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ABSTRACT Deviations or errors in power system branch parameters will seriously affect the effectiveness
of power system state estimation and subsequent advanced applications. In this paper, a local estimation
algorithm for the suspicious parameters of power network branches is proposed based on the state space
transformation. After the parameter detection process, a local estimation network is formed by setting the
suspicious branch as the searching center. According to the measurement type, the measurement equations
are established with branch parameters as state vector. Then, add the non-suspicious branch parameters in
the region to the measurement equation as pseudo-measurements to improve the measurement redundancy.
Finally, all suspicious parameters, including closely related ones, are identified simultaneously, and the
estimated correction values are worked out by multi-section statistical analysis. The identification method
is illustrated in the PMU and SCADA measurement systems. Considering that the voltage measurement in
the SCADA system cannot be directly applied, a fixed-point iteration scheme is proposed. The identification
process of the suspicious branch parameters is decomposed into two nested loop iterations. The validity of
the algorithm is verified on the IEEE 118-bus and 300-bus systems and the influence of measurement error
on the identification result is also discussed.

INDEX TERMS Parameter identification, state estimation, PMU measurement, SCADA measurement.

I. INTRODUCTION
The accuracy of power network branch parameters not only
directly determines the effectiveness of EMS analysis and
application software of power dispatching control center,
but also seriously affects the accuracy, reliability and econ-
omy of power dispatching control [1]–[3]. The traditional
method of network parameter identification is to add a few
suspicious parameters as state variables to state estimation
process [4]–[6]. However, the number of identifiable param-
eters that can be augmented is very limited and the accuracy is
not high. In recent years, a lot of new parameter identification
methods are emerging. Paper [7] summarizes the classifica-
tion of methods for estimating error parameters, describes
the main concepts behind each method, and points out the
feasibility and limitations of each method. Paper [8] presents
a hierarchical modeling method for parameter identification
of large-scale networks, which divides the state space into
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two levels. A parameter identification method based on
sensitivity is proposed in paper [9]. Paper [10] according to
the sensitivity relationship between the branch power flow
compensation component and the measurement residual,
a branch parameter identification method is proposed. How-
ever, the method must set many threshold values according
to the specific system. In paper [11], [12], Lagrange identifi-
cation method is proposed. This method can get good iden-
tification result with one error parameter, but it is difficult to
deal with multi-bad correlation measurement and parameter
errors effectively. Paper [13] points out the shortcomings of
using single measurement section and improves the method
to multi-measurement section detection and identification.
Paper [14] improves this method by using sparse technique,
which greatly improves the calculation efficiency and can be
applied to large networks. Paper [15] based on the normalized
Lagrange multiplier, a fast parameter identification method
similar to bad data identification is proposed, which over-
comes the shortcomings of traditional augmented estimation
method, such as complicated code and large amount of
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calculation. Paper [16] presents a multi-input multi-output
process method, which can use continuous or dispersed state
space variables and impedance transfer function to obtain the
estimation model and discusses the measurement noise. For
the case of multiple bad data, paper [3] uses the distributed
parameter model to construct nonlinear state estimation for
localization, and the influence of shunt capacitance is fully
considered. Paper [17] introduces a parameter identification
method through fault recording data of protective devices.
Through a screening model, the method has a good accuracy
in identifying asymmetric line parameters. With the wide
application of PMU measuring devices, its measuring accu-
racy is further improved, which provides a new way to detect
and identify the branch parameters of power grid through
PMUmeasurement. Paper [18] points out that it is impossible
to detect the parameters of single edge cut set branch without
PMUmeasurement or identify the parameters of double edge
cut set branch. This article describes themethod of finding the
single edge and double edge cut set branches in large power
systems. Paper [19] shows where PMU should be installed to
ensure the detectability and identifiability of the parameters.
Paper [20] and [21] proposed a method of state estimation by
adding PMU measurements to SCADA based system. The
former uses normalized Lagrange multipliers, and the latter
uses normalized residual for detection.

