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ABSTRACT In many applications (e.g., anomaly detection and security systems) of smart cities, rare events
dominate the importance of the total information on big data collected by the Internet of Things (IoT). That
is, it is pretty crucial to explore the valuable information associated with the rare events involved in minority
subsets of the voluminous amounts of data. To do so, how to effectively measure the information with the
importance of the small probability events from the perspective of information theory is a fundamental
question. This paper first makes a survey of some theories and models with respect to importance measures
and investigates the relationship between subjective or semantic importance and rare events in big data.
Moreover, some applications for message processing and data analysis are discussed in the viewpoint
of information measures. In addition, based on rare events detection, some open challenges related to
information measures, such as smart cities, autonomous driving, and anomaly detection in the IoT, are
introduced which can be considered as future research directions.

INDEX TERMS Information measure, rare events, big data analytics, information theory, IoT, smart cities,
autonomous driving.

I. INTRODUCTION
It is predicted that by 2050, the urban population all over
the world is going to be doubled, which will rise up to
6.7 million people. With the rapid growth in the amount
of urban residents, cities bring in new opportunities, while
many new challenges come up, including environmental dete-
rioration, sanitation problem, traffic congestion and terrorist
attacks. In order to figure out these problems so that citizens
may enjoy a new daily life with security and convenience,
Internet of Things (IoTs) has been emerging as an effective
solution [1]–[5].

In IoTs, explosively increasing sensors and devices are
deployed to sense and collect different types of data,
e.g., states of moving cars, crossroads and subway tracks,
which drive us into a ‘‘big data’’ era. In order to make things
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smart, massive data has to bemined to find useful information
and knowledge. In this case, the key point lies in how to deal
with the observed data and dig out the hidden valuable infor-
mation [6]–[13]. To do so, a series of promising technologies
have been put forward such as statistical learning, computer
vision, signal processing and so on [14]–[20].

A. IMPORTANCE OF RARE EVENTS WITH
SMALL PROBABILITY
As a matter of fact, in some applications, the regular pat-
terns of systems’ or users’ behaviors are required to be
explored from common events that often occur, but for the
other applications, the rare events attract more attention than
those occurring with large probability. For example, in finan-
cial crime detection systems, only a few illegal identities
causing financial frauds indeed catch our eyes [21], [22],
which are more important from subjective consciousness.
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Besides, in intrusion detection systems, only a few number
of security alarms should be detected and handled [23]–[27].

So far, a lot of works have investigated networking intru-
sion and reliable communications to protect IoTs from being
attacked [28]–[38], which show that the rare events should
be focused on for their special value in IoTs. By resort-
ing to IoTs or other monitoring devices [39], smart city is
becoming a timing fashion in city planning, construction,
management and operations [40]–[45]. In this case, the rare
events observed from monitoring systems also contain more
significant features in the numerous data, which can pro-
vide effective references for transportation management, city
planning and public safety.

Due to the fact that anomalous events may be hidden in
big data [46]–[50], it is significant to process rare events
or the minorities in objective detection. With regard to the
autonomous driving in highways, it is crucial to detect
the unexpected moving obstacles over lanes (which can be
viewed as rare events). It is reported that around 150 people
die from road hazards in American traffic accidents every
year [51], [52]. It is beneficial to develop autonomous driving
cars based on anomalous objective detection in many aspects
such as reducing traffic congestion and accidents, improving
energy efficiency and ensuring transportation safety. Actu-
ally, there are some researches trying to design intelligent
vehicle systems to avoid dangerous driving events with small
probability [53]–[59].

In brief, rare events have special values in many newly
rising fields such as IoTs, smart city, and autonomous driving.
Actually, the approaches for small probability processing are
investigated from many perspectives in big data era.

B. INFORMATION THEORY FOR RARE EVENTS
In the viewpoint of information theory, information mea-
sures could have a seat on the table of rare events pro-
cessing in big data. According to conventional information
theory, the uncertainty of probability distributions can be
characterized by information measures such as Kolomogorov
complexity, Shannon entropy, Renyi entropy, and mutual
information. These measures are also applicable to the infre-
quent or abnormal events [60], [61]. By using information
measures to analyze the complexity of the different classes in
big data, rare events would be recognized and handled [62].
For instance, an objective function of distribution was pro-
posed based on factorization to detect the subsets with smaller
probability [63]. Additionally, as an effective information
distance, the relative (or differential) entropy is also applied
to outlier detection [64]. Although there are special scenarios
where the above approaches can be used, it is evident that they
just focus on the large probability elements or subsets to deal
with rare events.

From the perspective of small probability elements, there
are also some technologies in the framework of statistical
mechanics, such as the large deviation approaches and the
measure of concentration of rare events [65], [66]. In these
cases, traditional information measures are explained and

extended by aiming at minority subsets processing. These
technologies could be also used in many applications such as
secure lossy compression and anomaly detection [67], [68].

In the framework of data distribution processing, the infor-
mation divergence as a kind of information measure is an
intersection of information theory and big data analytics.
In fact, information divergences can be adopted to measure
the distance between two distributions with small probability
elements. Currently, information divergences have been used
in many applications involved with rare events such as faulty
detection [69], key frame selection [70] and image recogni-
tion [71], [72]. Therefore, how to use informationmeasures to
cope with small probability events becomes more interesting.

C. THE MOTIVATIONS AND CONTRIBUTIONS
The purpose of this paper is to integrate the works on
importance analysis of small probability events and clarify
the relationship between small probability cases with more
importance and information processing including the corre-
sponding information measures and applications. Essentially,
this paper is not a technical work but a survey to summarize
some classical theories and approaches of information pro-
cessing based on small probability events so that the related
literature can be discovered in a logical and reasonable way.

