection. A Comb-type cloud appears and
this is obviously impossible. Therefore, a useful algorithm to
reduce stripe noise is needed, or all the predictions based on
water vapor images appear with Comb-type errors.

The characters of different sensors in one linear array
detector are always different. The stripe noise is a common
noise in remote sensing images from the visible band tomicro
wave band [1]–[5].Many analyses and denoisingmethods are
proposed. However, the reason for traditional stripe noise is
usually the response non-uniformity of the different sensors.
However, the reason for stripe noise in an AGRI is different
from that of traditional stripe noise. The difference of spectral
response function (SRF) of different sensors leads to the
stripe noise. In the water vapor band, the absorption peak in
water vapor band amplifies the difference of SRF of sensors,
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TABLE 1. Geostationary meteorological satellite imagers.

so the serious stripe noise appears in water vapor images of
AGRI, and stripe noise caused by different SRF is different
from the stripe noise caused by response non-uniformity and
it is variable stripe noise. Traditional algorithms are good at
reducing the noise caused by response non-uniformity, but
they not good at denoising the AGRI water vapor image with
variable stripe noise.

In the past decades, researchers paid attention on how to
reduce the stripe noise of remote sensing images, and all
the algorithms are classified calibration-based and scene-
based. Scene-based algorithms mainly include algorithms
that are statistics-based, neural network-based, variation
model-based, and filter-based algorithms. Calibration algo-
rithms [6], [7] have been widely used in correcting the
non-uniformity for remote sensing images, however, calibra-
tion algorithms need calibration hardware and many remote
sensing apparatus does not have calibration hardware, and the
response of infrared sensors always changes after time. The
calibration coefficients do not fit the images taken after a long
time.

In order to reduce the variable stripe noise caused by differ-
ent SRF, this paper proposes a learning adaptive wavelet filter
(LAWF). The algorithm uses a new measurement parameter
termed Weight Sum Variance of Digital Number Probabil-
ity (WSVODP) to determine the appropriate adaptive filter
coefficients. The results demonstrate that the stripe noise in
water vapors image is very clearly reduced.

This work focuses on the variable stripe noise. The contri-
bution in this field can be expressed as follows:
• [1] To study the algorithm for variable stripe noise,
we built a dataset using more than one year′s remote
sensing images in the water vapor band.

• [2] Propose a new learning adaptive wavelet filter based
on a new measurement parameter termed WSVODP.
This parameter indicates the appropriate filter coef-
ficients for each image, and a good denoising result
appears for every image. Specifically, WSVODP does
not need the characteristics of the stripe noise as the filter
coefficients can be confirmed fast and exactly.

• [3] The new algorithm is used to reduce the stripe noise
of the water vapor images of AGRI on FY-4A. These
denoising images without stripe noise are used well for
many applications such as cloud detection.

II. RELATED WORK
Many methods for reducing stripe noise have been
researched. The article [8] introduces a restraining stripe
noise algorithm based on a local histogram specification.

This algorithm uses a harmonic mean histogram as the goal
of adjusting the histogram and corrects infrared images. This
histogram specification algorithm demands that the responses
of the sensors are stable during all observations.

In recent years, algorithms based on variation models
have made significant progress. In article [9], Shen and
Zhang first proposed the Huber-Markov variation model
to reduce the stripe noise. Recently, Lu et al. [10] and
Zhang et al. [11] introduced low rank prior-based destriping
methods. In article [12] an algorithm based on total variation
model is used to reduce the stripe noise of MODIS and
hyperspectral images. Although the variation-based methods
have achieved encouraging destriping performance [13], they
still face some problems. These are that most of them focus
on properties of the image, few of them take into account the
characteristic of the stripe noise, hence, many image details
may be removed along with the destriping.

Neural network algorithms are used to reduce stripe noise
of remote sensing images. D. A. Scribner uses a BP neu-
ral network to denoise infrared images first [14]. Many
methods based on BP neural network have been proposed.
The articles [15] to [17] improve BP neural network algo-
rithms. Not only BP neural networks have been used but
also deep convolutional neural networks are also used for
destriping [18]. However, whatever the network is, they need
many samples to train the network coefficients [19]. That
means non-uniformity must be stable, or the coefficients are
not suitable.

