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ABSTRACT It is well known that the Unet has been widely used in the area of medical image segmentation
because of the cascade connection in the up-sampling process. However, it does not perform well in dealing
with complex medical images, such as brain MRI. In order to achieve better segmentation performance by
adopting the Unet, many researchers have paid more attention to stacking the Unet. However, the stacking
process leads to a large increase in the number of parameters. This is not a good choice when considering
the tradeoff between precision and efficiency. Another problem is that as the depth of the network increases,
the excessive loss of information is also a tricky problem. To address those problems, in this paper, we are
trying to improve the network structure of Unet to make it more suitable for brain tumor segmentation.
We propose a novel framework called Stack Multi-Connection Simple Reducing_Net(SMCSRNet) that are
stacked by our basic blocks called Simple Reducing_Net(SRNet). The basic block SRNet is improved from
the original Unet, which consists of four downsampling and upsampling operations during the encoding and
decoding. Only one convolution operation is performed before each downsampling process. The operation
of copy and crop is preserved between encoding and decoding. The main advantage of the SRNet is that
the amount of parameters is reduced by 4/5 by comparing with the original Unet. Except for the problem
of parameters number, we also proposed a series of bridge connections among the stacked cascade network
to improve the loss of information. More specifically, some bridge connections will be adopted before the
pooling operation in each layer during the downsampling process. It means that each layer in one basic block
has a bridge connection with the same feature size from the previous basic block before pooling, and it is
worth noting that the training time of the proposed framework is much less than the original stacked Unet.
Moreover, the performance of the proposed method is also improved compared to the stacked Unet. When
further comparing with other state-of-the-art segmentation networks, it can be found that the performance
is as good as the most popular DenseNet or ResNet. Overall, by evaluating the proposed framework on the
BRAT2015, it can be proven that the proposed segmentation network has the ability to accurately extract the
brain tumor boundary so as to obtain higher recognition quality with high efficiency.

INDEX TERMS Semantic segmentation, Unet; stacked Unet, feature fusion, medical image segmentation,
brain tumor segmentation, deep convolutional neural networks.

I. INTRODUCTION
In recent years, with the increase of unhealthy diets and
environmental pollution, there are more and more patients
with brain tumors. However, the human segmentationmethod
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requires a large amount of learning and relevant work experi-
ences. It is also a time-consuming and labor intensive process.
Therefore, the automatic brain tumor segmentation method
has emerged, and is mainly used to support the diagnostic
process. Among different brain tumors, glioma is one of
the most common tumors for the central nervous system,
accounting for about half of the primary intracranial tumors.
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In clinical practice, how to accurately segment brain tumors
for further diagnosis and treatment planning becomes a key
step.

Brain tumor images are more complicated than natu-
ral images. There are two main reasons. The first one is
that the resolution of different medical images is different,
especially the gray value greatly changes among different
images. The second reason is about the brain tumor. There
are too many changes for the tumor morphology in differ-
ent images, and there are also too many noises in medical
images, but many of them are not well distinguished from
morphology and gray scale. In recent years, many researchers
have made many efforts on the traditional machine learning
method [1] and the deep learning method [2]. Traditional
machine learning algorithms mainly include principal com-
ponent analysis proposed by Kaya et al. [3], fuzzy c-means
Hsieh and region growing algorithm [4], multilevel fuzzy c-
means [5], and Gabor filter [6]. However, due to the limi-
tations of traditional machine learning in the field of com-
puter vision, its performance is not satisfactory. At present,
the deep learning algorithms have been widely used in var-
ious industries [26]–[29], for example, it has been widely
used to solve problems in computer vision, and has achieved
great success in image recognition. Therefore, adopting the
convolution neural network for medical image analysis has
attracted wide attention. Relevant works mainly include: the
patch-based brain tumor segmentation proposed by LLA [7],
the patch-based multi-scale CNN [8] proposed by Havaei,
the patch-based DCNN [9] proposed by Kamnitsas, and the
FCN, full convolution-based CNN [10] proposed by Zhao.

According to research [16], the increase of network depth
can better capture semantic features. In order to achieve
better segmentation performance by adopting the Unet, many
researchers have made many efforts to stack the Unet.
Stacked Unet increase the depth of the network, but they
also bring many problems. There are two main problems.
At first, the stacking process lead to a large increase in the
amount of parameters. The second, as the stacking level
increases, the loss of information is also a tricky problem.
These problems have a great influence on the segmentation of
brain tumors. When the brain tumor is segmented, the infor-
mation propagation in the existing deep learning algorithm
can be further improved. The low level features are lost
with continuous convolution operations. The final prediction,
which relies mainly on the top, that will lose the opportunity
to gather more different information from the bottom and
middle. Specifically, combining low-level features with top-
level features is a challenging task because there are long
paths between them.