For the process of suspicious parameter detection, this
paper applies the method in paper [11] and focuses on the
identification of erroneous parameters by using measurement
data without gross errors. Aiming at the problem that the
existing identification methods have low redundancy and are
difficult to deal withmulti-branch parameter errors, this paper
follows the idea of state space transformation in paper [21]
but uses the local area network parameter estimation instead
of the single-branch estimation. By taking the branch param-
eters as the state vector, this method can be applied to identify
multiple closely related suspicious parameters. The measure-
ment equations are established according to different mea-
surement types and the pseudo-measurement of the trusted
parameters. In addition, considering that SCADA measure-
ment system has no time scale, the sampling time of PMU
measurement and SCADA measurement in the real system is
difficult to achieve complete consistency. Therefore, the two
measurement systems are discussed separately in this paper.

II. CALCULATION MODEL OF PMU MEASUREMENT
SYSTEM
A. BRANCH CURRENT EQUATION
1) CURRENT MEASUREMENT EQUATION OF TRANSMISSION
LINE BRANCH
The adopted pi equivalent model of transmission line is
shown in Fig. 1. For easy operation, line parameters are
represented by branch conductance gij, susceptance bij and
the shunt susceptance to ground yij.
Considering that it is easier to realize linear state estimation

by using Cartesian coordinates, the measurement equations

FIGURE 1. Pi model of transmission line.

in PMU system are established in their Cartesian form.
Assuming the index of this branch is r . Set the branch
parameters as state vector and regard the node voltage of the
two boundary nodes as known quantity. The corresponding
branch current measurement equation of the left side can be
expressed as:

[
Re(İij)
Im(İij)

]
=

[
(ei − ej) −(fi − fj) −fi
(fi − fj) (ei − ej) ei

] gijbij
yij

+v (1)

where ei, fi and ej, fj are the real and imaginary parts of
voltage phasor U̇i and U̇j,Re(İij) and Im(İij) are the real and
imaginary parts of the left side current phasor measurement,
v is the measurement error vector.

The branch current equation of the right side has the same
form like (1) and only i and j need to be exchanged. Simplify
these branch current measurement equations as block matrix:

ILr =

[
I (i,j)Lr
I (j,i)Lr

]
=

[
H(i,j)
Lr

H(j,i)
Lr

]
xLr = HLrxLr (2)

2) CURRENT MEASUREMENT EQUATION OF TRANSFORMER
BRANCH
Assuming the index of this branch is s and the parameters are
also represented by their admittance form, which is shown
in Fig.2. Due to the excitation branch has little impact on
the power network analysis, the excitation branch parameters
gT + jbT can be treated as a reliable parameter. The trans-
formation ratio K is obtained from the measurement of the
tap, which belongs to the measurement parameter so it’s also
regarded as a trusted parameter.

FIGURE 2. Calculation model of transformer.

The current equation of the transformer branch on the left
side can be expressed in rectangular coordinates by setting
gij, bij as state vector, and regarding the node voltage of the
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two boundary nodes as known quantity:[
Re(İij)− eigT − fibT
Im(İij)− figT + eibT

]
=

[
(ei − kej) −(fi − kfj)
(fi − kfj) (ei − kej)

] [
gij
bij

]
+ v (3)

The corresponding branch current equation of the right side
is:[
Re(İji)
Im(İji)

]
=

[
−k(ei − kej) k(fi − kfj)
−k(fi − kfj) −k(ei − kej)

] [
gij
bij

]
+v (4)

Equation (3) and (4) can be simplified by block matrix:

ITs =

[
I (i,j)Ts − IGTs

I (j,i)Ts

]
=

[
H (i,j)
Ts

H (j,i)
Ts

]
xTs = HTsxTs (5)

For the three-winding transformer, the node voltage of the
neutral point cannot be obtained directly from the measured
data because PMU measurement devices cannot be installed
at the neutral point. In addition, the low-voltage side of the
three-winding transformer is generally not equipped with
PMU measurement either. So, it may cause some regions
cannot be observed when regarding branch parameters as the
state vector and the parameters cannot be identified. In order
to avoid the unobservable area affecting the application of the
algorithm, the traditional voltage state estimation based on
PMU measurement is processed before parameter detection
and identification. After that, the voltage estimation value can
be used for the node without PMU voltage measurement.

B. NODE INJECTION CURRENT EQUATION
In PMU measurement system, there are some zero-injection
current nodes with very high precision. The characteristic of
these nodes is that there is no generator or load directly con-
nected to them. For the zero-injection node that all branches
connected to it is installed with PMU measurement, the KCL
equation of this node can be added to the measurement equa-
tion to improve the measurement redundancy.

