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ABSTRACT In this paper, we propose an efficient control chart for monitoring small shifts in a process
mean for scenarios where the process variable is observed with a correlated auxiliary variable. The proposed
chart, called an auxiliary homogeneously weighted moving average (AHWMA) chart, is a homogeneously
weighted moving average type control chart that uses both the process and auxiliary variables in the form
of a regression estimator to provide an efficient and unbiased estimate of the mean of the process variable.
We provide the design structure of the chart and examine its performance in terms of its run length properties.
Using a simulation study, we compare its run length performance with several existing methods for detecting
a small shift in the process mean. Our simulation results show that the proposed chart is more efficient in
detecting a small shift in the process mean than its competitors. We provide a detailed study of the chart’s
robustness to non-normal distributions and show that the chart may also be designed to be less sensitive to
non-normality. We give some recommendations on the application of the chart when the process parameters
are unknown and provide an example to show the implementation of the proposed new technique.

INDEX TERMS Auxiliary variable, average run length, control chart, parameter estimation, robustness.

I. INTRODUCTION
Monitoring programs are designed to detect unnatural
changes in process variables for a wide variety of applica-
tions, particularly in industrial and manufacturing settings.
Control charts are popular tools for tracking processes of
interest, ensuring they are kept in control by monitoring
essential quality characteristics [1]. To date, several univari-
ate control charts have been proposed in statistical process
control (SPC) literature; they are classified into (i) memory-
less control charts and (ii) memory-type control charts for
monitoring large and small-to-moderate shifts in the pro-
cess, respectively. For example, the Shewhart chart is a
memory-less control chart that uses only the current process
information and not the past behavior of the process. It is
very effective for detecting large shifts in the process mean
(i.e., δ ≥ 2, where δ is the size of the shift in standard
deviation units [2]). The homogeneously weighted moving
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average (HWMA) control chart by [3] is a memory-type chart
proposed for efficient monitoring of small (i.e., δ ≤ 0.5) to
moderate (i.e., 0.5 < δ < 2) shifts in the process mean.
Other memory-type charts include the EWMA chart by [4],
the CUSUM chart by [5], and the mixed EWMA-CUSUM
chart proposed by [6].

These univariate classical charts are widely used in most
of today’s industries; their attractiveness is motivated by the
simplicity of their construction, implementation, and inter-
pretation, as well as their prompt detection of small, moder-
ate, or large shifts in a process mean. These techniques have
been implemented by [7] to monitor the quality of garments
produced on the sewing floor, by [8] to monitor and control
steam boiler generation for vacuum degassing processes, and
by [9] to evaluate critical control point hygiene data. Also,
see [10]–[13] for some other industrial applications of these
classical charts.

Several applications of classical charts focus on moni-
toring the process in situations where the process variable
is independent of other variables; however, in some cases,
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the process variable may be observed along with another cor-
related auxiliary variable. The concept of using supplemental
information to provide an efficient estimate of a population
parameter is popular in the field of survey sampling [14].
Several researchers have studied and recommended the use
of auxiliary variables in the monitoring of a process variable
of interest, and have proposed a variety of different control
chart tools for this purpose.

For example, [15] proposed a regression control chart,
while [16] proposed a cause-selecting control chart.
Recently, [17] proposed a Shewhart-type chart in the form of
a regression-based estimator, called aVr chart, for monitoring
process variability. He compared the proposed Vr chart with
some other existing charts (specifically, R, S and S2 charts for
the same purpose), and showed that the Vr chart was effective
in detecting moderate to large shifts in the process variability
under certain conditions on the correlation between the pro-
cess variable and auxiliary variable. Similarly, a Shewhart-
type control chart using a regression-based estimator
(Mr chart) for monitoring a process mean (proposed by [18])
was shown to be more powerful at detecting shifts in the pro-
cess mean. This work was later extended to an EWMA chart
for detecting small-to-moderate changes in the process mean
under different correlation structures between the process and
auxiliary variables (see [19]–[24]).