In this paper, we propose a novel framework called Stack
Multi-Connection Simple Reducing_Net (SMCSRNet). This
network consists of many basic blocks called Simple Reduc-
ing_Net (SRNet). Compared to the original Unet, the num-
ber of parameters in SRNet are reduced by 4/5. Because of
fewer parameters in the SRNet, it is a better choice when
stacking the cascade network. What is more, the performance

of our model far exceeds of the Stacked Unet. When further
comparing with other state-of-the-art segmentation networks,
it can be found that the performance is as good as the most
popular DenseNet or ResNet. Therefore, our proposed model
can accurately locate the tumor boundary of brain tumors to
obtain higher recognition quality. The network structure pro-
posed in this paper fully integrated features from the low level
to the high level. It can be proven that the proposed framework
achieves a well performance on the BRATS2015 dataset.

Our primary contributions include:
i) A basic block called Simple Reducing_Net (SRNet) has

been proposed to solve the problem of toomany parameters in
the stacked Unet. Compared to the original Unet, the number
of parameters in SRNet are reduced by 4/5.

ii) Some bridge connections have been proposed to build a
series of bridges inside a cascade network. For each layer in
one basic block, the proposed connection is used to connect
the feature in the same layer from the previous block during
the downsampling process. These ‘‘bridges’’ are mainly used
to make full use of the information and to reserve the useful
information as far as possible.

iii) An improved end-to-end framework, which is inspired
by the stack Unet, has been investigated and developed.
This framework called a Stacked Multi-Connection Simple
Reducing_Net (SMCSRNet) was proposed to combine the
advantages of both the SRNet and bridge connection. By eval-
uating the proposed framework on the dataset, it can be
proven that it can achieve a better segmentation performance
for brain tumors with high efficiency by comparing with the
stacked Unet and other state-of-the-art counterpart methods.

II. RELATED WORK
Many models [10]–[14] have boosted the performance of
semantic segmentation networks. There are two main frame-
works for medical image segmentation, one based on CNN
and the other based on FCN.

The first-class frameworks are based on CNN framework,
and the idea is also simple: to classify each pixel of the
image, take a patch at each pixel, and use it as an image
to enter the neural network for training. the convolutional
neural networks (CNN) not only achieve good image clas-
sification, but also make great progress in the segmentation
problem. Initially, image patches classification is a commonly
used deep learning method, in which each pixel is separately
divided into corresponding categories by using image blocks
around each pixel.

The second-class frameworks are based on the FCN frame-
work: in the field of medical image processing, it can be seen
that it extends the original CNN structure to enable intensive
prediction without a fully connected layer, and the input and
output are images. The shallower high-resolution layer is
used to solve the problem of pixel positioning, and the deeper
layer is used to solve the problem of pixel classification.
Almost all recent research on semantic segmentation adopted
this structure.
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This paper is mainly inspired by the encoder-decoder form.
We are trying to improve Unet by the way of stacking cas-
cade to make it more suitable for brain tumor segmentation.
The concept of cascade network exists in a large number of
computer vision tasks. However, the information transmitted
between cascaded sub networks is usually chosen differently
and sometimes implicit in the structure of problem being
solved.

In [15], a cascade of two Unet is applied to the segmen-
tation of liver and lesion in CT images as the backbone of
model, followed by a 3D Conditional Random Field(CRF).
Subsequently, the lesion is a small area in the liver. The
cascade application is as follows: the first Unet block is used
to segment the liver, and then its local ROI is transmitted to
the secondUnet block. Experiments show that compared with
single Unet, the Dice score can be increased by 20%.

A learning-based stacked Unet called DocUNet firstly pro-
posed by Vision Technology Face++ [16]. They found in the
experiment that the output of a single Unet is not satisfactory
and should be optimized, so another U-Net is stacked on the
output of the first Unet as a refiner. DocUNet can smooth
and restore distorted document images. And it fills a technical
gap in the field of deep learning. Due to the effectiveness and
efficiency of flattened document images, DocUNet can sig-
nificantly reduce the difficulty of text recognition, optimize
the development of OCR technology.What ismore, DocUNet
can promote text recognition and retrieval capabilities in real
world, network and other scenarios.

FIGURE 1. Feature divergence calculated from image sets with
appearance difference (blue) and content difference (orange).

According to research [17], the increase of network depth
can better capture semantic features. This paper [17] shows
feature divergence calculated via symmetric KL divergence.
As shown in Fig.1, the x-axis denotes the depth of a net-
work and the y-axis shows feature divergence calculated
via symmetric KL divergence, the divergence decreases as
layer depth increases, manifesting the appearance difference
mainly lies in shallow layers. On the contrary, compared with
two disjoint ImageNet splits (orange bar), the object level
difference attributes to majorly higher layer divergence and
partially low layer ones. Based on these observations, they
introduce IN layers to CNNs following two rules. Firstly, they
want to reduce feature variance caused by appearance in shal-
low layers while not interfering the content discrimination
in deep layers. Secondly, they also want to preserve image
content information in shallow layers. These are proved in

FIGURE 2. The architecture of Unet.

the experiment, and IBN-Net proposed by them significantly
improves performance across domains.

