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ABSTRACT Ultra-high-resolution aerial videos are used to relieve the shortage of surveillance system in
sparsely populated regions. For realistic application purpose, it is important to automatically analyze ‘‘who
is doing what?’’ in such videos. Although atomic visual action (AVA) detection has been successfully used
to recognize ‘‘who is doing what?’’ in the movie data, it is challenging to adapt it to ultra-high-resolution
aerial videos, where the target persons are relatively tiny and sparsely located. Besides, due to the lack of
evaluation metrics, AVA detection has been evaluated by the single-label action; however, using multi-label
actions in evaluation are more reasonable since several actions can be simultaneously performed by a person
(e.g., making a phone call and walking). To tackle these issues, we propose a novel framework for multi-
label AVA detection in ultra-high-resolution aerial videos and introduce novel metrics for multi-label AVA
detection evaluation. The experimental results demonstrate that our framework outperforms other methods
for interpreting ‘‘who is doing what?’’ in our target task.

INDEX TERMS Aerial surveillance videos, multi-label atomic visual action detection.

I. INTRODUCTION
Surveillance cameras are commonly installed in city regions
to increase public safety. However, it is inapplicable to
densely set up surveillance cameras in sparsely populated
regions (e.g., suburb), while the safety concern is needed
therein. Considering the fact that some of the sparsely pop-
ulated regions are not covered by tall trees or buildings, it is
possible to periodically take surveillance videos by drones.
Due to drones’ mobility, a wide range of sparsely populated
regions can be monitored at a low cost.

To facilitate the efficiency of surveillance analysis, it is
desirable to automatically analyze ‘‘who is doing what?’’
in surveillance videos. In movie data, Atomic Visual
Action (AVA) detection was proposed to detect the spatio-
temporal location and action for each person [1], which
means, ‘‘who is doing what?’’ can be determined at each
frame in videos. Nonetheless, aerial surveillance videos have
some special properties and existing AVA detection methods
may not work properly on them. These special properties
include: (1) to capture visual details from the sky, each frame
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of aerial surveillance videos is preferred to be an ultra-high-
resolution image (e.g., 2160×3840); (2) relative to the entire
aerial image, each person appears to be a tiny object but could
still contain a large amount of pixels, which are sufficient for
obtaining his/her actions; (3) persons are sparsely located;
(4) the drone could move fast, resulting in significant rela-
tive position shift of the targets even in adjacent frames.

To approach AVA detection in aerial surveillance videos,
we specifically designed a new framework by constructing
new modules to seamlessly integrate object detection, multi-
object tracking, and action recognition (see FIGURE 1).
Object detection plays a fundamental role in AVA detec-

tion, which locates each person in a spatial domain by bound-
ing boxes. An ultra-high-resolution aerial image, however,
is too large to be the input of normal object detectors [2]–[5],
while down-scaling it could impair detection performance.
As an alternative approach, an ultra-high-resolution aerial
image could be cropped into smaller patches before per-
forming object detection. Some existing methods divide the
entire aerial image into patches by a sliding window [6]–[8].
Although such methods have considerably improved object
detection performance, they are inefficient when target
objects are sparsely located. We propose a Clustering Region
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FIGURE 1. Overview of proposed framework to know ‘‘who is doing
what?’’ in aerial videos.

Proposal Network (C-RPN) to alleviate this issue. C-RPN
works by only selecting patches that may include target
objects. Subsequently, the number of selected patches could
be fewer than using a sliding window when persons are
sparsely located. In spite of that AVA detection estimates
actions at each frame (i.e., ‘‘is doing what’’), spatio-temporal
context is needed to obtain the person motion information.
Generally, spatio-temporal tubes are used in AVA detection
for such a purpose. Previous works [9], [10] obtain spatio-
temporal tubes by extending bounding boxes from the cen-
tral frame to nearby ones. In drone-recorded aerial videos,
even if the absolute location of a person is static, its relative
location may shift remarkably due to the drone movement.
To eliminate the effect of drones’ movement, we construct
spatio-temporal tubes by amulti-object trackingmethod [11],
and then align a spatio-temporal tube referred to its first
frame. Since non-target objects might be included in the
spatio-temporal tubes, action recognition performance could
be affected. To tackle this issue, we assume the target person
can be consistently observed in his/her spatio-temporal tube
while others may not. Based on this assumption, we propose
a novel Spatio-temporal Attention Module (STAM) to obtain
attention for the target person in the spatio-temporal tube.

In addition, solely proposing the AVA detection framework
is insufficient to fully analyze ‘‘who is doing what?’’ in
aerial surveillance videos. In AVA detection, it is intuitive to
consider that each person could take several actions simulta-
neously, which are corresponding to multi-label actions. For
instance, a person could be making a phone call and walking
at the same time. Due to the lack of evaluation metrics, AVA
detection has been evaluated with only the single-label action
for a while [1], [12]. Therefore, we provide novel metrics for
multi-label AVA detection evaluation, which also contributes
to the general AVA detection studies.