Another kind of algorithm is filter-based and a wavelet
filter is one of the main filter models. A wavelet coefficients
threshold denoising method is proposed by Donoho [20],
and many other users have widely used it because of its
simple principle [21] to [23]. The article [24] introduces an
algorithm based on media filter and wavelet transform, a set
of processes based on wavelet transform are introduced in
article [25], but themain goal is not stripe noise. An algorithm
for wide-stripe noise is introduced in article [26]. Article [27]
proposes an algorithm by wavelet moment matching and
it assumes that the stripe noise is caused by the different
gain and offset of the sensors. In addition, a steering kernel
algorithm [28], guided filter algorithm [29], [30] and bilat-
eral filter algorithm [31] and so on [32] are all suggested. All
have advantages and disadvantages.

All the conclusions provide a basis for the research on
learning adaptive wavelet filter for remote sensing image
denoising. In work it is found that, most algorithms need
the stable response of the sensors in order to use constant
correction coefficients, few of them take into account variable
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stripe noises, and although some algorithms mentions adap-
tive, the characters of stripe noise must be known. But it
is impossible to some images with seriously variable stripe
noises.

III. ANALYSIS ON STRIPE NOISES OF AGRI
A. OVERVIEW OF AGRI
As shown in figure1, there are 4 sensors for every infrared
channel of AGRI. The scanning direction is along east-west
and a full disk image needs 687 mechanical-scanning lines,
so the data in one line is collected by the same sensor,
as shown in figure2. It is found that the direction of stripe
noise is along east-west too. We are sure that the stripe noise
is from different sensors.

FIGURE 1. The sensors and scanning direction.

FIGURE 2. Water vapor band images of AGRI (a) The cloud image (b) The
earth surface image.

Figure2 is picked from a random sequence of images. The
stripe noise is very clear. However, after analyzing the image
carefully, there are some interesting details the appearance of
which is not mentioned in any other article. Firstly, the stripe
noise of the water vapor image is not a constant brighter or

darker line. The stripe noise value may be brighter or darker
even in one line and the noise is not linked to any sensor.
Secondly, the noise value varies with the variation of physical
targets. Analyzing the appearance of stripe noise, they fact
that noise is not constant with any sensor demonstrates that
stripe noise is not caused by the response non-uniformity,
and the variations in brightness difference shows that the
difference caused in stripe noise is caused by physical targets.
Therefore, it is reasonable to conclude that the stripe noise
of AGRI is not stable. Besides, comparing the nearest two
lines in a smooth area, it is found that the brightness tem-
perature gradient of the near two pixels along north to south
can reach 1k. Because most productions based images use
brightness temperature to classify the physical targets, so a
wrong gradient of brightness temperature leads to inaccurate
results.

B. ANALYZE ABOUT STRIPE NOISE
Stripe noise appears only in water vapor band images. The
variation of stripe noise makes us focus on the SRF, the atmo-
sphere transmissivity. The SRF of water vapor band and far
infrared band are shown in figure3a while the zoom in area of
water vapor band SRF is shown in figure3b and the zoom in
area of far infrared band SRF is shown in figure3c. In the
figure we can see that many absorption peaks exist in the
water vapor band and the different SRF of 4 sensors leads to
different physical targets though the sensors observe the same
area. A small difference of SRF makes a big difference to the
brightness temperature in the water vapor band and when the
sensors observe the different targets, the stripe noise value
always varies with the variation of targets.

Based on the water vapor images, it is certain that the stripe
noise of AGRI is variable stripe noise. This is very different
from that of traditional remote sensing images. The image
noise is usually defined from the mathematical point of view
in that the image can be regarded as a spatial function, and
the noise can be regarded as additive noise. The relation can
be expressed by the following formulas:

fn = f + n (1)

where fn represents the image collected.
The radiance received by two sensors a1 and a2, are

formula 2 and 3.