Unet is proposed by Ronneberger et al. [18] originally
for medical image segmentation. This network structure is
based onmulti-scale and won the ISBI cell tracking challenge
2015 with a large margin. As shown in Figure 2, Unet [18]
consists of two parts, the first part is feature extraction, which
is similar to VGG [19]. In the feature extraction part, there
is a scale for each passing through a pooling layer, there are
totally five scales including the original image scale. The sec-
ond part is the upsampling part. In the upsampling part, each
time the up-sampling is sampled, then integrate it with what
is from the same scale of the channel corresponding to the
feature extraction part. But it is cropped before the fusion.
The fusion here is also stitching. Among them, the operation
of copy and crop combines low-resolution information (pro-
viding object-based recognition) with high-resolution infor-
mation (providing accurate segmentation and positioning),
making it suitable for medical image segmentation.

III. METHOD
We propose a novel framework called Stack Multi-
Connection Simple Reducing_Net(SMCSRNet) which are
stacked by some basic blocks called Simple Reduc-
ing_Net(SRNet). We want to further modify Unet, to make
it more suitable for stacking to brain tumor segmentation.
Our basic block is shown in Fig.3, which have four down-
sampling/upsampling operations were performed during the
encoding/decoding. Only one convolution operation is per-
formed before each downsampling. The operations copy and
crop are preserved between encoding and decoding, which
maintains Unet’s multi-scale feature fusion. The purpose of
designing the basic block in this way is to simplify its network
structure and further reduce parameters. It is worth noting that
on a stacked cascade network, the spending on training time
of our model called SMCSRNet is far less than stacked Unet.
And our accuracy is improved compared to stacked Unet.

A. THE STRUCTURE OF OUR BASIC BLOCK
The basic block we proposed is shown in Figure 3 (The
rectangle marked with a purple dashed line is a basic block,
which actually used for stacking), which is obtained by
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FIGURE 3. The architecture of basic block.

modifying Unet. The left-to-up process is downsampling,
and the right-to-bottom process is upsampling. Compared
with the Unet structure, the convolution operation is reduced
before and after the pooling. In more detail, our model called
SMCSRNet performs a convolution only once after each
downsampling. A total of 4 downsamplings were performed
during the encoding. After downsampling to 15∗15, it is sent
to the decoding for upsampling. Compared to the original
Unet, our basic block SRNet parameters are reduced by 4/5.

And this basic block shows better performance on the stack
cascade than the original Unet. We simplify Unet operations,
not only reducing the number of parameters, but also signifi-
cantly reducing training time. This structure is more suitable
for stacking and has been proven in experiments.

B. THE NETWORK STRUCTURE OF OUR MODEL CALLED
STACKED MULTI-CONNECTION SIMPLE
REDUCING_NET (SMCSRNet)
The previous section implemented the operation of building
a simple basic block, which facilitated the stacking of the
network to a deeper level. But it also brought some problems.
For example, as the stacking level increases, the gradient
disappears or information is lost. In order to solve this thorny
problem, we want to build a series of bridges inside the stack-
ing network. Them can provide rich information for the back-
end network during forward training, andminimize the risk of
gradient disappearance when the gradient is transmitted back.

To build such a series of bridges, the first step is to deter-
mine where to build. The study found that it is easy to lose
small object information after pooling in the codec struc-
ture, so we choose to build these bridges before the pooling
operation. The previous basic block provides supplementary
information for the latter base block, enriching each level
before pooling. Enter the feature information. The second
step is how suitable is the number of bridges? The number
of these internal bridges is not as good as possible, when
considering the tradeoff between precision and efficiency.
If they are too much, it will increase the load on the network,
and provide a lot of redundant information to interfere with
the final segmentation result.

The model structure proposed in this paper is shown
in Figure 4. The rectangle marked by the purple dashed
line in this figure represents a basic block, and each basic
block is the same in cascade network proposed by us. All the
basic blocks except the last one, end with 32 feature maps,
which are stacked with the input image by long skip con-
nections (shown light-grey in the figure, the plus sign in the
figure represents the contact operation.). The latter provide
original information to the basic block, so that it refines the
previous features by directly accessing information from the
input image. The long skip connections connect all the basic
blocks. We proposed adding some bridge connections before
pooling of each layer (indicated by the orange dotted arrows
in the figure). Each basic block is used to enhance the output
features of the previous block. During the downsampling of
every basic block, each layer is only connected to the same
level feature from the previous basic block before pooling.
We chose to fuse features from the previous. We chose to fuse
features from the previous basic block rather than the several
basic blocks or all the basic block before this basic block.
This will be verified in the experiment. We also compare our
models with the stacked Unet. Our model called SMCSRNet
not only greatly reduces the training time, but also improves
the accuracy of brain tumor segmentation.

C. LOSS FUNCTION
As a loss function, we define it as l(A,B):

l(A,B) = − log d(A,B),where : d(A,B)

=
2

∑
i,j aijbij∑

i,j a
2
ij +

∑
i,j b

2
ij

(1)

where A = (aij)
H ,W
i=1,j=1 is a predicted output map, containing

probabilities that each pixel belongs to the foreground, and
B = (bij)

H ,W
i=1,j=1 is a correct binary output map. d(A, B)

is a real-valued extension of Dice score for binary images
Dice(A,B) = 2(|A|∩|B|)

|A|∪|B| . where A and B are defined as above.

IV. EXPERIMENT AND RESULT
In this section, we first introduce the database which is pro-
vided byMICCA.And then, wewill provide detailed network
parameters and training details. Finally, a comparison of the
segmentation results of the model with other methods.