Here, we propose a more efficient control chart for
monitoring the process mean when the process variable is
observed along with an auxiliary variable. The proposed
chart, called an auxiliary homogeneously weighted moving
average (AHWMA) chart, is an HWMA-type control chart
that uses both the deviation of the processmean from its target
value (known apriori or estimated from historical reference
samples), as well as a regression estimator for the process
mean provided through its relationship (or estimated relation-
ship) with an auxiliary variable with which it is known to be
correlated.

The rest of the article is organized as follows: in Section II,
we outline the structure of the chart. Section III compares the
AHWMA chart (run length) performance in detecting a small
shift in the process mean with several other existing charts.
Section IV gives a detailed study of the chart’s robustness
to non-normality. We give recommendations regarding the
application of the chart when the process parameters are
unknown in Section V. Section VI also provides an example
to demonstrate practical implementation of the chart, fol-
lowed by a conclusion and discussion in Section VII.

II. THE AHWMA CONTROL CHART
Consider a control chart based on observations zij of the
quality characteristics Zij, for each of i = 1, . . . ,m time-
points and j = 1, . . . , n sampling units per time-point (i.e., n
is the sample size). Assume that these quality characteristics
(Zij) are identically distributed as normal random variables
with a known in-control mean (µZ ) and standard deviation
(σZ ), i.e., Zij ∼ N (µZ , σ 2

Z ) and represents the main pro-
cess variable. The HWMA statistic, Hi (in Equation (1)), at

time-point i, gives a specific weight to the current sample
and the remaining weight is equally distributed among the
previous samples, and is given by:

Hi = wz̄i + (1− w)¯̄zi−1 (1)

where z̄i is the sample average for the ith sample, and w is
a smoothing constant (also called the sensitivity parameter)
selected such that 0 < w ≤ 1. The HWMA structure becomes
the Shewhart plotting structure whenever w = 1. ¯̄zi−1 is the
average of the sample means of all of the previous samples
(i.e., up to and including the (i − 1)th sample), and is given

by ¯̄zi−1 =
1
n

∑i−1
k=1 z̄k . The mean and variance of the HWMA

statistic in Equation (1) are given by µH = µZ , and

σ 2
Hi =


1
n
w2σ 2

Z if i = 1

1
n

(
w2σ 2

Z + (1− w)2
σ 2
Z

i− 1

)
if i > 1

(2)

where µH = µZ and σ 2
Z are the mean and variance of the

normally distributed random variable Z [3].
Let an auxiliary variable, Yij, be correlated with the main

variable of interest, Zij, with correlation ρ. We assume
the observations of Zij and Yij are observed in pairs
from a bivariate normal distribution, given by (Z ,Y ) ∼
N2(µZ , µY , σ 2

Z , σ
2
Y , ρ), where N2 is the bivariate normal

distribution, and µY and σ 2
Y are the population mean and

variance of Y , respectively. We assume the linear relation-
ship between the variables can be modeled using linear least
squares obtained by adjusting the process mean at time i,
zi, to reflect its known relationship with the auxiliary variable.
This yields the regression-informed estimator (i.e., Ri) for the
process mean given by:

Ri = z̄i + b(µY − ȳi) (3)

where b (given as b = ρσZ
σY

) is the slope of the regression
line; given as the change in the process variable, Z , due to a
unit change in the auxiliary variable, Y [14]. The mean and
variance of R are given as:

µR = µZ and σ 2
R =

σ 2
Z

n
(1− ρ2), (4)

respectively.
Using Equation (3), the plotting statistic (Ti) of the

AHWMA chart is given as:

Ti = wRi + (1− w)R̄i−1 (5)

where w is the smoothing parameter of the chart (selected
such that 0 ≤ w ≤ 1), Ri is the regression-informed esti-
mate of the process variable, given in Equation (3) for the
ith sample, and R̄i−1 is the average of the sample means
of all of the previous samples (i.e., up to and including the
(i − 1)th sample) of the plotting statistic, and is given as

R̄i−1 =
1
n

∑i−1
k=1 Rk . The mean and variance of the plotting
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statistic in Equation (5) are given as µH = µZ (also called
the center line of the AHWMA chart), and