Ra1 =
∑

R(λ) ∗ ψ1(λ) (2)

Ra2 =
∑

R(λ) ∗ ψ2(λ) (3)

where R(λ) is the radiance from the target, and ψ(λ) is the
SRF of the sensor.

For the stripe noise caused by SRF, it is very difficult to
confirm whose SRF is right or wrong and this means the
stripe noise is only from the different targets observed by
different sensors. Here assume the sensor a1 is the standard
sensor. So

Ra2 = Ra1 + Rn = Ra1 + Ra2 − Ra1 (4)
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FIGURE 3. The atmosphere transmissivity and SRF of AGRI (a) Atmosphere and SRF of AGRI (b) Zoom in area of water band SRF, where many absorb
peaks (c) Zoom in area of far infrared band, where the atmosphere transmissivity is very smooth.

Compare with formula 1, then

Rn = Ra2 − Ra1
=

∑
R(λ) ∗ ψ2(λ) −

∑
R(λ) ∗ ψ1(λ)

=

∑
R(λ) ∗ (ψ2(λ) − ψ1(λ)) (5)

From the formula5, obviously, the noise
∑
R(λ) ∗ (ψ2(λ)−

ψ1(λ)) not only has a relationship with the radiance of the
observing targets, but also has a relationship with the SRF of
the sensor. Radiance and SRF is convolution. Comparingwith
the stripe noise caused by response non-uniformity, which
is described in formula6, while the SRF of different sensors
are the same, the noise is only the linear amplification of the
radiance of the observing targets by response coefficients k
of the sensors. It is easy to reduce this kind of stripe noise
by adjusting the response coefficients and this is the aim of
most traditional algorithms, such as histograms specification
algorithm and BP neural network algorithm and so on. How-
ever, convolution between radiance of the target and the SRF
of the sensor means the stripe noises cannot be described by a
linear function, so it cannot be reduced by adjusting constant
response coefficients, so traditional algorithms used for stripe
noises caused by response non-uniformity are not good at
reducing variable stripe noise. A new denoising method used
for variable stripe noises must be built.

Rnk = R ∗ (k2 − k1) (6)

C. MEASUREMENTS OF IMAGE DENOISING
Many typical parameters are used for measurements of image
denoising, such as the peak of signal to noise (PSNR), which
is shown in formula7.

PSNR = 10 ∗ lg
DN 2

max

1
M∗N

M∑
x=1

N∑
y=1

[f ′(x, y)− f (x, y)]2
(7)

where f (x, y) is the standard image, that is the image without
any nose, and f ′(x, y) is the processed image, M ∗ N is the
size of the image.

Normalized mean square error (NMSE) is another mea-
surement parameter, which is shown in formula8.

NMSE =

M∑
x=1

N∑
y=1

[f ′(x, y)− f (x, y)]2

M∑
x=1

N∑
y=1

f (x, y)2
(8)

where f (x, y) is the standard image, and f ′(x, y) is the pro-
cessed image, M ∗ N is the size of the image.
The average gradient value of the image (AGVI) is also an

measurement parameter, which is shown in formula9.

AGVI =
1

M ∗ N

M∑
x=1

N∑
y=1

[(∇x.f (x, y))2 − (∇y.f (x, y))2]
1/2

(9)

where ∇x. and ∇y. are the gradient operator of the direction
x and direction y, M ∗ N is the size of the image.
However, after analyzing all the measurement parameters,

it is found that some parameters like PSNR and NMSE using
the original images are not suitable for real remote sensing
images, and some parameters like AGVI do not include
any direction information. To measure the denoising image
exactly, two newmeasurement parameters are suggested. One
parameter is named the harshness information with separated
direction (HISD), and HISD is a set of parameters, which is
shown in formula10. It demonstrates details of the image that
are very different from all the parameters mentioned above.