A. DATASET
The proposed method has been evaluated on the BRAS2015
dataset. In BRATS2015, each MRI image has four differ-
ent modules: T1, t1c, T2, and Flair, which are regarded
as four inputs of the network. RMSProp optimization
method was employed and its attributes are set as follows:
decay = 0.95, momentum = 0.9, epsilon = 1e-8. The size of
the input is 240∗240∗4 and the batch size is 10 in our exper-
iments. The BRATS2015 datasets have been further divided
into two categories: low-grade gliomas (LGG) and high-level
gliomas (HGG), depending on the tumor cell’s pathological
malignancy.
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FIGURE 4. The architecture of our model called SMCSRNet.

B. EVALUATION
Three metrics are employed as the evaluation criteria:
DSC (Dice Similarity Coefficient), PPV (Positive Predictive
Value) and SCS (Sensitivity Coefficient Sensitivity).

The DSC measures the overlap area between the manual
and automatic segmentation results. It is defined as:

Dice = 2TP/(FP+ 2TP+ FN) (2)

where TP represents a positive sample that is correctly seg-
mented to the positive sample point, FP is a negative sample
that is wrongly segmented to the positive sample point. FN is
a positive sample that is wrongly segmented to the negative
sample point.

The PPV represents the proportion of the true positive
sample in the positive sets indicated by the experimental the
experimental result. The calculation formula is as follows:

Precision = TP/(TP+ FP) (3)

The sensitivity coefficient represents the proportion of the
positive case that is correctly determined to account for the
total positive case, and reflects the case of the segmented
positive sample. The calculation formula is as follows:

Sensitivity = TP/(TP+ FN) (4)

These evaluation metrics will work together to represent
the accuracy and error rate of the proposed method for image
segmentation.

C. NETWORK STRUCTURE
The network structure of our basic block(SRNet) have the
same basic block id as shown in Table 1. According to the
experiment, the number of parameters for our basic block is
only 0.43M, and this value is 2.15M for the original Unet.
In other words, compared to the original Unet, the parameters
of the proposed basic block are reduced by 4/5 so as to greatly
reduce the computational time.

The batch normalization [23] is applied in first layer. The
number of stacked levels of the cascade network can be

TABLE 1. The hyper-parameters of our model called SMCSRNeT.

chosen according to the complexity of the task. The pro-
posed network called Stacked Multi-Connection Simple
Reducing_Net is shown in Table 1. Except for the last one,
the output of all basic blocks contains 32 feature maps, which
are connected with the input image by long skip connections
(shown light-grey in the figure4. The latter connection has the
ability to provide the original information to the basic block
so as to refine the previous features by directly accessing
information from the input image. The long skip connections
will be employed by all basic blocks.

What is more, the first and last blocks (marked as red in
the table 1) differ from other basic blocks. The first basic
block has one more layer than other basic blocks to reduce
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TABLE 2. The result of baseline without pre-processing.

the size of the original image into half, then feeding it to
the cascade network for training. The last block also has an
additional layer compared to other basic blocks, which is used
to restore the size of the segmentation result (120∗120) to
the original image size 240∗240. The filters in the last row
is set to five because it is a five classification problem in the
experiment. And this value can be changed depending on how
many categories are needed to be classified for the final result.

Furthermore, the bridge connections have been employed
during the stacking process, which are used to improve the
cascaded network by comparing with other cascaded net-
works. The mainly improvement is that during the down-
sampling process, the layer not only code the information
from the upper level but also utilize the features of the same
level from the previous basic block. These bridge connec-
tions seem to build a series of bridges within the stacking
network. They can provide rich information for the back-end
network during forward training, and minimize the problem
of vanishing gradient during the back propagation based on
the gradient descent direction of search.

For the network training, all networks are trained with the
training set which contains 274 patient cases, and are tested
with the testing set which contains 110 patient cases. During
the network training, some parameters are set as follows:
The batch size is set to 10, the learning rate is 4e-5 and the
epoch is 12. All models have been implemented by using the
TensorFlow framework andwere running on oneNvidia GTX
1080 Ti with the INTEL i7-7700k.

D. THE EFFECT OF DIMENSIONALITY REDUCTION
In order to raise the training efficiency of the network,
we will discuss the effect of dimensionality reduction in this
section. It means that the proposed framework was expected
to improve the segmentation efficiency through a dimension-
ality reduction method and all following experiments plan
to reduce the dimension of the input image. Two models
have been constructed and total 4 experiments have been
evaluated. The first model builds a cascade network with the
basic block of original Unet [18] called Stacked Unet, and
the secondmodel adopts the reduced-dimensional Unet as the
basic block to construct the cascade network called Stacked
RUnet. The difference is the step size of the first convolution
layer. The step size of the first convolution layer is 1 in the
Stacked Unet, while it is set to 2 in the Stacked RUnet. The

purpose of this setting is to halve the size of the image before
it is entered into the model.