σ 2
Ti =


(1− ρ2)

n
w2σ 2

Z if i = 1

(1− ρ2)
n

(
w2σ 2

Z + (1− w)2
σ 2
Z

i− 1

)
if i > 1,

(6)

respectively. The time varying lower (Li) and upper (Ui) con-
trol chart limits of the plotting statistic given in Equation (5)
are given as:

Li =


µZ − CσZ

√
w2

n
(1− ρ2) if i = 1

µZ − CσZ

√(
w2

n
+

(1− w)2

n(i− 1)

)
(1− ρ2) if i > 1

(7)

and

Ui=


µZ + CσZ

√
w2

n
(1− ρ2) if i = 1

µZ + CσZ

√(
w2

n
+

(1− w)2

n(i− 1)

)
(1− ρ2) if i > 1,

(8)

respectively, where, C determines the width of the control
limits; the values of C and w are chosen to achieve a desired
in-control average run length (ARL) for the chart. ARL is
the average number of plotted samples on the control chart
before a shift is detected. We provide R-code [25] (in the
supplementarymaterial) which practitioners can use to obtain
the value of C , given w, that fix the in-control ARL of the
chart to a desired value. We adopted the ARL numerics
algorithm for the EWMA chart [26]; implemented in the
spc (R) package [27], to obtain an arbitrary start value (Cstart )
of the AHWMA chart limit, and used a binary search algo-
rithm to determine C for the chart.

III. PERFORMANCE ASSESSMENTS AND COMPARISONS
A. PERFORMANCE ASSESSMENTS
Here, we provide a comprehensive assessment of the
AHWMA chart in detecting a shift in the process mean in
terms of the chart’s ARL and standard deviation of run length
(SDRL). The value of the ARL when a process is in control
is denoted by ARL0, while ARL1 denotes the value of the
ARL when the process is out of control. SDRL is used to
determine the variation of the run length distribution for a
given value of shift. Similarly, SDRL0 and SDRL1 can be
defined as the SDRL for the in-control and out-of-control
process, respectively. When comparing two charts, the ARL0
is fixed to a specific value, and a chart having a smaller value
of ARL1 than another is said to be more efficient in detecting
the shift in the process [28]–[31].

To ensure a fair comparison of the AHWMA chart with
existing charts of the same ARL0, we examined the perfor-
mance of the chart with w ∈ {0.03, 0.05, 0.10, 0.25, 0.5,
0.75}, and the corresponding values of C that fix ARL0 to
500 are used, the R-code provided in the supplementary

material finds the value of C (for each value of w), that
fixes ARL0 to 500. We examined the ARL performance of
the chart under different correlation values between the pro-
cess and the auxiliary variables. Specifically, we considered
ρ ∈ {0.05, 0.25, 0.5, 0.75, 0.95}. The ARL values of the
AHWMA chart are given in Tables 1 - 5. In these tables,

δ is the size of shifts, and is calculated as δ =
n1/2|µZ − µ1|

σZ
,

where n is the sample size at each time i (here, we assume
n = 1 across i), and µZ and µ1 are the in-control and out-of-
control mean, respectively.

The main findings of the AHWMA chart (cf. Tables 1 - 5)
are:
• For fixed values of δ and ρ, the chart is more efficient
for smaller values of w. For example, where ρ = 0.05
(Table 1), when δ = 0.5, the values of the ARL1 when
w = 0.03 and 0.75 were 20.05 and 132.08, respectively.
Thus, the chart detects a shift in the process mean faster
when a small value of w is used.

• For fixed values of δ,w andC , the chart is more efficient
when large values of ρ are used. For example, whenw =
0.03, L = 2.272, and δ = 0.5, ARL1 values were 20.05
and 3.43 (in Tables 1 and 5) for ρ = 0.05 and ρ = 0.95,
respectively. Thus, increases in the correlation structure
between the process variable and the auxiliary variable
lead to an increase in the chart’s ability to detect a shift.

• The chart is ARL unbiased. That is, the ARL1 values
never exceed the corresponding ARL0 for any choice of
δ examined.

• As δ increases, the ARL1 and SDRL1 values approach 1
and 0, respectively, especially for large values of ρ; that
is, the charts detect large shifts promptly.