As far as the contribution of this work is concerned, a theo-
retical framework with a common fundamental form of mes-
sage importance measure is constructed to show the core idea
of importance of small probability events and characterize its
mathematical representation. Moreover, similar to Shannon
entropy, an information processing architecture is proposed
from the perspective of message importance to combine
the message importance compression, transmission loss and
receiver preprocessing, which may broaden the extension of
conventional information theory. In this case, some novel
source coding strategies and information distortion analysis
are obtained in an information system based on the impor-
tance of small probability events. For big data analytics, some
related technologies including measures estimation, dimen-
sion reduction and correlation analysis are also unified into an
architecture of information system to process important small
probability events. This provides a reasonable data processing
procedure for the small probability events hidden in massive
samples. Finally, some modern and challenging applications,
such as smart cities, autonomous driving, and IoTs, may
adopt the information measures based on the message impor-
tance as novel criterions or metrics for rare events detection.
In this regard, we present some schemes with information
measures for the corresponding applications.

D. ORGANIZATION
The organization of the rest parts of this paper is summa-
rized as follows. In Section II, we analyze some theories
and technologies of information measures in the scenarios
where rare events have valuable sense. In Section III, we dis-
cuss some applications based on information measures for
rare events, including information compression, transmission
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FIGURE 1. The interpretation of information importance measures focusing on rare events.

and preprocessing. Section IV first introduce some effective
estimations of distributions and their functionals. Then, infor-
mation coupling, directed information and some applications
involved with rare events are introduced to reduce the dimen-
sion of big data and analyze the data causality or correlation
from the perspective of information theory. In Section V,
some challenging research directions for information mea-
sures are presented based on the rare events detection. At last,
we conclude the paper in Section VI.

II. INFORMATION THEORIES AND TECHNOLOGIES FOR
MEASURING RARE EVENTS
Information measures play important roles in not only tra-
ditional information theory but also numerous applications
of big data, such as detection, classification and cluster-
ing [73], [74]. In fact, by facilitating the small probability
elements, some information measures focusing on rare events
are proposed to settle the big data problems such as anomaly
detection, feature selection and pattern recognition [75]–[77].
In these cases, rare events can be extremely eye-catching,
in good agreement with the fact that the vital part of the infor-
mation attracts more attention than the perfect information.
Consequently, in this paper, we merely focus on the cases
where small probability events, referred to as rare events,
contain importance of information.

To characterize the importance of rare events mathemati-
cally, Message Importance Measure (MIM) [78]–[82], fixed-
parameter MIM [83] and NMIM (Non-parametric MIM) [84]
are proposed, whose details are summarized in the Table 1.
We also analyze the characteristics of these information
measures and compare their similarities and differences as
follows.
i) Intrinsic sense of the information measures: The com-

mon fundamental form for the information measures (includ-
ing MIM, fixed-parameter MIM and NMIM) can be given by

L(p) = log
n∑
i=1

V(pi), (1)

where p is the given distribution which satisfies p =
(p1, p2, ..., pn), and the components V(pi) of MIM, fixed-
parameter MIM and NMIM are respectively given by

VMIM (pi) = pie$ (1−pi), (2a)

V$=1/pmin (pi) = pie
1−pi
pmin , (2b)

VNMIM (pi) = pie
1−pi
pi , (2c)

where $ denotes the coefficient of importance. Actually,
these values are just the same as the intuitive notion of impor-
tance value, which can be viewed as the invariant of system,
referred to as self-scoring value. It implies that larger weights
are allocated to the small probability events than those with
large probability. Furthermore, Fig. 1 is shown to describe the
above informationmeasures visually. Specifically, by treating
important events from the probabilistic viewpoint, the status
of the atypical sets with small probability is highlighted,
which can match many scenarios such as anomaly detection,
anti-terrorist activities, forecasting abnormal weather, classi-
fication and clustering for binary events.
ii) Comparison of the information measures in the

Bernoulli case: Here, the comparison of some different
importance measures with respect to the Bernoulli distribu-
tion (p, 1− p) is shown in Fig. 2.
It illustrates that the parameters of MIM can make great

differences on the characterization for the Bernoulli distribu-
tion. While, the non-parametric MIM (namely NMIM) and
the parametric MIM (namely fixed-parameter MIM) both
have similar performance on measuring small probability
elements. In brief, the details of comparison are listed as
follows.
• Due to the fact that theMIMcan be influenced by param-
eter $ , there is no worry about beyond the computing
ability of computers.

• If the probability elements are small enough, MIM
amplifies small probability not as greatly as NMIM and
parametric MIM.
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TABLE 1. Summary of information measures for rare events.

FIGURE 2. The comparison of different message importance measures
with respect to the Bernoulli distribution (p, 1− p).

• In the adjacent region of uniform distribution, the para-
metric MIM can perform better to amplify the smaller
probability than NMIM.

III. APPLICATIONS IN MESSAGE PROCESSING
With respect to big data in IoTs, it is significant to design
efficient strategies for message processing including infor-
mation compression and transmission [86]. In particular, con-
sidering rapidly exploring data [87], we never need to store
the whole data samples as before. Besides, since data traffic
is exponentially increasing, it is a challenge for transmission
resources (including links or networks) to carry so many data
pockets [88]. Hence, the data processing techniques about

lossy compression and transmission are investigated in many
aspects [89]–[92]. In fact, information theory is a funda-
mental theory for data compression and transmission [93].
To be specific, it provides the optimal coding strategy and
the tight bounds for the lossless and lossy compression [94].
Moreover, it also proposes information measures including
relative entropy, Renyi divergence and f-divergence to guide
information transmission and analysis [95], [96].