More specifically, the input and output size of each basic
block in Stacked Unet is 240-240_240....240_240-240, while
the Stacked RUnet reduced the original image size to half
as the input of the network, and the input and output size
for each block is 240-120_120....120_120-240. The size will
be restored to the original size at the last layer in the last
basic block. Table 2 shows the experiment results of Staked
Unet and Stacked RUnet. It can be found that these two
models achieve the almost same performance in terms of disc,
pvp and scs. In other words, halving the size of the image
does not affect the segmentation accuracy for the lesion area.
In opposite, the training time for the Stacked RUnet fell by
almost half. It indicates that keeping the original image size
as the input will cost a large amount of computing resources
with the number of stacked basic blocks increases in the
cascade network. Therefore, the forthcoming experiments
will follow the idea of dimensionality reduction and reduce
the original image size to half as the input of the first basic
block. In addition, the Stacked RUet will be adopted as a
baseline network in the following experiment.

E. THE EFFECTS OF SRNet
Since the dataset in BRATS 2015 is collected from differ-
ent machines, and the original distribution of the data is
totally different. Therefore, in order to balance the dataset,
the z-score normalization operation is adopted as the pre-
processing step for optimizing the dataset. The z-score nor-
malization can be defined as follows:

y = (x−mean (x)) /std(x) (5)

All left experiments in the following sections will
be discussed both in with pre-processing and without
pre-processing.

In this section, the proposed basic block SRNet has been
evaluated by comparing with the Stacked RUnet mentioned
in the previous section. The main difference is that the basic
block in the cascade network. One is the Reducing Unet in
baseline and the other is the SRNet in our model. A total
of 30 experiments have been evaluated on these two models,
which are in terms of disc, pvp and scs.

The Stacked RUnet in Table 3 is only stacked to 7 lev-
els. This is because that the performance of Stacked RUnet
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TABLE 3. The results of stacked runet or stacked SRNeT without any pre-processing.

TABLE 4. The results of stacked runet or stacked SRNeT with pre-processing.

has kept declining from the stacking level 5. Moreover,
the amount of parameters in the stacking level 7 has reached
to 15 million. There is no need to stack more levels for
the Stacked RUnet. The experiment of Stacked RUnet and
Stacked SRNet in different stacking level without pre-
processing show in table 3. It can be seen that, the Stacked
RUnet can achieve a disc up to 0.78 for the complete tumor,
0.62 for the tumor core, and 0.53 for the enhancing tumor,
while it is 0.77, 0.60 and 0.54 for Stacked SRNet. The best
performance of the Stacked RUnet is also little better than
Stacked SRNet in terms of PVP and SCS. In addition, in the
same stacking level, the Stacked RUnet achieves a little better
performance than Stacked SRNet in terms of all metrics. This
is because Stacked SRNet is designed to pursue the efficiency
with fewer convolution operations in the basic block so as to
result in poor generalization performance. However, it should
be noticed that the number of parameters of Stacked SRNet
is much less than the Stacked RUnet and it is only up to
almost 1/3 of the Stacked RUnet when achieving the best
performance. In particularly, when stacking the basic block
as the cascade network, the performance of these two models
is almost the same at the same stacking level. But the num-
ber of parameters of Stacked SRNet is less than 1/5 of the

Stacked RUnet. It can be proven that the proposed SRNet can
not only maintain the high accuracy, but also greatly improve
the computational efficiency.

The Table 4 shows the segmentation result of Stacked
RUnet and Stacked SRNet with pre-processing. As shown
in Table 4, the best disc of Stacked RUnet were 0.819, 0.654,
and 0.587, respectively, while the proposed Stacked SRNet
were 0.823, 0.661, and 0.592. It can be found that the best
performance of Stacked SRNet exceeded the Stacked RUnet
after adopting the pre-processing. It means that it has the abil-
ity to capture more useful information, but its generalization
performance is not very well. Specifically, the Stacked SRNet
achieves the best performance when stacking at the sixth
level, and the Stacked RUnet achieves the best performance
at the third level. But the performance of Stacked SRNet at
the fifth level has been exceeded the best performance of the
Stacked RUnet. What’s more important, the parameters of
Stacked SRNet are about 1/3 of the Stacked RUnet.

Overall, according to these experiments, four findings can
be summarized as follows:

Firstly, themost important point is that the proposed SRNet
reduces by 4/5 parameters compared to the original Unet
when being adopted as the basic block to construct the
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TABLE 5. The results of stacked runet or stacked SRNeT with pre-processing.

cascade network. Moreover, it also improves the segmenta-
tion performance after adopting the pre-processing step. Both
the effectiveness and efficiency of the proposed basic block
SRNet have been demonstrated through these experiments.

Secondly, we find that as the stacking level of network
increases, the accuracy becomes more and more better. But
after the best performance is achieved, the network becomes
stable and then the performance gradually decreases. It is easy
to understand that after the network reaches a certain scale,
the overfitting problem can’t be avoided and the generaliza-
tion ability of the model will be decreased.

Thirdly, even with the pre-processing, the performance of
Stacked SRNet is still not as good as the Stacked RUnet in the
first three layers. The reason is that the basic block SRNet
only performs one convolution operation per layer, but the
Unet has three convolution operations on each layer. Fewer
convolution operations represent the model itself is restricted
in the ability of capturing information.

Fourthly, compared to the Stacked Unet, although the
efficiency has been greatly improved, the effectiveness of
Stacked SRNet seems to be more dependent on the prepro-
cessing. In other words, the proposed Stacked SRNet is with
poor generalization ability in these experiment.