For one of zero-injection node k , its zero-injection current
equals to the sum of the current of the transmission lines and
transformers which are connected to it, that is:

0 =
∑
a∈A

H (k,·)
La xLa +

∑
b∈B

H (k,·)
Tb xTb (6)

where set A and B respectively represent line branch sets and
transformer branch sets connected to node k .

C. PSEUDO MEASUREMENT OF BRANCH PARAMETER
After the detection process, the non-suspicious parameters of
transmission lines and transformers can be used as pseudo
measurement and can be added to measurement equations:

XR = XmR + v (7)

III. PARAMETER DETECTION PROCESS BY LAGRANGE
MULTIPLIER METHOD
A. STEPS OF LAGRANGE MULTIPLIER PARAMETER
DETECTION METHOD
The main idea of Lagrange multiplier detection method is
to add parameter errors as zero equality constraints to the
conventional state estimation model. Its main steps can be
described as follows [11]:

1) Use the conventionalWLSmethod to estimate the node
voltage.

2) Calculate the Jacobian matrix with parameters as state
vector and calculate the normalized Lagrange multi-
plier vector for the network parameters according to the
corresponding formula and the state estimation results
obtained in step 1).

3) If the maximum value of all normalized Lagrange
multipliers λNmax is less than the given threshold, it is
considered that there are no suspicious parameters in
the network. Otherwise proceed to step 4).

4) Regarding the parameters corresponding to the largest
normalized Lagrange multiplier as suspicious parame-
ter, use the identificationmethod to identify andmodify
it, and then return to step 1).

B. PROCESS FOR MULTIPLE SUSPICIOUS PARAMETERS
Considering that the conventional Lagrange multiplier
method detects the parameters one by one, if there are mul-
tiple bad parameters in the same local area which are closely
connected with electricity, the estimation and identification
of one of the branches will be affected by the nearby error
parameter branches, whichwill lead to the increase of the esti-
mation error. Hence, the following strategy has been adopted:

1) According to the results of Lagrange multiplier detec-
tion method, the trusted parameter set T used in identi-
fication is processed dynamically.

2) After the process of parameter detection and identifi-
cation one by one, the previously revised parameters
are put into the suspicious parameter set S, the other
parameters are put back into the set T. Then the param-
eters set S are identified again. If multiple parameters
in set S appear in the same local area, these suspicious
parameters are identified and corrected at the same
time.

The process of parameter detection and identification can
be described in detail by the flow chart shown in Fig.3.

IV. LOCAL NETWORK PARAMETER IDENTIFICATION
PROCESS FOR PMU MEASUREMENT SYSTEM
A. FORMING LOCAL PART NETWORK
It is the measurement in the near area of the suspicious branch
that determines the identification accuracy and the measure-
ment in the remote area has little impact on the identification
result. However, if the parameters are identified according to
the whole network, the result will be probably affected by the
bad data of the measurements in remote area, which will lead

91722 VOLUME 7, 2019



H. Zhang et al.: Identification of Power Network Branch Parameters Based on State Space Transformation

FIGURE 3. Flow chart of the parameter detection and identification
process.

to the failure of identification. Hence, the local identification
scheme is used in this paper.

After finding out the suspicious parameters through detec-
tion process, a local power network can be formed to do the
identification process

If the two boundary nodes of the suspicious branch don’t
have zero injection constraint, this branch is taken as the
local calculation area. Besides, take the branch containing
the suspicious parameter as searching center, and search for
other branches connected to the two boundary nodes. Then,
select the branchwith branch currentmeasurement and regard
the new searched nodes as boundary nodes. Finally, add the
corresponding measurements to the measurement equation.
It should be noticed that the zero injection constraints on
the boundary nodes gained by the last search cannot be
used.

Parameter identification in the local area has these fol-
lowing advantages: First, it can isolate other bad data out-
side the region to avoid its impact on parameter estimation.
Second, the problem of non-observability caused by no cur-
rent measurement at both ends of the suspicious branch
can also be solved by using the zero-injection constraint.
In addition, the computational efficiency will be improved
because the computational area is relatively small and the
measurement equation is linear.

After forming the calculation area, the non-suspicious
branch parameters in this region are added to the measure-
ment equation as pseudo equation to improve the measure-
ment redundancy and identification accuracy.