From the perspective of rare events, a message processing
architecture based on message importance measure is pre-
sented as Fig. 3, whose details are listed as follows:
i)As for the information source, it is significant to maintain

the rare events regarded as important message and lose some
normal events. In this case, it is feasible to make use of the
importance measures to design lossy compression schemes.
To this end, the reconstruction error weighted by message
importance can be minimized to achieve the lower bounds
of code length.
ii) From the viewpoint of transmission for message impor-

tance, the core idea is that the receiver can gain more amount
of information from the source while maintaining the afford-
able loss of message importance. In this case, the change of
information measure focusing on rare events can be used to
characterize the upper bound of information importance loss.
iii) In the information sink, it is possible to use some

information divergences to distinguish two adjacent distri-
butions containing rare elements. This can be regarded as a
preprocessing for received data.

In terms of the specific analysis of the message process-
ing architecture, three possible applications of information
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FIGURE 3. Message processing architecture from the viewpoint of rare events.

TABLE 2. Summary of message processing applications.

measures are summarized in the Table 2, whose main details
and interpretations are given as follows.
• Information Compression: Although standard compres-
sions are proposed to reduce some redundant informa-
tion in some degree [94], there still exists large size
of data that contains some unimportant message. Fur-
ther compression is considered to abandon the less vital
message based on the probability of events, which may
be achieved by using the compression scheme based
on NMIM [84]. In this case, lower bounds of the code
length li (with the limited total code length Cn) is
obtained in the sense of message importance (based on
the function of reconstruction error per unit importance,
denoted byW (li)).

• Information Transmission: As far as big data is con-
cerned, the dominant part of message with more impor-
tance is more favored rather than the redundant message.

In the traditional information transmission, some distor-
tions or errors may have more disastrous impacts on the
important messages than worthless ones. For instance,
based on this characteristic, the strategy of unequal error
protection (UEP) codes has been proposed as a reliable
transmission approach [97]–[99]. From a new viewpoint
of rare events, data transmission with the constraint of
message importance loss is discussed to guide the design
of information transmission [85]. In particular, the upper
bound of message importance loss φ(X , X̂ ) (based on
NMIM operator Lnon(·)) is given when there exists a
kind of distortion d(x, x̂) (such as Hamming distortion)
between a source X and a distortion source X̂ .

• Information Preprocessing: Considering the informa-
tion preprocessing, information divergences play vital
roles in discriminating different distributions (namely
information identification). That is, the information
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FIGURE 4. Comparison for different information divergences (between the probability
distributions P and Q where P = (p,1− p) and Q = (0.4,0.6)) including the MI divergence
(with the parameter $ = 2,1,0.8), KL divergence and squared Euclidean distance.

divergence can be used as a test tool for outlier detec-
tion [73], [74], [100]. In particular, an information diver-
gence between two distributions, denoted by F(·), can
classify the pending sample sequences X (i) into the
normal sequence setMt or the outlier sequence setMf .
In fact, the message identification (MI) divergence has
its advantage on outlier detection [73], whose definition
is given by

D$ (p ‖ q) = log
n∑
i=1

pie

(
$

pi
qi

)
−$, (3)

where the adjustable coefficient $ is positive, as well
as p and q are two finite probability distributions in
the same support set. Here, we also take two Bernoulli
distributions P and Q as examples to compare different
information divergences shown in Fig. 4. It is illus-
trated that MI divergence described in the Eq. (3) is
more sensitive to distinguishing two distributions than
the Kullback-Leibler (KL) divergence and the squared
Euclidean distance when the distribution P is closed to
the distribution Q [73].

Remark 1: i) For information compression: As for the data
compression based on information measures for rare events,
the common core idea is that the code length mainly depends
on the message importance of events. That is, the code size is
mostly assigned to the small probability events. In this case,
it is applicable to use a smaller part of storage to save much
more important information. ii) For information transmis-
sion: Compared with traditional communication, the trans-
mission for big data has its own characteristics such as larger
volume of data, a wide variety of events, and the value of
information. Thus, it is sensible to preserve more information
importance while reducing redundant information. In fact,
the NMIM can be used as an efficient information impor-
tance measure to design rules for communication systems.
iii) For information preprocessing: As for the information

preprocessing, it is possible to analyze the performance of
different divergences on distinguishing distinct distributions.
Particularly, the MI divergence is a superior divergence in
discerning a typical distribution from its adjacent distribu-
tions caused by rare events.

IV. APPLICATIONS IN DATA ANALYTICS OF IoTs
In the view of rare events analytics of IoTs, it is required to
reduce the dimension as well as estimate the distributions and
their functionals efficiently. That is, we should take methods
to save more computing resources and improve the efficiency
of data utilization [101]–[103]. Moreover, it is also necessary
to analyze the relationships among rare events so that we
can dig out more valuable information [104]–[106]. From
the perspective of information theory, some approaches are
discussed to deal with numerous information sources and
do some data mining. Considering the relationship between
information theory and big data analytics, we design an
architecture based on information measures for rare events
as shown in Fig. 5 whose details are summarized as follows:
i) Focusing on rare events: Rare events with small proba-

bility may contain more valuable information in some appli-
cations such as outlier detection and emergency alarm. In this
case, it is necessary to define the rare events in a specific
scenario at the first step.
ii) Selecting an informationmeasure:An appropriate infor-

mation measure can be adopted to characterize the distribu-
tion and highlight the importance of rare events. This is a
mathematical representation of small probability events in the
sense of the message importance.
iii) Dimension reduction and efficient estimation: As for

the sample processing, it is essential to extract themost signif-
icant information with low dimension from the original data
with high dimension. Especially, in the case of rare events,
we can use low dimension samples and estimate the selected
informationmeasure to decrease the computation complexity.
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FIGURE 5. Architecture of data analytics based on message importance of rare events.