Therefore, in order to further improve the effectiveness of
proposed model in brain tumor segmentation tasks, we have
investigated and developed the bridge connections to enhance
the generalization ability for the proposed model. More
experiments have been done to evaluate the proposed bridge
connection in the following sections.

F. THE EFFECTS OF BRIDGE CONNECTIONS
In this section, we mainly discuss the effects of the proposed
bridge connections (B_Conns). These bridged connections
seem to build a series of bridges inside the stacking cascade
network to improve the information propagation, so as to
enhance the generalization performance of the model. These
bridged connections can provide more abundant information
for the subsequent basic blocks during the forward training

and also try to avoid vanishing gradient problem during the
back propagation. In addition, it has the ability to remain
some information to enhance the relationship between the
previous layer and the current layer in different stacking
blocks.

Table 5 presents the experiment results of Stacked RUnet
and SMCSRNet by adopting the bridged connection and be
without the pre-processing. Because the proposed basic block
SRNet is very simple, the bridge connections are useful for
capturing the information. Compared to the result in Table 3,
where the Stacked RUnet and the Stacked SRNet are without
bridged connections, it can be found that when stacking the
basic block at the same level, the performance of Stacked
RUnet has been raised by about 1% to 2% after adopting
the bridged connections, while the performance has been
raised by about 1% to 3% for the SMCSRNet. In detailed,
the best performance of Stacked RUnet is 0.79, 0.63, and
0.57, respectively. And the proposed SMCSRNet can achieve
the best result of 0.80, 0.63, and 0.58. In addition, the param-
eters of the proposed model are 1/3 of the Stacked RUnet
when both achieving the best performance. According to this
experiment, it can be clearly seen that the performance of
SMCSRNet is superior to the Stacked RUnet in the most
stacking level after adopting the bridged connection method.
In other words, it can be indicated that the bridge connection
has the ability to enhance the generalization performance
both for the Stacked RUnet and the proposed model.

However, the SMCSRNet still perform worse than the
Stacked RUnet in the first three layers. For the number
of parameters, even if stacking to three layers, parameters
of SMCSRNet are still less than the original Unet without
any stacking. Overall, the parameter of SMCSRNet is only
1/4 or 1/3 of the Stacked RUnet. On the other hand, it is
well known that too fewer convolution operations result in
a limited ability for shallow networks to capture the useful
information. After adopting the bridge connection method,
the proposed model has been arisen by 1% to 3%. It can be
proven that the proposed bridge connection has the ability of
capturing the useful information, enhancing the relationships
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TABLE 6. The comparison results of stacked runet or SMCSRNeT with pre-processing.

between different blocks, and making full use of the informa-
tion obtained by each block in a network structure.

The experiments in Table 6 is similar to Table 5 respect
to the bridge connection but these new experiments adopt
the pre-processing step. The best performance of SMCSRNet
was improved to the 0.82, 0.67 and 0.58 respectively. Inter-
estingly, the proposed model only needs to stack to 4 levels
(marked with purple color in the table) to achieve a better
performance compared to the best results of the Stacked
RUnet. And when continuous increasing the stacking level,
the performance of the proposed model keeps to become
better and better. Furthermore, although there are 4 levels
stacked in our mode1, the amount of parameters at this time is
about 1/3 of the Stacked RUnet, which obtains the best results
at the stacking level 3.

Through these comparative experiments, it can be found
that the bridge connection can help the cascaded network to
better learn the features whether they are with or without pre-
processing. When adopting the bridged connections for both
the Stacked RUnet and the proposed model, the segmentation
accuracy of the proposed model is more than about 1% to
2% above the Stacked RUnet in the same stacking level.
Moreover, this additional calculation produced by the bridge
connection is almost negligible. In summary, there are four
key points in these experiments:

First, after adopting the proposed bridge connection
method, both the Stacked RUnet and the proposed model
achieve a significant improvement, especially being with the
pre-processing step. It can be proven that this bridge connec-
tion method has the ability to enhance the robustness of the
model. In other words, the effects of bridge connection can
be proved.

Second, the bridge connection method has a bigger impact
on the proposed model whether it is with or without
pre-processing. And the best performance under without-
processing has exceeded the Stacked RUnet, which also
adopts the bridge connection method. It means that the

aforementioned generalization problem of the stacked SRNet
has been improved by the bridge connection method.

Third, after adopting the bridge connection method,
the number of parameters of the proposed model is still much
less than the Stacked RUnet. It still has huge advantages on
the computational efficiency.

At last but not the least, when stacking the SRNet at the
8 level, the performance of the proposed model still keeps an
increasing trend. Therefore, it is necessary to further stack
the SRNet to a deeper level so as to explore its optimal
stacking level or its best performance. On the other hand,
in this experiment, the bridge connection is just used to build
connections from the previous block to the current block.

However, if more bridge connections are built to connect
the current block from all previous blocks, the performance
will become better or not? And How about the computation
efficiency for different number of bridge connections? These
questions will be further discussed in the next section.