HISD−x = {
1
N

N∑
y=1

[∇x.f ′(x, y)]2}1/2

HISD−y = {
1
M

M∑
x=1

[∇y.f ′(x, y)]2}1/2

HISD−p =
[HISD−y(f ′′)− HISD−y(f ′)]/HISD−y(f ′′)
[HISD−x(f ′′)− HISD−x(f ′)]/HISD−x(f ′′)

(10)

where f ′′ is the observing image, it is not the standard image,
so HISD is very suitable to measure the real observed images.
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HISD−x is the measurement of direction x, it demonstrates
the harshness of direction x, HISD−y is the measurement
of direction y, it demonstrates the harshness of direction y,
HISD−x and HISD−y directly demonstrate how serious the
stripe noises are. Especially, HISD−p is the phase of the
denoising algorithm. It demonstrates that the denoising pro-
cess is along a particular direction, so the HISD demonstrates
whether the algorithm is along the direction of the stripe noise
or not.

Another new measurement parameter is WSVODP, which
is shown in formula13. The advantage of this is that it does
not need the edge information of the image while being
measured, so it is not influenced by the gradient value of the
images, it is only sensitive to stripe noise.

Pi = Si/
Q−1∑
i=0

Si (11)

VODP(i) = (E{(Pi,k − E(Pi,k )2)})1/2, i ∈ [0,Q− 1] (12)

WSVODP =
Q−1∑
i=0

VODP(i)∗
DetN∑
j=1

Num(i,j) (13)

TheWSVODP parameter is calculated by formula11 to 13.
Firstly, the Digital Number Probability is calculated by for-
mula11, where Si is the number of pixels whose DN is i,
the whole DN range is [0,Q − 1]. Secondly, VODP is calcu-
lated by formula12, where the VODP demonstrates the dif-
ference of the response of all the sensors to a specific target,
and the VODP curve shows the response of all the sensors in
the whole DN range. Lastly, WSVODP is calculated by the
formula13. Num(i, j) is the quantity of pixels whose digital
number is i in observing data of sensor j and it is calculated
by the pixel number of observed data, so it does not need the
edge information of the image but is only sensitive to stripe
noise.

IV. PROPOSED ALGORITHM
A learning adaptive wavelet filter (LAWF) based on
WSVODP parameter is proposed to reduce the stripe noise of
AGRI. As the stripe noise of AGRI is along east-west in the
images and it is typical horizontal stripe noise, the algorithm
uses awavelet filter to separate horizontal information and the
filter coefficients are determined adaptively by theWSVODP
parameter.

A. THE BASIC PRINCIPLE OF IMAGE DENOISING
BASED ON WAVELET TRANSFORM
The wavelet transform is a time-frequency analysis method
of signal processing. It is suitable for non-linear and
non-stationary signal processing, at the same time, it is a
multi-scale and multi-directional processing method. Three
high-frequency sub-images and a low-frequency sub-image
can be obtained after an image is decomposed by wavelet
transform; three high-frequency sub-images contain the
information of horizontal, vertical, and diagonal direc-
tions, respectively. The 4 sub-images are named LL−image,

LH−image, HL−image, and HH−image, and the sub-images
show the image information at a different frequency com-
pared with the original image. The wavelet filter adjusts
the sub-image information and, at the last stage restores the
image using the adjusted sub-images. Here, the sub-image
means that the image is obtained after decomposing an image
with wavelet transform, and one ′sub-image′ can also be
decomposed with wavelet transform, so the wavelet filter is
not the only layer, but can be many layers.

FIGURE 4. Process of wavelet filter.

Thewhole wavelet filter process is in figure4. A signal x(n)
is decomposed bywavelet transform, and sub-image informa-
tion is adjusted by processing, which after that reconstruction
will generate a new signal x ′(n). From the process we can see
that, the key to image denoising based on wavelet filter is
adjustment of wavelet coefficients determined by the wavelet
filter parameters.