TABLE 3. Summary of literature on the efficient estimations of distribution and its functional.

iv) Analyzing relationships: As for big data processing,
it may be efficient to analyze the relationships among rare
events by use of information measures.

In the architecture of data analytics for rare events,
the information measures are discussed in the Section II.
We shall specifically introduce some applications about how
to use information measures in big data analytics as follows.

A. EFFICIENT ESTIMATION OF INFORMATION MEASURES
From the perspective of big data, it is quite essential to
have efficient methods to estimate information measures,
especially in the case of considerably large alphabet sizes.
Whereas, the conventional estimation approaches can not
work well [107]–[110], since that the rare events can not
be observed accurately when the sample number is not very
large. It is also worth investigating asymptotics with high
dimension, especially when the number of samples is not
much larger than the dimension. As a result, here lists some
related works in the Table 3 whose details are described as
follows.

• Estimation of Distributions: Based on some risk func-
tions, different distribution estimations are investigated
which play crucial roles in the information measure
estimation [111]–[115]. For example, in the case that the
alphabet size S increases with the number of samples n,
a minimax estimation is discussed under the `1 loss
(which is defined by EP

∑S
i=1 |pi − p̂i|). This estimator

has better performance on non-asymptotic upper and
lower bounds of risk than maximum likelihood estima-
tor (MLE).

• Estimation of functionals of distribution: When the
unknown support size S is not smaller or even larger than
the samples number n, a general methodology based
on the minimax estimator is presented to estimate the
functionals of distribution [116], [117]. Compared with
the minimax estimator with non-smooth and smooth
regions, the MLE is exactly sub-optimal in the large
support [118]–[121].

• Entropy Estimation: As a widely used information mea-
sure, entropy is worth estimating especially. An adaptive
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TABLE 4. Performance of minimax estimator and MLE and the comparison [117], [121].

estimation framework is adopted to achieve the min-
imax rates in spite of the unknown support size S
of distribution [122]. Besides, the estimator based on
the best polynomial approximation also has the same
performance [123]. Moreover, an inferior estimator is
constructed by use of Dirichlet prior smoothing, which
is similar to MLE but not as good as the above
two [124]. In addition, an ensemble of plug-in estima-
tors with weights is proposed to protect the results of
estimation from decaying with the increase of sample
dimension [125].

• Information Divergences Estimation: As a class of infor-
mation measures, information divergences such as KL
divergence, Hellinger distance and `2-divergence can
be estimated in some similar ways [126]–[131]. In this
regard, an augmented plug-in estimator and a methodol-
ogy with the combination of polynomial approximation
and plug-in rule are constructed to achieve the consis-
tent estimator and the minimax rate-optimal estimator
respectively [132]. Moreover, an optimally weighted
ensemble estimator is also designed, which has good
performance in the cases of high dimension [133].

In fact, the above classifications are based on the work
areas of estimation. While, there exist some common crite-
rions which can unify these estimators [117], [121], whose
details are discussed as follows.
i) The maximum risk: Essentially, the MLE of distributions

or their functionals complies with the maximum risk criterion
which is given by

sup
P∈MS

E{Derror (F(P)− F̂)}, (4)

where Derror denotes a kind of error metric such as the one-
norm and two-norm, F(P) is a function of the distribution
P whose support is MS and F̂ is the estimation for F(P).
In general, the MLE of distributions can be regarded as the
fundamental plug-in estimator which is given by

p̂i =
Xi
n
, Xi =

n∑
j=1

I{Zj=i}, (1 ≤ i ≤ S), (5)

where Zj (j ∈ {1, 2, ..., n}) denotes the sample value, n is
the sample number and S is the support size. Furthermore,
we can substitute p̂i into the functionals including F(P) = P
(namely the distribution itself) to obtain the estimation for

the functionals of distribution. Moreover, as another example
of MLE, the Dirichlet prior smoothing estimator is similar to
plug-in estimator in the case of maximum squared risk, which
is given by

P̂D =
n

n+
∑S

i=1 αi
P̂+

∑S
i=1 αi

n+
∑S

i=1 αi

α

n+
∑S

i=1 αi
, (6)

where S is the alphabet size, P̂ is an empirical distribution,
and α = (α1, α2..., αS ) denotes the parameter vector which is
adjustable. Besides, the ensemble of plug-in estimators with
weights also belongs to MLE, which is defined by

F̂e =
∑
l∈l̄

λl F̂l, (
∑
l∈l̄

λl = 1), (7)

where F̂l is the plug-in estimator or its function, l̄ =
{l1, l2, ..., lL} is a set of parameters and λl denotes the weight
value. In this estimator, the weights can be adjusted by using
different optimal rules flexibly.
ii) The minimax risk: In terms of the minimax estimator

for distributions or information functionals, it is based on
the criterion minimizing the maximum risk of MLE which
is given by

inf
F̂

sup
P∈MS

E{Derror (F(P)− F̂)}, (8)

in which the notations are the same as those in the Eq. (4).
As an instance of the minimax estimator, an approach based
on the polynomial approximation rule is proposed, which
treats the estimation problem as two cases of ‘‘small pi’’ and
‘‘large pi’’ (pi denotes the probability element). In the case
of ‘‘small pi’’, the best polynomial approximation is used to
guide the estimation, which is given by

P∗K (x) = arg min
P∈9K

max
x∈�
|g(x)− P(x)| (9)

where g(x) is the objective function, 9K is the set of polyno-
mials with order no more than K on the domain�. Moreover,
in the case of ‘‘large pi’’, the estimation can be obtained by
use of a kind of MLE such as the plug-in estimator.