G. DISCUSSION ON THE STACKING LEVEL AND THE
NUMBER OF BRIDGE CONNECTIONS
In this section, in order to obtain the best performance of the
proposedmodel, some experiments have been done to discuss
how many levels should be stacked and how many previous
basic blocks should be connected for the bridge connections.

Table 7 shows the experiment result of stacked SRNet in
different stacking levels, which is without the bridge connec-
tion. It can be seen that the disc reaches the highest value
of 0.823, 0.661 and 0.592 when stacking the basic SRNet
blocks with level 6 in the cascade network. In addition,
the amount of parameters at this time is only equivalent
to an original Unet. But when stacking more basic blocks
(from level 7 to 12) in the cascade network, the performance
gradually decreases and the number of parameters continuous
increases.

Overall, the performance of stacked SRNet will become
better with the stacking levels increasing, and the best
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TABLE 7. The result of stacked SRNeT in different levels.

performance can be achieved at the stacking level 6 with
high efficiency. Over all, the performance of stacked SRNet
will become better with the stacking levels increasing, and
the best performance can be achieved at the stacking level 6
with high efficiency. However, because of the overfitting
problem, the performance of stacked SRNet becomes a litter
lower than the best performance and keeps stable from the
stacking level 7 to 12, where the number of parameters keeps
growing. Except for the staking levels, we also verify how
many previous blocks should be connected when adopting the
bridge connection method so as to build a cascade network
that is more suitable for segmenting brain tumors.

TABLE 8. The result of smcsrnet in different levels.

As shown in Table 8, the performance of the SMCSRNet
on different stacking levels has been presented, where the
bridge connection is used to construct connections from each
layer in previous block to the same layer in current block
between two adjacent blocks. The best performance for the
SMCSRNet is 0.831, 0.663, 0.593 at the stacking level 10.
What’s more important, the number of parameters for the best
performance is equivalent to the parameters of Stacked RUnet
stacked to three levels. This also benefits from the fact that
the basic blocks SRNet is very efficiency. Therefore we can
stack more basic blocks to further increase the depth of the
network so as to obtain a better performance. In addition,
the bridge connections are used to explore the relationship

between block-to-block and to enhance the effectiveness and
robustness of the SMCSRNet.

When adopting the bridge connection method, except
for constructing connections just from the previous blocks,
another way is to connect from all previous blocks, just
like the connections in Dense Network. The aim for these
two connection ways is both to make full use of hierarchi-
cal information. Compared to the experiments in Table 8,
the Table 9 shows the experiment result of the SMCSRNet,
where the bridge connection is used to build the connections
for each layer in current block from the same layer in all previ-
ous blocks. These bridge connections are used to concatenate
features at the same level in different blocks.

TABLE 9. The result of SMCSRNeT_dense_bridge in different levels.

As shown in Table 9, it can be clearly seen that the seg-
mentation performance is not improved by building more
bridge connections for the each layer in current block instead
of only from the previous blocks. Moreover, the number of
parameters increased rapidly. In detailed, the highest score
was 0.823, 0.663 and 0.591 in this experiment.With the incre-
ment of the stacking level, the parameters are growing faster,
and the parameters reach 14 million when stacked on the 10th
level. In summary, constructing more bridge connections is
not benefit for improving the performance, but lead to the
explosive growth of parameters.

FIGURE 5. The performance comparison on different stacking levels and
different bridge connections.

The Figure 5 and 6 represent the performance com-
parison and efficiency comparison on different stacking
levels and on different bridge connection ways respectively.
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FIGURE 6. The efficiency comparison on different stacking levels and
different bridge connections.

The ‘‘Stacked SRNet’’ presents the stacked SRNet model
without any bridge connection among different blocks. The
‘‘SMCSRNet’’ indicates the stacked SRNet model with the
bridge connection, but the bridge connection in this model
is just used to build the connection between two adjacent
blocks. It means that each layer in one block has a connection
from the same layer in the previous block. The ‘‘SMCSRNet-
Dense-Bridge’’ means the bridge connections of each layer in
one block are concatenated from the same layer in all previ-
ous blocks. As shown in Figure 5, both the ‘‘SMCSRNet’’
and ‘‘SMCSRNet-Dense-Bridge’’ obtain the better perfor-
mance than the ‘‘Stacked RNet’’ after the 6th stacking level,
especially the ‘‘SMCSRNet’’ is always the best from the
beginning. That’s meant that the proposed bridge connection
is useful for cascade network to improve the segmentation
performance. There are two reasons for this: on the one hand,
the proposed bridge connection can increase the effective
use of information, and on the other hand, it can alleviate
the problem of gradient disappearance due to the increase of
stacked blocks in the cascade network.

The number of parameters for these three model in dif-
ferent stacking levels can be seen in Figure 6. It can be
found that too many bridge connections in ‘‘SMCSRNet-
Dense-Bridge’’ were prone to information redundancy for
the model and greatly decrease the computational efficiency.
Overall, considering both the effectiveness and efficiency for
the model, the SMCSRNet is the best choice for segmenting
the brain tumor.