B. RESEARCH ON WAVELET FILTER
The idea of image denoising based on wavelet transform
can be divided into two kinds. One is that the image sig-
nal and noise signal show different laws in different res-
olutions after wavelet transform. The wavelet coefficients
are adjusted to achieve denoising. The other is to combine
wavelet transform with a traditional image denoising algo-
rithm to improve the performance of the original image
denoising algorithm by utilizing the characteristics of wavelet
transform multi-resolution and time-frequency localization.
The analysis above demonstrates that stripe noise is a kind of
high-frequency noise, and it is variable in different images,
so an adaptive denoising algorithm is absolutely necessary.[

cY1 ∗ LL cY2 ∗ LH
cY3 ∗ HL cY4 ∗ HH

]
Y

(14)

A wavelet filter may be written as formula14, which is
the key process unit in figure4, Where Y is the wavelet
transform layer number, the wavelet transforms with different
layer decomposition in the image at different frequencies.
Because the stripe noise in water vapor images of AGRI is
along the horizontal direction, the coefficients can be set from
formul 15 and 16.

cK1 = cK3 = cK4 = 1 K ∈ [1,Y ] (15)

cY2 = st st ∈ [0, 1)whenK = Y

cK2 = 0 K ∈ [1,Y − 1] (16)

Formul15 and 16 ensure that only the horizontal informa-
tion is reduced. Wavelet transform layer Y and restraining
coefficient st are very important to the denoising result.
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They are determined by WSVODP parameter in proposed
algorithm.

C. ADAPTIVE WAVELET FILTER FOR DENOISING
The advantage of learning adaptivewavelet filter is to confirm
the most appropriate wavelet filter coefficients using the
proposed measurement parameter WSVODP. The details of
the method is in Algorithm1, and the appropriate wavelet
filter coefficients are determined by WSVODP parameter in
formula17.

∇WPi = WSVODPi −WSVODPi+1 i ∈ [1,LN − 1]

iC = min{i|∇WPi < ε i ∈ [1,LN − 1]} (17)

where LN is the number of wavelet transform, ε is the
smoothing threshold. The general steps of learning for the
adaptive wavelet filter for denoising are as follows:

1) [1] Decomposing the input image by wavelet filter-
ing. The transformation layer is set to LayTmax. This
is the process from line1 to line4 in the algorithm
pseudo-code.

2) [2] Set delt = 0.1. This is the step distance of
restraining coefficient of the filter and is the process
is line5 in the algorithm pseudo-code.

3) [3] For each image, the most appropriate coefficients
are found in (LayTmax − 1)/delt sets of potential
filter coefficients, so the circular variable j is from
1 to (LayTmax − 1)/delt and is line6 in algorithm
pseudo-code.

4) [4] Calculate LayT and st , LayT is the current layer
number of the filter where st is the restraining coeffi-
cient and this process is from line7 to line9 in algorithm
pseudo-code.

5) [5] Filter the input image using the current coefficients
LayT and st in line10.

6) [6] Compose the image using Sub_images after filter-
ing in the process from line11 to line13.

7) [7] Measure the image using the WSVODP param-
eter and restore the filter parameters LaytT , st from
line14 to line20.

8) [8] Confirm the appropriate filter coefficients adapta-
tion using equation17 in line22.

9) [9] Re-do the filter on the input image using the
appropriate coefficients.

10) [10] Output the image after denoising from lines24 to
line25.

Of course, for reducing the time for confirming the
most appropriate wavelet filter coefficients, two-step work
can be done. Firstly, use lots of images to calculate
WSVODP in order to learn the basic wavelet filter coef-
ficients. Lots of images ensure that the basic wavelet fil-
ter coefficients are near the most appropriate wavelet filter
coefficients for each image. Then when near the basic
wavelet filter coefficients, a small-step adaptive adjustment
to wavelet filter coefficients can be been done for confirm-
ing the most appropriate wavelet filter coefficients for every
image.

D. EDGE COMPENSATION
The scanning model of AGRI is from north to south with
4 infrared sensors observing 4-lines of data per mechanical-
scanning line from west to east and 687 mechanical-scanning
lines of data make a full disk image of 2748 × 2748 pixels.
A full disk image of AGRI is separated into 10 sub-images
for transforming as soon as possible. This means an image
with 2748 × 2748 pixels is separated into 9 sub-images of
280 × 2748 pixels and 1 sub-image of 228 × 2748 pixels.
The wavelet filter process starts just after sub-image data
collection finishes. The denoising is performed on every sub-
image. However, obvious gray value bias appears at the joint
of 2 sub-images as shown in figure5a. The data in the same
column of images before and after the process is plotted
in figure6 where the red line is the data from original image
and the green line is the data from processed image. They are
almost the same and that demonstrates the wavelet filter only
reduces stripe noise. A big departure of two lines occurs at the
bottom of every sub-image and this is caused by a bad edge
to the image.