Moreover, in order to see the reliability of the esti-
mators based on these criterions (including the minimax
risk or the maximum risk of MLE), it is necessary to
compare the corresponding performance in some specific
cases. Here, the results of estimating some classical infor-
mation measures are summarized in the Table 4 in which
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H (P) = −
∑S

i=1 pi ln pi denotes the Shannon entropy,
Hξ (P) =

∑S
i=1 p

ξ
i (ξ > 0) is the dominant part of Renyi

entropy, S is the support size, n is the samples’ number, and
the notation ak . bk denotes supk

ak
bk
≤ A (A is a constant).

It is remarkable that the performance of the minimax estima-
tor with n samples is equal to the MLE with n ln n samples
in the case of small probability estimation, which is called
‘‘effective sample size enlargement’’.

B. DIMENSION REDUCTION BASED ON
INFORMATION COUPLING
In the era of big data, there exists a big buzzword, ‘‘dimension
reduction’’, which is involved in many fields such as machine
learning, data mining, computer vision, etc. In order to solve
this problem, more and more new techniques are being devel-
oped including principal component analysis, independent
component analysis and regression analysis [134]–[137].
Besides, lots of applicable algorithms enable these new devel-
oped approaches to be used inmany applications [138], [139].
However, these approaches are all designed from the view-
point of the space of data rather than the intrinsic information
flow.

On the contrary, the information coupling based on infor-
mation measures is discussed to construct a framework for
information-centric data processing. In fact, it is a novel view
to analyze the information exchange process of relative data
nodes by use of information coupling.

Mathematically, information coupling can be formulated
in a fundamental communication scenario, where the input X
contributes to the output Y through a transition probability
matrix WY |X . In a typical communication system, a message
U can form a Markov chain U → X → Y with the input X
and the output Y , where the message U is encoded into the
input X . In order to design an efficient encoding scheme, it is
usual to maximize the mutual information I (U;Y ) depend-
ing on the distribution PU and the conditional distributions
PX |U=u. Similarly, the information coupling is to maximize
the objective function I (U;Y ) constrained by a small mutual
information I (U;X ). The constraints satisfy that the condi-
tional distributions PX |U (·|u) are neighbors of the marginal
distribution PX . That is, the information coupling [140] can
be given by

max
U→X→Y

1
n
I (U;Y ), (10)

s.t.
1
n
I (U;X ) ≤ σ, (10a)

1
n
||PX |U=u − PX ||2 = O(σ ),∀u, (10b)

where the parameter σ is small enough.
In practice, the solution of the optimization problem about

information coupling can provide a theoretical optimal result
for dimension reduction from the perspective of information
correlation. This can guide us to approximate the optimum
by using low-dimensional information to represent the high-
dimensional data. Specifically, suppose that there exists a

hidden source sequence xn = {x1, x2, ..., xn} following the
distribution PX , an observed sequence yn = {y1, y2, ..., yn}
following the distribution PY , and a transfer matrix WY |X
between the input X and output Y . In order to infer the hidden
source X from Y , we usually require a sufficient statistic
of yn containing the whole information of xn. While, it is
difficult to compute the statistic in the cases of the high
dimensional structures of xn and yn. To reduce the dimension,
we would like to acquire a statistic from the observation
yn to characterize a certain feature of xn. According to the
information coupling, a feature U in xn is the most effi-
ciently extracted from the observed data yn in terms of the
maximized mutual information I (U;Y ), which corresponds
to the solution of this optimization problem. This efficient
statistic based on the feature U , can be considered as a low-
dimensional label containing themost significant information
of the high-dimensional data, which implies an information
theoretic method to reduce dimension [141].
Remark 2: Actually, it is not difficult to see that the

information coupling is an efficient tool for statistics, which
can extract the significant information from high dimensional
original data. This can correspond to the goal of the dimen-
sion reduction and feature extraction for the rare events,
whichmay useφ(U;X ) = L(pU )− L(pX ) to replace I (U;X )
to take the message importance transfer quantifying.

C. DIRECTED INFORMATION FOR
RELATIONSHIP ANALYSIS
Directed information derived from information theory seems
to be a commonly used approach, which can iden-
tify the interplay and causality between two stochastic
processes [142]–[147]. Furthermore, it is also rational to
adopt this approach to analyze the stochastic processes with
rare events. Some details of directed information are given as
follows.

In order to solve the causality problem in information
systems [148], [149], an information measure, referred to as
‘‘directed information’’, is defined as

I (Xn→ Y n) =
n∑
i=1

I (X i;Yi|Y i−1), (11)

where Xn = (X1,X2, . . . ,Xn) and Y n = (Y1,Y2, . . . ,Yn)
are independently random sequences, while Xi and Yi (i =
1, 2, ..., n) are random variables, and I (·) denotes the mutual
information.Moreover, due to the fact that the upper bound of
the feedback channel capacity can be obtained bymaximizing
the normalized directed information [150], [151], another
formulation of directed information is given by

I (Xn→ Y n) =
n∑
i=1

I (Xi;Y ni |X
i−1,Y i−1). (12)

which is obtained by use of the slide information
(X i−1,Y i−1) [152].

Furthermore, this information measure has been adopted
in some applications of relationship analysis, such as the
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computational biology with intrinsic causality [153], [154],
the prediction of rate distortion [155] and the data com-
pression with causal side information. Besides, the directed
information provides an upper bound for the growth rates of
optimal portfolios, which can also tightly bound the horse
race gambling [142]. Notably, directed information can also
measure the best error exponent for hypothesis testing which
may be involved with the rare events identification.
Remark 3: Directed information is an efficient information

measure which can interpret the causality transfer between
two variables. Actually, this measure provides a significant
tool to analyze the causal side information. Besides, it also
plays an crucial role in dealing with the inference problem
involved with causal influence factors. Similar method for the
extension of MIM is necessary, which may bring some new
insights on the massage importance discussion.