B. STATE ESTIMATION WITH PARAMETERS AS STATE
VECTOR
According to the types of measurements and branches,
assuming that there are r transmission lines and s transform-
ers in the local area, the measurement equations of the system

can be expressed as:

z=


IL
IT
0
xRL
xRT

=

HL

HT
HJL HJT
HRL

HRT


[
xL
xT

]
+ v=Hpxp+v (8)

where HL = diag(HL1,HL2 · · · ,HLr),HT = diag(HT1,

HT2, · · · ,HTs), xL = (xTL1, x
T
L2, · · · , x

T
Lr)

T , xT =

(xTT1, x
T
T1, · · · , x

T
Ts)

T ,HJL and HJT are block matrixes
corresponding to zero-injection measurements, and can be
formed according to (6). xRL and xRT represent the non-
suspicious parameters of the transmission lines and trans-
formers in the local area respectively. For each row of matrix
HRL and HRT , only the columns corresponding to the non-
suspicious parameters are 1, and the rest elements are 0.

Consider (8) as a normal measurement system:

z = Hpxp + v (9)

where z is the measurement vector,Hp is the Jacobian matrix
of parameter, xp is the parameter vector.
Since the measurement equations are linear, the WLS

method can be used to estimate the branch parameters. The
objective function is:

min J(x) = (z−Hpxp)TR−1(z−Hpxp) (10)

The linear state estimation solution of (10) is:

xp = 6−1HT
pR
−1z (11)

where 6 is the gain matrix which refers to HT
pR
−1Hp.

For multi-section data, the measurement information of
each section is read one by one. First, establishing the mea-
surement equations of the current section according to (8).
Then, the suspicious parameter estimated value of this section
is calculated by (11). Finally, the average value of the esti-
mated values gained from each measurement section is taken
as the final recommended estimated value of the suspicious
parameter.

C. ALGORITHM FLOW CHART OF PMU MEASUREMENT
SYSTEM
V. CALCULATION MODEL OF SCADA MEASUREMENT
SYSTEM
A. BRANCH POWER EQUATION
1) POWER MEASUREMENT EQUATION OF TRANSMISSION
LINE BRANCH
Referring to the ideas in PMU system, and considering that
the polar coordinate system can reduce the modification
of the existing program, the power flow equations of the
transmission line shown in Fig. 1 can be expressed in their
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polar form:
Pij
Qij
Pji
Qji



=


U2
i − UiUj cos θij −UiUj sin θij 0
−UiUj sin θij −U2

i + UiUj cos θij −U2
i

U2
j − UiUj cos θij UiUj sin θij 0
UiUj sin θij −U2

j + UiUj cos θij −U2
j


×

 gijbij
yij

+ v (12)

where Pij,Pji,Qij andQji are active and reactive power of the
branch respectively.

If the index of the transmission line branch is r , then (12)
can be simplified by block matrix:

SLr =

[
S(i,j)Lr
S(j,i)Lr

]
=

[
H (i,j)
Lr

H (j,i)
Lr

]
xLr = HLrxLr (13)

2) POWER MEASUREMENT EQUATION OF TRANSFORMER
BRANCH
Similarly, for the transformer branch shown in Fig. 2, remove
the power of the excitation branch:
Pij
Qij
Pji
Qji



=


U2
i − KUiUj cos θij −KUiUj sin θij
−KUiUj sin θij −U2

i + KUiUj cos θij
K 2U2

j − KUiUj cos θij KUiUj sin θij
KUiUj sin θij −K 2U2

j + KUiUj cos θij


×

[
gij
bij

]
+ v (14)

If the index of the transformer branch is s, then (12) can be
simplified by block matrix:

STs =

[
S(i,j)Ts
S(j,i)Ts

]
=

[
H (i,j)
Ts

H (j,i)
Ts

]
xTs = HTsxTs (15)

B. NODE INJECTION POWER EQUATION
When calculating the Jacobian matrix of parameters, it can be
noticed that for each specific branch, the Jacobian elements
are exactly the same as those in branch power measurement,
and their values are not related to other branches. Assuming
xkp represents one of the branch parameter connected to node
k and the index of this branch is n. The Jacobian element can
be calculated by:

∂SJk
∂xkp

=
∂Skp
∂xkp

(16)

FIGURE 4. Flow chart of PMU measurement system.

where SJk refers to the active or reactive injection power of
node k , Skp refers to S

(k,p)
Ln or S(k,p)Tn which depends on the type

of the branch.
Therefore, the calculation of the injection measurement

Jacobian elements is to search the branches connected to
the node one by one. For each branch, use (12) or (14) to
calculate the value according to the branch type and fill in
the corresponding column of the Jacobian matrix. After this
search, the other columns of this row are filled with 0.