B. COMPARISONS
We provide detailed comparisons of the proposed AHWMA
chart with some existing control charts: the classical HWMA
chart by [3], the classical EWMA chart by [4], the classi-
cal CUSUM chart by [4], the auxiliary-based EWMA chart
(i.e., MXEWMA) by [19], and the auxiliary-based CUSUM
chart (i.e, AuxCUSUM2 by [22]), in terms of their ARL
values. The auxiliary-based EWMA and CUSUM charts are
also based on a regression estimator; they provide efficient
applications of the classical EWMA and CUSUM charts,
respectively, in those situations where the process variable
is observed along with a variable. For comparison with the
MXEWMA and AuxCUSUM2 charts, we considered three
different values of ρ: namely, ρ ∈ {0.05, 0.5, 0.95}. In all
cases, the charts’ parameters were set to values that fix ARL0
at 500. We provide the charts’ ARL results that optimized δ
at w ∈ {0.05, 0.1, 0.2}.
The results of the comparisons are provided in Table 6.

As shown on the table, the AHWMA chart outperformed the
classical CUSUM, EWMA and HWMA charts in detecting
shifts in themean, especially when ρ > 0.05. For fixed values
of w and ρ, the AHWMA chart was more efficient than the
AuxCUSUM2 chart, especially for small-to-moderate values
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TABLE 1. ARL and SDRL values of the AHWMA chart when the correlation between the variables is ρ = 0.05. The values of C are chosen to fix the chart’s
ARL0 to 500 for each chosen value of w .

TABLE 2. ARL and SDRL values of the AHWMA chart when the correlation between the variables is ρ = 0.25. The values of C are chosen to fix the chart’s
ARL0 to 500 for each chosen value of w .

of δ (i.e., δ < 2). For fixed values of w and ρ, the AHWMA
chart was less efficient than the MXEWMA chart in detecting
moderate-to-large shifts (i.e., δ > 0.5) in the process mean.
However, the AHWMA chart shows greater efficiency than
the MXEWMA chart in detecting small shifts (i.e., δ ≤ 0.5)
in the mean.

IV. ROBUSTNESS TO NON-NORMALITY OF THE CHART
The AHWMA chart described in Section II relies on the
assumption that the process variable and the auxiliary vari-
able are bivariate normally distributed. In practice, this
assumption does not always hold. Non-normality is not
a major concern with a large sample size because the
central limit theorem warrants that the sample mean will
be approximately normally distributed for any continuous

variables [32]. When n = 1, however, it is important to
check the sensitivities of control charts to departures from
normality [2]. We refer readers to [33]–[35], and [36] for
detailed studies on the robustness of the EWMA control chart
to non-normality.

Here, we investigate the robustness of the AHWMA chart
to non-normality. As mentioned by [33] ‘‘a control chart is
robust if its in-control run-length distribution remains sta-
ble (unchanged or nearly unchanged) when the underlying
distributional assumption(s) (e.g. normality) are violated’’.
Following previous investigators [33]–[37], we considered
a heavy-tailed bivariate distribution (the bivariate Student’s
t-distribution), and a skewed distribution (the bivariate
gamma distribution). We denote the bivariate t-distribution
with v degrees of freedom by t2(v). The probability density
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TABLE 3. ARL and SDRL values of the AHWMA chart when the correlation between the variables is ρ = 0.5. The values of C are chosen to fix the chart’s
ARL0 to 500 for each chosen value of w .

TABLE 4. ARL and SDRL values of the AHWMA chart when the correlation between the variables is ρ = 0.75. The values of C are chosen to fix the chart’s
ARL0 to 500 for each chosen value of w .

function of a bivariate t-distribution is given by

f (x) =
[0(v+ 2)/2]
0(v/2)vπ |6|1/2[

1+
1
v
(x− µ)T6−1(x− µ)

]−(v+2)/2
(9)

where x ∈ R2, µ = [µ1, µ2]T is the 2× 1 vector of location
parameters, 6 is a 2 × 2 positive-definite (or covariance)
matrix, v is the number of the degrees of freedom, and
0(n) = (n − 1)! for n = 1, 2, . . . . The mean vector and
covariance matrix are given as µ (if v > 1, else, undefined),
and

v
(v− 2)

6 (when v > 2, else, undefined), respectively.