D. RARE EVENTS DETECTION FOR PROBABILITY
DERIVATION PROCESS
In the data mining of IoTs, some scenarios such as urban
abnormal pattern recognition as well as fire early warning
and detection, can be treated as probability derivation pro-
cesses which may be characterized and analyzed by means
of information theory. It is worth noting that rare events
detection lies in the intersection of the probability deriva-
tion process and the practical applications related to infor-
mation measures. This problem has been investigated from
many perspectives. In particular, the commonmethods of rare
events detection are proposed based on the specific models or
frameworks [156]–[160], such as Bayesian network anomaly
detection, anomaly pattern classification in images, as well as
normal behaviors definition for data points or groups.

As a typical probability derivation process, urban abnormal
events detection is investigated widely, which may provide
advices for governments and communities in smart city plan-
ning and management. In this regard, spatio-temporal data or
multiple data sources are used to detect rare events of urban
traffic states, such as mining uncommon trajectory of people,
detecting road traffic anomalies [161], as well as identifying
anomalous regions or locations [162]–[164]. The essential
idea of these approaches is to construct a conditional prob-
ability model based on Hidden Markov process or Maximum
Likelihood rule to detect or predict anomalous events. That is,
the underlying distribution of rare patterns can be obtained in
the probabilistic models which are constructed based on the
different patterns of spatio-temporal data.

Moreover, message measures based on similarity and cor-
relation also play crucial roles in identifying urban abnormal
events [165], [166]. For instance, L−∞ distance is adopted as
a kind of similarity measurement to evaluate the degree of
anomalous traffic [167]. Besides, KL divergence is also com-
monly used as a metric to measure correlation [168], [169].
In video surveillance systems of urban traffic states, when a
small video clip is represented as a histogram of multi-set
bag of codewords by using Fourier based trajectory feature

descriptor [168], KL divergence is applied to classify the
pending video clips into the normal or abnormal ones. The
corresponding metric based on KL divergence is given by

DKL(Q||P0)− DKL(Q||P1) = ln
K−1∏
i=1

(p(vi|c = 1)
p(vi|c = 0)

)qi
, (13)

where DKL(·) denotes the operator of KL divergence,
p(vi|c = 1) and p(vi|c = 0) are probability elements from the
codewords of normal video clips and abnormal ones (the cor-
responding distributions are P1 and P0), qi denotes the prob-
ability element from the codewords of pending video clips
(the corresponding distribution is Q). Furthermore, a spatio-
temporal detector for the mixture of dynamic textures (MDT)
model is proposed, in which the center-surround saliency
detection is based on the KL divergence between feature
responses and events class labels [169]:

DKL(PX |c||PX )
.
=

∑
i

{
πci log

∑Kc
j πcj e

(−DKL (piX |c||p
j
X |c))∑K0+K1

j ωje
(−DKL (piX |c||p

j
X ))

}
,

(14)

where piX |c are class-conditional densities (based on the class

c ∈ {0, 1}), pjX are sample densities, πcj and ωj are param-
eters, Kc (c ∈ {0, 1}) denotes the number of samples in the
corresponding class c.

Similar to the KL divergence, the message measures men-
tioned in Section II may be also efficient in rare events
detection for spatio-temporal data and may perform better in
some special data sets, which can be investigated further in
probability derivation processes.
Remark 4: Somemessagemeasures reveal the similarity or

correlation for probability derivation processes. Specifically,
these measures can be regarded as criteria for urban abnor-
mal events mining. In general, it is promising to make good
use of novel information measures to extend the strategies of
rare events detection.

V. FUTURE CHALLENGES
Considering future research directions, new approaches and
challenging applications can promote the development of
information measures with respect to rare events. By com-
bining big data analytics, an architecture of rare events pro-
cessing based on information measures is constructed shown
in Fig. 6. In particular, we can apply big data analytics and
information measures in the challenging scenarios involved
with rare events, including smart cities, autonomous driving,
and detection in IoTs.

Actually, in the above applications, the common technique
playing a core role is rare events detection. Here, we design a
technology framework in the viewpoint of information mea-
sures to help to detect rare events as shown in Fig. 7. To be
specific, assume there exist two different kinds of message
sequences in the data set, that is, the data set consists of two
message sources X and Y with different distributions. In this
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FIGURE 6. Architecture of small probability events (namely rare events) processing based on information measures for
challenging applications.

FIGURE 7. The framework for rare events detection.

case, the message sequences from the message source Y are
considered as the rare events. The goal of our framework
is to detect message sequences of Y . Our core idea is to
make use of information measures such as KL divergence,
Renyi divergence and f-divergence to identify the two kinds
of information distributions. In this case, we assume that how
to design efficient information measures is a fundamental
problem in the first step. Moreover, when an information
measure is obtained, we also need to analyze the samples in
the message sequences and take efficient methods to estimate
the information measure. Furthermore, it is applicable to
classify estimated results by resorting to the machine learning
algorithms so that we can make a decision for rare events
detection.

In addition, it is promising to measure rare events based
on message importance and then analyze the relationship
among the big data. The emerging applications related to
big data require new ways to deal with anomalous detection
or probability events mining. To this end, we summarize
some challenges and perspectives associated with rare events
processing, which can be future research directions for infor-
mation measures as shown in Table 5.

A. SMART CITIES
1) ANOMALY DETECTION FOR URBAN MONITORING DATA
As a typical application of big data, smart city has been
evolving rapidly with the increase of urban population. This
implies that cities can be monitored by countless devices
in many aspects such as road traffic, transportation man-
agement, environment monitoring, healthcare, etc. Actually,
in cities, it is significant to detect the anomalies with small
probability, whichmay provide effective guidance or warning
information.