FIGURE 5. The images (a) Without edge compensation (b) With edge
compensation.

FIGURE 6. Data in the same column of original images and image
processed.

An image can be generated by wavelet transform coeffi-
cients via formula 18, and the noise reduced by the wavelet
filter can be described as formula 19, obviously, the noise
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Algorithm 1 Learning Adaptive Wavelet Filter (LAWF)
Require: The image I to be processed, scale M × N
Ensure: The image I ′ processed, scale M × N
1: Sub_LL = I
2: for i = 1→ LayTmax do

3:


Sub_LL
Sub_LH
Sub_HL
Sub_HH


i

= WVF(Sub_LLi−1)

4: end for
5: delt = 0.1
6: for j = 1→ (LayT max−1)/delt do
7: stA = 1+ (j− 1) ∗ delt
8: LayT = floor(stA)
9: st = stA− LayT

10: Sub_LH ′i =

 0 i < LayT
st × Sub_LHi
Sub_LHi

i = LayT
i > LayT

i ∈ [1,LayT max]

11: for i = LayTmax → 2 do

12: Sub_LLi−1 = WVF−1



Sub_LL
Sub_LH ′

Sub_HL
Sub_HH


i


13: end for
14: I ′ = Sub_LL1
15: S(1,2,··· ,DetN )

i ← The number of pixels whose DN is i in image I ′ for sensor 1→ DetN

16: P(1,2,··· ,DetN )
i = S(1,2,··· ,DetN )

i /
Q−1∑
i=0

S(1,2,··· ,DetN )
i

17: VODPi = ( 1
DetN

DetN∑
j=1

(Pji −
1

DetN

DetN∑
k=1

Pki )
2

)1/2, i ∈ [0,Q− 1]

18: WSVODPj =
Q−1∑
i=0

(
VODPi ×

DetN∑
j=1

S ji

)
19: LTj = LayT
20: STj = st
21: end for
22:
∇WPi = WSVODPi −WSVODPi+1, i ∈ [1, length (1 : delt : LayT max)− 1]
iC = min{i|∇WPi < ε, i ∈ [1, length (1 : delt : LayT max)−1]}

23: Do line 10 to 14 using parameters LTiC and STiC
24: I ′ = Sub_LL1
25: Return I ′

reduced 1f (x, y) is a high-frequency image along horizontal
direction.

In the frequency domain, the power of the original image
is in formula20 where w1 is the cut-off frequency of the
optical system observing the image, and also, the power of
the image processed can be described by formula21 where
w2 is the cut-off frequency of the wavelet filter. Of course,
w2 < w1. A cut-line in the frequency domain causes
the departure of two lines in figure, which is a ringing
artifact.

f (x, y) =
1
√
MN

∑
m

∑
n

Wϕ(j0,m, n)ϕj0 ,m,n(x, y)

+
1
√
MN

∑
i=H ,V ,D

∞∑
j=j0

∑
m

×

∑
n

W i
φ(j,m, n)ϕ

i
j,m,n(x, y) (18)

1f (x, y) = −
1
√
MN

∞∑
j=jT

∑
m

∑
n

WH
φ (j,m, n)ϕHj,m,n(x, y)

(19)

P1 = E
{∣∣f1(t)− f1(t)∣∣2} = ∫ w1

−w1
P(w)dw (20)

P2 = E
{∣∣f2(t)− f2(t)∣∣2} = ∫ w2

−w2
P(w)dw (21)

91972 VOLUME 7, 2019



B. Chen et al.: Adaptive Wavelet Filter With Edge Compensation for Remote Sensing Image Denoising

FIGURE 7. The process flow of the edge compensation.