We denote the bivariate gamma distribution with
shape parameter, α1p, and scale parameter, β1p, by
G2(α1p, β1p,6), where 1p is a column vector of ones of

size p = 2. The probability density function of the bivariate
gamma distribution is given as:

f (x) =
|6|−α

β2α02(α)
|x|α−3/2 exp

(
tr
(
1
β
6−1x

))
(10)

where α > 0 is the scale parameter, β > 0 is the shape
parameter, and 02 is the bivariate gamma function given
as 02(α) = π1/20(α)0(α − 1/2). See [38] and [39] for
detailed information on the bivariate gamma distribution and
its properties.

We studied the chart’s robustness under a large range
of degrees of freedom (v) for the bivariate t-distribution;
namely, v ∈ {4, 6, 8, 10, 15, 20, 30, 40, 50, 100, 1000}.
For the bivariate gamma distribution, without loss of gen-
erality, we considered the scale parameter, β = 1,
and a range of values of the shape parameter,
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TABLE 5. ARL and SDRL values of the AHWMA chart when the correlation between the variables is ρ = 0.95. The values of C are chosen to fix the chart’s
ARL0 to 500 for each chosen value of w .

i.e., α ∈ {1, 2, 3, 4, 5, 10, 50, 100, 1000}. Hence, we denote
the bivariate gamma distribution as G2(α), for short. The
ARL0 values of the chart for ρ ∈ {0.25, 0.5, 0.95}, and
w ∈ {0.03, 0.05, 0.25, 0.75} for the bivariate t and bivariate
gamma distributions are given in Tables 7 and 8, respectively.

The ARL0 results in Tables 7 and 8 are summarized below:

• For a fixed value of w, the ARL0 values of the bivariate
t-distributions are the same for all the correlation values
(i.e., ρZY = 0.25, 0.5, or 0.95) examined. This result is
due to the symmetry of the t-distribution.

• However, for a fixed value ofw, theARL0 of the bivariate
gamma distributions differ across all the values of ρZY
examined. Here, the chart appears to be more robust to
non-normality only for smaller values of ρZY .

• For both non-normal distributions, as expected,
the ARL0 value increases, and tends to converge to
the required nominal ARL0 of the AHWMA chart,
for large degrees of freedom (v) or larger values of
the shape parameter (i.e., α ≥ 50), especially when
w = 0.3 or 0.05 is used.

• Importantly, the chart’s ARL0 value is more robust
to non-normality only when a small value of w
(i.e., w = 0.03 or 0.05) is used. This implies that small
values of w (i.e., w = 0.03 and 0.05) are useful when the
underlying distribution is not normal.

Table 9 displays the ARL1 values for the AHWMA chart
under bivariate normal, t and gamma distributions for various
values of δ when w = 0.03, or 0.75, and ρZY = 0.25.
The results in Table 9 indicate that the chart’s ARL1 values
tend to approach values obtained for bivariate normal data
when a smaller value of w (i.e., w = 0.03) is used. For
example, when w = 0.03, v = 50, β = 50, and δ = 0.5,
the ARL1 for the AHWMA were 19.02 (normal distribu-
tion), 19.65 (t-distribution), and 19.18 (gamma distribution).
The percentage deviation of the ARL1 values obtained under

the t or gamma distributions from ARL1 values obtained
under normal distribution are 3.13% and 0.84%, respectively.
On the other hand, when w is large (i.e., w = 0.75), and
other parameters are unchanged (i.e., v = 50, β = 50,
and δ = 0.5), the ARL1 for the AHWMA under normal,
t and gamma distributions were 125.44, 118.63, and 68.10,
respectively; the percentage deviation of these ARL1 values
from obtained under the normal distribution were −5.43%
and−45.71% for the t and gamma distributions, respectively.