In order to investigate the anomaly detection problem
in smart cities [170], the major challenges are listed as
follows.
• Security problems in the urban monitoring systems with
wireless sensor networks (WSN).

• The way to optimize the validity and reliability of trans-
portation schedule system by avoiding the anomalies.

• The long time prediction for the regular pattern of cities.
• To distinguish the unexpected events from popular
anomalies.

• Automatic anomaly detection algorithms for the urban
monitoring systems with IoTs.
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TABLE 5. Perspective applications and use cases of rare events processing.

In fact, the anomaly detection can be processed in many
ways including machine learning, signal analysis and even
information theory. To be honest, there are some specific
methods to detect the anomalies in smart cities, which may
overcome the above challenges from different perspectives.
Particularly, in order to improve the security of the WSNs
in urban monitoring systems, a non-intrusive architecture
is proposed to detect attacks by use of the support vector
machine (SVM) [171]. Moreover, for the IoTs of smart cities,
by using automatic clustering or classification, the events
with low probability can be identified in many applications
such as the car parking scenario, polluted region monitor-
ing and actionable bumps detection [41]. In a wide sense,
automatic target detection in urban surveillance systems can
be also regarded as an anomaly detection [172]. As an
example, there is a method presented to extract the regions
with the highest energy frequency in pending images, which
can help to reduce the complexity of detection. In addi-
tion, spatio-temporal data mining is also considered in urban
anomaly detection. Specifically, a two-step method (to com-
pute individual anomaly scores (CIAS) and to aggregate the
individual anomaly scores (AIAS)) is proposed to give an
anomaly score for each data source of each region at each
time slot [173]; An improved Local Outlier Factor (LOF)
algorithm (based on spatial-temporal cube) is adopted for
abnormal region detection [174]; A Urban Anomaly PreDic-
tion (UAPD) framework is designed to detect the anoma-
lous change points and dig out the time-evolving inherent
factors [175].

Notably, it is promising to exploit information theory to
deal with anomaly detection by emphasizing the importance
of rare events. By combining machine learning techniques,

the importance measures focusing on rare events may provide
new ways to cope with the anomaly detection and the evalu-
ation of post processing, which plays an vital role in smart
cities.

2) DETECTING URBAN BLACK HOLES
As an important part of smart cities, the urban black hole
denotes a region in which the whole traffic inflow is larger
than the whole traffic outflow. Actually, the urban black
hole can reflect emergencies or irregular events, namely
rare events, including disasters, accidents, as well as traffic
jams or congestion [176], [177]. It is worth detecting urban
black holes efficiently, which can make a beneficial effect on
urban safety. Therefore, some approaches are investigated as
follows.
• Graph Clustering: With regard to the graph clustering,
the approaches with the pruning schemes and the ran-
dom matrix are proposed to characterize the potential
black holes in a directed graph [178]. Besides, there are
some other approaches detecting black holes by means
of different measures [179], [180] such as attribute,
modularity and density.

• Dynamic Graph Detection: To detect black holes emerg-
ing in dynamic graph, some efficient approaches are
proposed by means of the increment, pattern trees, and
the pattern recognition with constraints [181], [182].

• Groups Moving Recognition: On one hand, the density
of regions is used to discover the object groups beyond
the threshold during the observation time [183]. On the
other hand, moving together behaviors during a given
time period are investigated to find out the tracking of a
group of objects [184], [185].
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• Spatio-Temporal Graph: Based on the spatio-temporal
graph, some approaches are presented to mine spatial
urban black holes [186], as well as, detect the tracking
of data temporally and spatially [187].

Actually, from the perspective of probability distribution,
it is possible to use information measures to find out urban
black holes which may be described by graph methods.
To do so, a detection scheme for the smart city is shown
in Fig. 8 whose details are as follows.

FIGURE 8. The rare events detection scheme for the smart city.

Specifically, data from the monitoring system and database
are used to detect the emergency events or accidents which
can be regarded as the rare events. Next, we can apply the
information measures to analyze the relationships among
events. By using the data analysis and processing, the control
center predicts the state of the city. This can be adopted
as a reference to update the system model and database.
Moreover, when anomalies are detected or the system breaks
down, the control center can reset the system. If anomalies
or accidents are detected or some unsolved emergencies are
reported, control center will take measures to handle them.
Then, if the system generates strategies for the anomaly
detection, it would send commands to executors to solve the
problems. Besides, human can also set in the work directly
when the system fails to finish the work.

B. AUTONOMOUS DRIVING
As an important part of the autonomous driving, obstacles
detection makes a great influence on warning and predicting
collisions and accidents [188]. However, it is still a challenge
to accurately detect the obstacles or objects with small prob-
ability in the view of computer vision. In general, some key
issues of autonomous driving are summarized as follows.
• Obstacles Detection: On one hand, some approaches
are presented to characterize obstacles by use of image
data [189], v-disparity histogram [190], as well as the
models for the height-over ground [191]–[193]. On the

other hand, deep learning tasks are used to detect
obstacles by means of the image features and related
information. Moreover, a technique ‘‘6D-vision’’ is also
put forward to discover the dangerous events on the
roads [194], [195].

• Object Detection: There are some approaches to detect
and track objects by means of classification or clus-
tering [196]. The strategies and frameworks for object
localization or tracking are also proposed depending on
the Kalman filter [197] and deep convolutional neural
networks [198]. Furthermore, some other approaches are
designed by use of the trade-off between camera orienta-
tions prediction andmonitoring techniques [199], [200].

• Detecting Road Surface and Lanes: As for road surface
detection, the discriminant analysis (DA) is presented
to characterize the road crack [201], [202]. This can
provide a threshold for classification according to the
road texture and color in images. Besides, in order
to detect the road curb and lanes, it is common to
regard color and texture as interesting features of roads.
These can be used by combining classification with the
hue-saturation-intensity (HSI) color space or red-green-
blue (RGB) color space [203], [204]. Besides, another
framework of road curb and lanes detection is addressed
by extracting the 3D parameters from some curb
models [205].