VI. LOCAL NETWORK PARAMETER IDENTIFICATION
PROCESS FOR SCADA MEASUREMENT SYSTEM
A. ESTABLISHING MEASUREMENT EQUATIONS IN LOCAL
PART NETWORK
Different from the forming scheme in PMU system, a larger
local network is needed to obtain more accurate node voltage
values. For each new boundary nodes gained from the last
search, search for other branches connected to them again.

During the searching process, the branch with branch
power measurement is selected, and the branch with node
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injection power measurement that can replace its branch
power measurement is also selected. However, it is still nec-
essary to remove the power injection measurement of the
boundary nodes gained from the final search. Then, add the
non-suspicious parameters to the measurement equations to
obtain the form which is similar to (8):

SL
ST
SJ
xRL
xRT

 =

HL

HT
HJL HJT
HRL

HRT


[
xL
xT

]
+ v (17)

For the measurement system of (17), its WLS state estima-
tion iteration format is:

xkp = xk−1p +6−1p (uk , xk−1p ) ·HT
p (u

k , xk−1p )

·R−1 ·
[
z− h

(
uk , xk−1p

)]
(18)

where6p(uk , xk−1p ) refers toHT
p (u

k , xk−1p )R−1Hp(uk , xk−1p )
Unlike the PMUmeasurement system, the voltage phasor u

in SCADA system cannot bemeasured directly, so the voltage
phasor in (18) is an unknown quantity. In order to extended
the identification method to SCADA system, a fixed-point
iterative scheme is constructed.

First regard u as an implicit function of the branch param-
eter xp:

uk = f (xk−1p ) (19)

Regard (19) as a conventional state estimation with voltage
as state vector, and solved it through iteration:

um = um−1 +6−1u (um−1, xk−1p ) ·HT
u (u

m−1, xk−1p ) · R−1

·[z− h(um−1, xk−1p )] (20)

where Hu is the Jacobian matrix of voltage,6u(um−1, xk−1p )
refers to HT

u (u
m−1, xk−1p )R−1Hu(um−1, xk−1p ).

Regard the convergence result of (20) as uk and put (19)
into (18):

xkp = xk−1p +6−1p (f (xk−1p ), xk−1p ) ·HT
p (f (x

k−1
p ), xk−1p )

·R−1[z− h(f (xk−1p ), xk−1p )] (21)

Thus, the fixed-point iteration scheme for xp can be
obtained by two nested iterations. During each round of
iteration, the conventional state estimation with voltage as
state vector is done first, which is the inner iteration. After
convergence, the estimated values of voltage amplitude and
phase angle of each node in the local area are obtained. With
this result, the outer layer iteration is carried out, that is,
the iterative solution of the parameters. Repeat such an iter-
ative process until the difference between the two iterations
is less than the precision demand. At this time, the value of
the suspicious parameter in the result is taken as the estimated
value of this measurement section.

FIGURE 5. Flow chart of SCADA measurement system.

B. ALGORITHM FLOW CHART OF SCADA MEASUREMENT
SYSTEM
VII. SIMULATION RESULTS
A. SIMULATION SYSTEM
Because the exact parameters of the actual system are not easy
to obtain, IEEE 118-bus and 300-bus systems are selected for
testing in this paper.

Considering the complex sources of measurement errors
in practical systems, this paper regards measurement errors
as random variables obeying normal distribution according
to the theoretical assumptions of traditional WLS estima-
tion method. Based on the power flow results, the different
degrees Gaussian white noise with normal distribution is
added to simulate the measurement error.

In addition, the subsequent examples assume that the mea-
surements at all buses and branches are available except for
special purposes.
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TABLE 1. Detection and Identification result of IEEE 118-bus and 300-bus system.

TABLE 2. Comparison result of the reactance of transmission line.