V. STEP-BY-STEP ALGORITHM FOR CONSTRUCTING THE
AHWMA CHART WHEN PARAMETERS ARE UNKNOWN
TheAHWMAchart in Section II was formulated based on the
assumption that the parameters associated with the process
variable and auxiliary variable are all known. However, these
parameters are generally unknown in practice and need to be
estimated. In this case, the regression model in Equation (3)
would be based on estimated parameters, and is given as:

R̂i = z̄i + b̂(µ̂Y − ȳi) (11)

where b̂ is the estimated slope of the regression line; given
as the estimated change in the process variable Z due to a
unit change in the auxiliary variable Y [14], and µ̂Y (µ̂Y =
1
m

∑m
i=1 Ȳi) is the unbiased estimate of the mean of the aux-

iliary variable (i.e., µY ). The estimated mean and variance

of R̂ are given as ¯̂R = µ̂Z , and S2R̂ =
σ̂ 2
Z

n
(1 − r2), where

r is the estimated value of the correlation size between the
variables, µ̂Z and σ̂ 2

Z are the unbiased estimates ofµZ and σ 2
Z ,

respectively. The µ̂Z and σ̂ 2
Z are calculated from a specified

set of sample values measured when the process was known

to be in control. They are given as µ̂Z =
1
m

∑m
i=1 Z̄i and

σ̂ 2
Z =

sp
c4,m

, where sp =

(∑m
i=1

∑n
j=1(Zij − Z̄i)

2

m(n− 1)

)1/2

,
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TABLE 6. ARL comparisons of the charts.

TABLE 7. ARL0 with bivariate t−distirbution.

and c4,m =
21/20

(
m(n− 1)+ 1

2

)
(m(n− 1))1/2

(
m(n− 1)

2

) is an unbiasing

constant [3], [40].

Using Equation (11), the plotting statistic for the AHWMA
control chart based on estimated parameters is given as:

T̂i = wR̂i + (1− w) ¯̂Ri−1 (12)
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TABLE 8. ARL0 with bivariate gamma distribution.

TABLE 9. ARL1 with bivariate t and gamma distributions.

The estimated mean and variance of the plotting statistic in
Equation (12) are given by µ̂T = µ̂Z , and

σ̂ 2
T̂i
=


(1− r2)

n
w2σ̂ 2

Z if i=1

(1− r2)
n

(
w2σ̂ 2

Z + (1− w)2
σ̂ 2
Z

i− 1

)
if i > 1

(13)

The upper and lower control limits for the (plotting statistic
given in Equation (12)) estimated time varying control chart

are given as:

L̂i =


µ̂Z − C ′σ̂Z

√
w2

n
(1− r2) if i=1

µ̂Z − C ′σ̂Z

√(
w2

n
+

(1− w)2

n(i− 1)

)
(1− r2) if i > 1

(14)

Ûi =


µ̂Z + C ′σ̂Z

√
w2

n
(1− r2) if i=1

µ̂Z + C ′σ̂Z

√(
w2

n
+

(1− w)2

n(i− 1)

)
(1− r2) if i > 1

(15)
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FIGURE 1. Application of the EWMA, HWMA, MX EWMA, and AHWMA charts.

whereC ′ determines the width of the estimated control limits.
Also, the estimated center line (CL) of the AHWMA chart is
given by:

ĈL = µ̂Z (16)

When the chart is based on estimated parameters, imple-
mentation occurs in two phases. In phase I (retrospective
phase), a historical reference sample is studied to estab-
lish the in-control state and to evaluate the stability of the
process [41], [42]. Once the in-control reference sample is
characterized, the process parameters are estimated from
phase I and control chart limits are obtained for use in
phase II. Phase II involves regular monitoring of the process.
If successive observed values obtained at the beginning of
Phase II fall within the in-control limits calculated from
Phase I, the process is considered to be in control. In contrast,
any observed values during Phase II that fall outside the

control limits indicate that the process may be out of control,
and remedial responses are then required [43], [44]. A shift
in a process parameter needs to be detected quickly so that
corrective actions can be taken as early as possible.

We give below a step-by-step algorithm to implement the
chart in phase I and phase II [3], [45].

• Phase I

1. Simulate m bivariate samples (Z ,Y ) each of size n
from the in-control bivariate (normally distributed)
process.

2. Calculate the samplemeans, (Z̄i, Ȳi), and the sample

variances (S2Zi, S
2
Yi), where S

2
Zi =

∑n
j=1(Zij − Z̄i)

2

(n− 1)
,

and S2Yi =

∑n
j=1(Yij − Ȳi)

2

(n− 1)
, for each sample

i = 1, 2, . . . ,m.
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TABLE 10. Calculation of the AHWMA chart statistic and its limits.