H. THE PERFORMANCE OF SMCSRNET
The comparison chart for the disc of the different models
mentioned in this paper is shown in Figure 7. Stacked Unet
is the original model, and the Stacked RUnet represents the
stackedUnet with dimensionality reduction, which is adopted
as the Stacked RUnet in this paper. The ‘‘Bridge’’ following
the Stacked Unet and Stacked RUnet indicate that the model
adopts the bridge connection method. It can be found the pro-
posed SMCSRNetmodel achieves the best performance at the
stacking level 10 when segmenting the brain tumor. In addi-
tion, the SMCSRNet and stacked SRNet can be stacked to

FIGURE 7. The comparison of different models in terms of dsc.

a deeper level to achieve a better performance by comparing
with other models, especially for the original stacked Unet
and the stacked RUnet (w/o the bridge connection), which
are only stacked at the stacking level 7.

The reason behind this is that with the increases of stack-
ing levels, these four models lead to an overfitting prob-
lem, the performance was coming to a head and gradually
decrease. Therefore, it is not necessary to stack more levels
for these models. Another reason is that there are too many
parameters for these models and it consumes a lot of compu-
tational resources and time when stacking too many blocks.

FIGURE 8. The comparison of different models in terms of parameters.

Figure 8 shows the efficiency comparison among different
models based on the parameters. It can be clearly seen that
the stacked SRNet and SMCSRNet always has much less
parameters than the stacked Unet at the same stacking level.
It can be proven that the efficiency of stacked Unet has been
improved by the proposed method. But the parameters of
SMCSRNet-Dense raised substantially after the 5th stacking
level but are still less than the stacked Unet at the same
stacking level. For example, parameters of the SMCSRNet-
Dense at the stacking level 10 is less than the original stacked
Unet at the stacking level 7.
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TABLE 10. Compared with other state-of-the-art models.

It means that there are too many bridge connections in
the SMCSRNet-Dense model because of ‘‘connections from
all previous blocks’’. Moreover, through adopting the bridge
connection in the original stacked Unet and the stacked Unet
with dimensionality reduction, it can be found the disc of
these two models has been improved but the number of
parameters added by the bridge connection is almost negli-
gible. From this point, the effectiveness of the bridge connec-
tion can be further proven.

I. COMPARISONS WITH OTHERS
Except comparing with the original stacked Unet, other
state-of-the-art brain tumor segmentation methods should be
employed as the comparison method to evaluate the effec-
tiveness and efficiency of the proposed framework. These
methods are listed as follows: a patch-based segmentation
net with a small filter kernel presented by Pereira et al. [7];
a multi-scale CNN for patch-based segmentation proposed by
Havaei et al. [8]. And a 3D multi-scale CNN for patch-based
segmentation, in this method, Kamnitsas et al. [25] proposed
a 3D CRF to optimize the softmax probability maps.

The comparison between the proposed method and coun-
terpart methods is shown in Table 10 in terms of segmentation
disc and time. Our model called SMCSRNet outperforms
the Pereira method and the Havaei method in terms of com-
plete tumor and tumor core segmentation. But the segmen-
tation performance of our model is slightly worse than the
Kamnitsas [25].

In addition, the proposed method performs not well on
the enhancing tumor compared to other three methods and
is deserved to further reflection. There are two main rea-
sons for this. The first is because the model we proposed
is end-to-end, which is used to predict the entire image,
and other counterpart methods are mainly based on the
patch. The second reason is due to the small number of
‘‘enhanced tumors’’ samples. It becomes hard for the network
to obtain better performance for the ‘‘enhanced tumors’’.
However, in term of the computational time, the proposed
model costs about 40min for each epoch when training. For
the testing time, our network only needs 9.6s to segment one
patient brain with 155 slices. As a contrast, Pereira’ method
takes about 2min [7]. Havaei’s network costs 25s∼3min to
process a patient brain [8], and Kamnitsas’s framework costs
2min∼3min [25] to process a patient brain. In other words,

our network outperforms the counterpart methods in terms of
efficiency. To sum up, by both considering the effectiveness
and efficiency, it can be proven that the proposed model is
a state-of-the-art method and also a good choice for segment-
ing the brain tumor.

V. CONCLUSION
In this paper, in order to solve the problem of large amount of
parameters in the stacked Unet, a basic block called SRNet
has been proposed, which is improved based on the Unet.
Compared to the original Unet, the parameters of basic block
SRNet are reduced by 4/5 while the performance keeps the
same. Therefore, it is more suitable for building the cascade
network. And also, in order to further make full use of hier-
archical information among stacked network and improve
the performance, the bridge connection method has been
investigated and developed to further explore the relation-
ship between two adjacent blocks in the cascade network.
Moreover, based on the SRNet and bridge connection,
we proposed a novel framework called Stack Multi-
Connection Simple Reducing_Net (SMCSRNet). By evalu-
ating the proposed framework on the BRATS2015 datasets,
it can be found that the SMCSRNet achieves a better per-
formance with much less parameters by comparing with the
original stacked Unet and other counterpart method. In the
future, how to introduce the relevant content of migration
learning into the bridge connection and further improve
the transmission capacity of effective information, so as to
achieve better SMCSRNet performance? In addition, it is also
a challenging task to apply this network to different types of
medical image segmentation tasks and improve the general-
ization performance of the model by utilizing the correlation
between them.
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