Moreover, there are some works proposed based on
probabilistic approaches and learning strategies. Gaussian
process (GP) regression decomposition based on a
superpixel-like algorithm is employed to validate quasi-
constant velocity models which build a set of Kalman filters
to identify the abnormal motions online [206]. A particle
swarm optimization (PSO) and bacterial foraging optimiza-
tion (BFO)-based learning strategy (PBLS) is presented to
improve the classifier and loss function of strengthened
region proposal network (SRPN), which can be applied in
object detection of autonomous driving [207]. A set of 3D
object proposals based on an energy function are obtained
to detect high-quality 3D objects by use of a convolutional
neural net (CNN) [208].

Additionally, with regard to the detection for autonomous
driving, it is apparent that rare events play important roles
in many aspects of vehicular safety system. By measuring
small probability, it is appropriate to apply information theory
to the autonomous driving detection. To do so, an obstacle
detection scheme is shown in Fig. 9, whose details are given
as follows. Based on the data from monitoring devices or
radars, the autonomous control system can detect obstacles
or other outlier events, which can be analyzed by use of
information measures. If no obstacle is discovered, the sys-
tem will continue the normal surveillance. However, if some
obstacles are detected, the system will take measures to solve
the problem by slowing down and choosing a newway.When
the emergencies are not solved well, it will put on the brake
and report them to drivers for further commands.
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FIGURE 9. The obstacle detection scheme for the autonomous driving.

C. APPLICATIONS ON DETECTION IN IOTS
Outlier detection in IoTs, is to dig out the minority of sensors
data exactly [209], [210]. In fact, it is essential to differentiate
the outlier data or observations from the normal data so
that one can gain the warning information and prevent the
outlier data from misleading us [211]. There exist a various
of researches focusing on the outlier detection which are also
considered to detect rare events in IoTs systems.

On one hand, there are some approaches to detect out-
liers in IoTs directly, such as using Jaccard coefficient
or Euclidean distance as the criterion of decision mak-
ing [212], referring to the expert knowledge on security [213],
as well as, monitoring the abnormal traffic among com-
munication devices [214], etc. On the other hand, sev-
eral researches divide observations into different groups to
find out the outliers by use of classification and clustering
algorithms [215], [216]. To address this kind of matter, a few
approaches also introduce static data series [217] or dynamic
time series into the machine learning algorithms. Besides,
a framework of data analysis is put forward by means of
the recursive principal component analysis (R-PCA) [209],
which provides another way to investigate the security of IoTs
systems.

In light of the fact that the data observed from IoTs are usu-
ally fed to cloud service systems, some approaches are pro-
posed by blending both IoTs and cloud technologies [218].
Moreover, to test IoTs systems conveniently, a new method
is presented to emulate the environments of IoTs by means
of a network emulator, which can improve the processing
efficiency for outlier detection [219].

Furthermore, some probabilistic models and large-scale
processing approaches are also exploited in the anomalies
detection of IoTs. A statistical decision framework based
on temporally correlated traffic is designed, which devel-
ops two low-complexity algorithms (based on cross entropy
method and generalized likelihood ratio test) to achieve
anomaly detection and attribution [220]. An adversarial sta-
tistical learning mechanism, outlier Dirichlet mixture-based
anomaly detection systems (ODM-ADS), is presented to
obtain legitimate profiles and discover suspicious anoma-
lies [221]. Besides, there are two methods are proposed,

namely a one-class support Tucker machine (OCSTuM)
and an OCSTuM based on a genetic algorithm called
GA-OCSTuM, which extend one-class support vector
machines to tensor space to detect anomalies in IoTs [222].

However, in spite of many efficient approaches for outlier
detection, few researches consider to exploit the small prob-
ability character in the viewpoint of probability distribution.
Actually, it is promising to take use of information measures
to analyze the outliers of IoTs.

FIGURE 10. The outlier detection scheme for the IoTs composed of
monitoring sensors.

From the perspective of information theory, importance
measures can provide a specific access to tackle the outlier
detection problem by using probability distribution, which
is shown in Fig. 10 whose details are as follows. The data
collected by distributed sensors are used to detect the poten-
tial or ongoing outliers by resorting to information measures.
If an outlier is detected and handled, the local center will
continue to collect data and update the database. However,
if a detected outlier is not handled well, the local center will
contact with executors to solve the problem and save the data
to the database. Once there is no answer for the request, local
center will report it to the control center.

VI. CONCLUSION
In this paper, we gave a total review on information mea-
sures for rare events in big data. In order to characterize the
importance of rare events, we summarized some message
measures such as the parametricMIM and the non-parametric
MIM which have properties on emphasizing small proba-
bility elements for a given distribution. These information
measures are regarded as promising criterions or tools for
statistical big data analytics. Furthermore, we introduced that
measures focusing on rare events can provide new ways for
message processing such as compression and transmission.
Moreover, some other applications in big data have been
discussed including efficient estimation, dimension reduction
and relationship analysis. Additionally, we introduced that
information measures for rare events could be applicable
for some future research directions including smart cities,
autonomous driving, and anomaly detection in IoTs. In these
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cases, there exist several future challenges of information
measures summarized as follows:
i) Data storage and low latency computation for the data

sets containing rare events.
ii) Feature extraction and data cleaning of holding rare

events.
iii) Design of information theoretic criterions to measure

distributions while considering the values of rare events.
iv) Efficient methods of information measure estimations.
v) Correlation and causality analysis based on information

measures.
vi) Decision making strategies for rare events (or probabil-

ity events) mining.
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