3. Repeat steps 1 and 2, many times, and compute
estimates for the means, (µ̂Z , µ̂Y ) and variances
(σ̂ 2
Z , σ̂

2
Y ). These are used to set the control limits in

phase II.
• Phase II

4. At each time i, simulate a bivariate sample (Z ,Y )
of size n from the process.

5. Compute the estimated regression estimator in
Equation (11), and use this to compute the chart’s
plotting statistic, T̂i, in Equation (12).

6. Use the estimated parameters from phase I (from
step 3 above) to construct the estimated control
limits given in Equation (14)- (15). Compared T̂i,
against these control limits.

7. If T̂i falls within the control limits, the process is
considered to be in control. Alternatively, if T̂i falls
outside the control limits, the process is declared to
be in an out-of-control state.

VI. ILLUSTRATIVE EXAMPLE
In this section, we provide an example to illustrate the imple-
mentation of the AHWMA chart, using the simulated dataset
provided in [19]. The data were obtained by simulating m =
20 bivariate samples, each of size n = 1, from (Z ,Y ) ∼
N2(µZ + δσZ , µY , σ 2

Z , σ
2
Y , ρ). The values of the parameters

used for the simulation were: µZ = 0, µY = 0, σ 2
Z = 1,

σ 2
Y = 1, ρ = 0.5, and δ = 0.5, where δ is the size of the shift

applied to the in-control mean, µZ , of the process variable of
interest, and ρ is the correlation between the process variable
and the auxiliary variable. The bivariate dataset is given in
the first two columns of Table 10. We examined the ability
of the AHWMA chart to detect a shift in the process variable
and compared this to the MXEWMA, the classical EWMA
and the HWMA charts. In all cases, the chart parameters:
w and C , were chosen to fix the ARL0 to 500. The parameters

for the classical EWMA and MXEWMA were w = 0.03
and C = 2.483 (see Table 6). For the classical HWMA
and AHWMA charts, we used w = 0.03 and C = 2.272
(see Table 6). We give the calculations for the AHWMA chart
in Table 10, and the results for all the control charts are shown
graphically in Figure 1.

The AHWMA chart detected the shift in the process mean
faster than any of the other methods. In particular, it detected
the shift after the 14th sample, whereas the MXEWMA chart
detected the shift after the 15th sample, and the classical
EWMA, and HWMA charts both detected the shift only after
the 18th sample.

VII. CONCLUSION AND DISCUSSION
We propose here a new efficient control-chart method, for
monitoring small shifts in the process meanwhere the process
variable of interest is correlated with and observed alongside
an auxiliary variable. Based on the homogeneously weighted
moving average, the proposed chart uses both the process and
auxiliary variable to form a regression estimator that yields
an efficient and unbiased estimate of the mean of the process
variable. We provided the design structure of the chart and
examined its performance in terms of its run length proper-
ties. Our simulation results showed that the chart detects a
shift in the process mean more rapidly than other methods.
Also, the ARL comparisons showed that the proposed chart is
more efficient than existing control charts used for the same
purpose, especially when interest lies in detecting a small
shift in the process mean. We provided a detailed study of the
chart’s robustness to non-normality. The chart’s ARL values
showed that the chart is more robust to non-normality when
a smaller value of w is used. In particular, when a small value
is chosen for the chart’s smoothing parameter (for example
w ≤ 0.05), the proposed chart can be designed to have an
in-control ARL that is reasonably close to the ARL for the
chart under a normally distributed process. We gave some
recommendations on the application of the chart when the
process parameters are unknown, and provided a step-by-
step algorithm to construct the chart for phase I and phase II
of SPC. Also, we applied the chart to a simulated dataset
and showed that it detected a small shift in the process mean
faster than other examined charts including EWMA,HWMA,
MXEWMA, and AuxCUSUM2 methods.We consider that the
effect of estimating parameters during phase I of the process
on subsequent performance of the AHWMA chart warrants
further study.
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