FIGURE 8. Measurements for different process conditions (a) WSVODP
curve (b) AGVI curve.

For avoiding a ringing artifact, based on the scanning
model of AGRI of FY-4A, a new process is designed. The
process is shown in figure7. The steps are as follows:
• [1] Receive the observing data line by line.
• [2] k is the sequence number of the image to be pro-
cessed, k, M0 is the line number of one sub-image,
and dM is the line number of edge compensation. The
process starts when M reaches the threshold designed.
In figure 8b, the green-line is the real edge of every sub-
image, and the red-line is the compensative edge. dM is
the distance between the green-line and red-line.

• [3] The wavelet filter is applied to the whole image
received.

• [4] If the sub-image is the first image, the dM
image is reduced after the wavelet filter, or both the
(k-1)×M0 image and dM image are reduced after the
wavelet filter.

Comparing with the figure 5a, a gray value dropping per
every 280 lines does not appear in figure 5b, as the edge
compensation ensures that the ringing artifact does not occur
at the real bottom of the sub-image.

Based on the statisticals information of the images from
the AGRI, the area of ringing artifacts is about 30-50 lines,
so the line number of edge compensation is set to 100 and, that
means dM= 100. The observing time for a full disk is about
15 minutes, which includes black-body observation, star
observation and deep space observation, and according to the
infrared sensors array, 100 lines data is from 25 mechanical-
scanning lines, so the time delay for edge compensation is
1time < 15∗60

687 ∗
100
4 ≈ 33(s), and therefore, a very small

time delay.

V. EXPERIMENTS AND DISCUSSION
A. CONFIRMING THE COEFFICIENTS
In this paper, images from Feb. 1 in 2018 to Mar. 3 in 2018
are processed to analyze the filter coefficients using different
layer numbers of wavelet transform and different restraining
coefficients to denoise the images. The parameters are shown
in table2. In table2, with the cut-off frequency of the filter
dropping, the AGVI of the image processed becomes smaller
and smaller and that means the stripe noise is reduced. How-
ever, a low-pass filter could blur the image more or less, but
this is unavoidable while reducing stripe noise, and it is very
difficult to determine the appropriate filter coefficients by
traditional measurement parameters, since they use the edge
information from the image.

TABLE 2. Filter coefficients and measurements.

The values of WSVODP and AGVI in table2 are shown
as curves in figure8. According to figure8, from condition
1 to condition 5, theWSVODP value also drops down quickly
and that means a better result in reducing stripe noise. After
the 6th condition, the WSVODP curve becomes smooth and
the reason is that WSVODP is calculated out by the quantity
variance of pixels at the same digital number. The heavier
stripe noise is, the bigger WSVODP is. It is only sensitive to
the non-uniformity.

The difference between measurement parameters
WSVODP and AGVI is very obvious, one inflection point
appears inWSVODP curve, and that does not appear in AGVI
curve. Condition no.6 is the inflection point of the WSVODP
curve, and the coefficients are appropriate filter coefficients.
FWSVODP is better than traditional measurement parame-
ters for determining the filter coefficients, ε for water vapor
images of AGRI set to 100. Coefficient c32 = 0.8 is used as
the wavelet filter coefficients.

B. RESULTS
The denoised image of figure2a is shown in figure9 and
the denoised image of figure2b is shown in figure10. One
image is a typical bright target, and another image is a typical
dark target. The images are all selected at random in all the
processed images, and the results of all images are similar.

The comparison methods include histogram specification,
mean value filter, BP neural network, convolution neural
network(CNN) and our method. The Histogram specification
algorithm and the BP neural network algorithm are typical
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FIGURE 9. Cloud images processed by (a) Original image (b) Histogram adjusting (c) Mean Value filtering (d) BP neural network (e) Convolution neural
network (f) Ours.

TABLE 3. The measurements of the denoised images in figure9.

TABLE 4. The measurements of the denoised images in figure10.

methods that adjust the response coefficients k of the sensors.
The mean value filter algorithm reduces the stripe noise by a
constant convolution kernel and convolution neural network.
Ours are based on learning, especially as our method is also
an adaptive algorithm.