B. PMU MEASUREMENT SYSTEM
1) SIMULATION RESULT ON IEEE 118-BUS AND 300-BUS
SYSTEM
Based on the power flow data of IEEE 118-bus system, add
0.2% Gauss white noise as measurement error, and set the
reactance of branch 126 to 0.02424, which is 120% of its
original value. After detecting and identifying according to
the flow chart shown in Fig. 3 and Fig. 4, the case 1 in
Table 1 shows the calculation results and CPU time. And the
local power network obtained is shown in Fig. 6.

FIGURE 6. Formation of local part network.

Similarly, the reactance parameter of branch 53 in IEEE
300-bus system is set to 120% of the original value, and the
case 2 in Table 1 shows the corresponding calculation results
and CPU time.

For the running time shown in Table 1, since the parameter
identification process is carried out in a local area, its CPU
time is related to the size of the local area but not to the scale
of the whole network.

2) COMPARISON WITH SINGLE BRANCH IDENTIFICATION
SCHEME
For the identification part of [21], the similar idea is used,
but it only takes the measurement of suspicious branch itself.
It does not use zero-injection measurement, and no reliable
parameter is added to the measurement equation either. The
measurements of different sections are put together to process
state estimation.

TABLE 3. Identification results of multiple suspicious parameters.
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TABLE 4. Comparison result of the reactance of transmission line with bad data.

Select some branches in IEEE 118-bus system, which has
zero-injection measurement. Set their reactance parameters
to 120% of the original values respectively. Under the same
measurement noise level, the identification results are listed
in Table 2 using the method in [21] and the method proposed
in this paper.

The test results show that the proposed method is superior
to the single-branch identification method in most cases.
In addition, the test results of different power flow levels
indicate that the estimation accuracy of the two methods are
almost unaffected by the power flow level.

3) IDENTIFICATION OF MULTIPLE SUSPICIOUS BRANCHES
Set the parameters of two electrical connected branches in
IEEE 118-bus system to 120% of their original value at the
same time. After the identification process shown in Fig. 4,
the results obtained are shown in Table 3.

From the identification results, it can be noticed that the
identification method proposed in this paper is also effective
for the multi-suspicious branch parameters.

4) SITUATION OF SUSPICIOUS BRANCH MEASUREMENTS
COTAINING BAD DATA
Based on 2), a 30% error is set at the current measurement
of the suspicious branch in the first measurement section.
Then, use two methods to get the identification results shown
in Table 4.

The identification results show that if the measurement
of suspicious branch contains bad data, it will be a greater
impact on the method of only using single branch measure-
ment. However, if the local part network scheme is adopted,
it will be some robustness against bad data.

5) SITUATION OF SUSPICIOUS BRANCH WITH ZERO
INJECTION MEASUREMENT ONLY
When there is no current branch measurement at the suspi-
cious branch, the identification method in [21] doesn’t work.
However, if the both ends of the branch are zero injection
nodes, the branch parameter can be identified by forming a
local area mentioned before.

Take branch 94 as an example. Add 0.2% Gaussian white
noise to simulate the measurement error and remove the
current measurements from its both ends. The identification
results are shown in Table 5.

TABLE 5. Identification result of the reactance of branch 94.

6) INFLUENCE OF MEASUREMENT CONFIGURATION ON
IDENTIFICATION ACCURACY
Based on 1), remove the PMU measurements of node
81 shown in Fig. 6. and the identification result of branch
126 is listed in Table 6.

TABLE 6. Identification result of the reactance of branch 126.

Compared with the identification results in Table 1, it can
be seen that the estimation error increases slightly. This is
due to the lack of voltage measurement at node 81. Firstly,
the voltage amplitude and phase angle of node 81 need to be
estimated, and then the parameter is estimated with the esti-
mated voltage. However, the branch parameter information
is used in estimating the voltage, so the error of the reactance
parameter of branch 126 will cause a slight deviation of the
estimated voltage.

7) INFLUENCE OF MEASUREMENT ERROR ON
IDENTIFICATION ACCURACY
In order to study the influence of current measurement and
voltage measurement errors on the identification algorithm,
the control variable method is used for test.