The measurements are in table3 and table4. According to
table3, table4, figure8, and figure9, the histogram specifi-
cation algorithm is of little use for variable stripe noise of

AGRI of FY-4A. BP neural network can reduce the stripe
noise, but the effect is not good enough to reduce all the
noise. Mean value filter is a low-pass filter, which reduces
the high-frequency noise in all the directions, so it can reduce
the stripe noise, but the image blurs. In all the methods,
algorithms based on learning greatly show their effectiveness.
The WSVODP of CNN and our method both become smaller
and the processed images demonstrate they are useful in
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FIGURE 10. Earth surface images processed by (a) Original image (b) Histogram adjusting (c) Mean Value filtering (d) BP neural network
(e) Convolution neural network (f) Ours.

FIGURE 11. Cloud detection (a) Using original image (b) Using processed image.

reducing stripe noise. However, the CNN algorithm needs
the characteristics of the images being trained, so the effect
is sometimes is good, and sometimes is not good enough.
Our method is not only based on learning, but it is also an
adaptive algorithm, so the effect is themost steady.WSVODP

is almost the smallest, especially as the process is mostly
along the horizontal direction with little, along the vertical
direction. This keeps the details of the image.

From the dataset, we chose many images with different
views at random and all the denoising results are shown
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FIGURE 12. Measurements for sequence images.

in appendix A. The result demonstrates that LAWF is very
useful in reducing variable stripe noise caused by different
SRF of the sensors.

C. APPLICATION
Cloud detection is a fundamental or first step to the applica-
tions of remote sensing images and it also plays a curial role
in the quantitative applications of FY-4A satellite observation
data. The cloud detection algorithm uses the 6.9µm-7.3µm
band to detect the middle layer cloud. Two cloud detection
images are shown in figure11; figure11a is the cloud detection
image at 3AM on Mar. 26 in 2018(UTC), figure11b is the
cloud detection image at 4AM on Mar. 26 in 2018(UTC).
At this time, the LAWF algorithm began work in the
operational system. It is obvious that the cloud detection
image using original image is very bad with many incorrect
Comb-type clouds appearing in the image, but there are no
wrong clouds in the cloud detection image using the denoised
image. Therefore, the proposed algorithm is very useful in
reducing variable stripe noise.

D. DISCUSSION
Sequence images are processed to monitor the stability of the
algorithm. The mean value of the image is the power of the
image, the variance of the image is the power distribution of
the image, and the variance of the noise image is the power
of the noise image. The curves of the three parameters are

shown in figure12, the mean value curves before and after
processing are nearly the same and the variance curves before
and after processing are nearly the same too. This means the
image power and the image power distribution hardly vary
after reducing the stripe noise. In another words, the wavelet
filter only reduces the digital number of high-power lines and
raises the digital number of low-power lines, but does not
change the total power.

According to the variance of the noise image, the power of
the noise image is very steady, which satisfies the character
of the noise. In another words, the LAWF algorithm is very
stable.

VI. CONCLUSION
After FY-4A was launched successfully, it was found that
obvious east-west stripe noise appears in the 6.9µm-7.3µm
images and this is ruinous to many applications such as
cloud detection. To confirm the reason of stripe noise in the
water vapor image, a new concept called Variance of DN
Probability is suggested and analysis based on the VODP
curve demonstrates that the reason is the different SRF of the
4 sensors.

For reducing stripe noise, a new learning adaptive wavelet
filter based on new measurement parameter WSVODP is
proposed. WSVODP is linked to the response of sen-
sors to a specific target. It is only sensitive to the
response difference, so it is good at determining the
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FIGURE 13. Denoising for different views.

filter coefficients. According to the experiment, WSVODP
indicates the most appropriate filter coefficients fast and
exactly. The measurements of the images and applica-

tion including cloud detection all prove that the proposed
wavelet filter is very good at reducing the variable stripe
noise.
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At last, a new process is designed based on the scanning
model of AGRI in order to avoid ringing artifact. This ensures
the high-quality images from the AGRI.

APPENDIX
See figure13.
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