Based on the standard power flow data, only different white
Gaussian noise is added to the voltage measurement, and
10 random measurement section data are generated at the
same noise level. All current measurements are based on
the exact values calculated by the power flow results. Under
different noise levels, the reactance of branch 7 are identified
by using the single branch identification method in [21] and
the local network scheme in this paper respectively. The
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variation of the relative error of the identification result is
shown in Fig. 7.

FIGURE 7. Comparison of the influence of voltage measurement noise.

Noticed that paper [21] combines all measurement section
data to process joint estimation. In this paper, the local area
method is compared with two cases which uses section-by-
section estimation and joint estimation respectively. In Fig. 7,
the local area method 1 refers to the result of section-by-
section estimation scheme, and the local area method 2 refers
to the result of joint state estimation scheme.

The test results indicate that the estimation accuracy with
parameters as state vector is greatly affected by the volt-
age measurement noise. When the error of voltage mea-
surement is small, the identification accuracy of using local
area measurement and using single-branch measurement is
very close. With the increase of voltage measurement error,
the identification error of the three methods increases rapidly
and the robustness of single-branch method is better. In the
estimation model with parameters as state vector, the voltage
measurement noise is similar to the parameter error in the
traditional estimation model with voltage as state vector.
The more branches with larger parameter errors, the greater
impact will be on the estimation results. Through this kind
of comparison, it is not difficult to see that the single branch
method is less affected by voltage noise because it uses fewer
voltage measurements. In general, the parameter estimation
method based on parameters as state variables is applied on
the premise that the voltage measurement has high accuracy.

The test of robustness against current measurement noise
is similar to that of voltage. Only different levels of current
noise are added to the measurement, and all voltage measure-
ments are based on power flow results. The variation of the
relative error of the identification result by three methods is
shown in Fig. 8.

FIGURE 8. Comparison of the influence of current measurement noise.

The result shows that with the premise of very accurate
voltage measurement, the accuracy of current measurement
has little effect on the three methods, and the robustness of
the local area method with zero injection measurement is
better than that of the single-branchmethod.When the current
measurement error is small, the identification accuracy of the
three methods is also very close. With the gradual increase
of the current measurement error, the identification error of
the three methods increases slowly, and the robustness of
the local area method using section by section scheme is
obviously superior.

C. SCADA MEASUREMENT SYSTEM
1) SIMULATION RESULT ON IEEE 118-BUS SYSTEM
Similar to the PMU measurement system, add 0.2% Gauss
white noise as measurement error based on standard power
flow data, and set the reactance parameters of some branches
to 120% of their original value respectively. The identifica-
tion results are shown in Table 7.

TABLE 7. Identification result of the resistance of the branch.

Similarly, set the reactance parameters of the transformer
branches to 120% of their original value, and the identifica-
tion results are shown in Table 8.
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TABLE 8. Identification result of the reactance of the transformer branch.

2) IDENTIFICATION OF MULTIPLE SUSPICIOUS BRANCHES
Set the reactance of the two branches which are closely
electrical connected with each other to 120% of their original
value at the same time. After the identification process shown
in Fig. 5, the results can be gained in Table 9.

TABLE 9. Identification results of multiple suspicious parameters in local
power network.

It can be noticed that in SCADA system, either single sus-
picious branch or multi-suspicious branches can be identified
successfully by the proposed method.

3) INFLUENCE OF MEASUREMENT ERROR ON
IDENTIFICATION ACCURACY
Similarly, the control variable method is used to test the
robustness of voltage amplitude measurement, branch power
measurement and node injection measurement. The results
show that in SCADA measurement system, when other kind
of measurements are quite accurate, the single kind noise has
little effect on the identification results.

Therefore, the robustness is tested by adding noise to all
measurements. Taking the reactance parameter of branch 4 as
an example, the Gauss white noise with different levels is
added to all measurements simultaneously. And the variation

of the relative error of the identification result is shown
in Fig.9.

FIGURE 9. Influence of the measurement noise on identification results.

VIII. CONCLUSION
In this paper, a method of static parameter identification
of power network based on state space transformation is
proposed. The specific application steps of this method in
PMU and SCADA measurement system are illustrated in
details, and the effectiveness of this method is verified by
IEEE standard system. However, this method requires high
quantity and accuracy of PMU measurement devices, espe-
cially the voltage measurement error has a great impact on
the identification results. The test results show that only
when the voltage measurement error is controlled within 1%,
the reliable identification results can be obtained.
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