In summary, our contributions include: (1) proposing a
novel framework for multi-label AVA detection on aerial

surveillance videos, which outperforms other methods in our
experiments; (2) providing novel metrics for multi-label AVA
detection evaluation. To the best of our knowledge, existing
metrics cannot be applied to multi-label AVA detection, and
we are the first to introduce such metrics.

II. RELATED WORKS
In this section, we briefly discuss related works of object
detection on aerial videos, AVA detection, and related
datasets.

A. OBJECT DETECTION ON AERIAL VIDEOS
Detecting tiny objects is a nontrivial problem and many
studies are trying to tackle it. Basically, there could be two
cases in tiny object detection. One is the entire image has
a low resolution and thereby the tiny objects only contain
a few numbers of pixels. To improve the detection perfor-
mance, amplification [13] and resolution enhancement [14]
are applied. In another case, the object itself has plenty of
pixels, but the object only constitutes a very small portion
of the entire image so that it is relatively tiny. An ultra-
high-resolution aerial image belongs to the second case and
performing object detection on the original image size is
desired.

Although the idea of transforming each frame of aerial
videos into smaller patches for object detection has been
around for some time [6]–[8], it is only recently that region
proposals and clustering have been jointly applied to reduce
the number of patches when objects are sparsely located [15].
Using the downsized aerial image, promising regions that
may contain objects can be learned by density map regres-
sion. Based on the predefined patch size, these regions can
be further clustered by their relative distances.

We assume that a good clustering strategy should satisfy
two conditions: first, reducing the number of patches; sec-
ond, keeping the object appearance complete in patches.
However, to some extent, these two conditions work against
each other. Solely satisfying the first condition may lead to an
object being partially cropped, while assigning each object
to a patch can effectively satisfy the second condition but
may introduce redundant patches. In the previous study [15],
grid-based clustering is used. Nevertheless, it is limited by
predefined grid size and location, and thus objects may be
incompletely cropped and further affect the bounding box
detection. To resolve this issue, peak point Non-Max Sup-
pression (NMS) and hierarchical clustering are used in our
C-RPN, attempting to make every object complete in at least
one patch.

B. ATOMIC VIDEO ACTION DETECTION
Atomic Video Action (AVA) detection concentrates on the
study of the action unit in videos. Just like the word unit (i.e.,
the unit of natural language processing) is explored to under-
stand an article, the phoneme unit (i.e., the unit of speech)
is analyzed to understand human speaking, and the object
detection/segmentation (i.e., the unit of image) is studied to
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FIGURE 2. A visualization of model structures for AVA detection when
only RGB data is used. L denotes the number of frames used in the
model. i) and ii) represent different models that share the same structure
at the beginning.

understand high-level visual tasks in images. AVA detection
is important for understanding video scenes.

Several models that can be used for AVA detection are
illustrated in FIGURE 2. FIGURE 2a, FIGURE 2c and
FIGURE 2d learn actions and boxes by networks with end-
to-end training, while FIGURE 2b and FIGURE 2e use inde-
pendent detectors to generate boxes, and then connect boxes
by trackers. This means generating spatio-temporal tubes
and predicting actions are separate steps. Actions and boxes
are jointly generated in FIGURE 2a, and boxes are linked
to form tubes by an offline tracking. To better model the
spatio-temporal information, FIGURE 2c and FIGURE 2d
learn features by a 3D ConvNet. The main difference is that
FIGURE 2c generates boxes and performs 2D Region of
Interest (RoI) pooling for each frame, while FIGURE 2d
extends the central frame boxes to adjacent frames. Addition-
ally, FIGURE 2c and FIGURE 2d.i) apply temporal pooling
to fuse features, while FIGURE 2d.ii) uses a 3D ConvNet

to process features and obtain a better action recognition
performance.

Owing to the divergence of the patch’s local coordinate and
the entire image’s global coordinate, our inputs can only be
aligned at the box level. Therefore, it is challenging to jointly
detect bounding boxes and actions in our framework. Similar
to FIGURE 2b, our framework (i.e., FIGURE 2e) generates
boxes by an independent detector and then connects boxes in
the temporal domain by a multi-person tracking algorithm.
Moreover, we propose a STAM to focus on the target object
at each frame and use a 3D ConvNet for action recognition.

C. RELATED DATASETS
Other than AVA detection, the primary focus of aerial video
study has been object detection and tracking [19]–[21]. In this
paper, since we concentrate onmulti-label AVA detection in
aerial videos, we utilize Okutama-action dataset [12] for our
experiments. The dataset comprises 43 minute-long drone-
recorded aerial videos, with fully annotated bounding boxes
in each frame and corresponding multi-label action classes.
In all, there are 12 categories of human actions: Handshak-
ing, Hugging, Reading, Drinking, Pushing/Pulling, Carry-
ing, Calling, Running, Walking, Lying, Sitting and Standing.
In the multi-label action annotation, one action class could
associate with another one. For instance, ‘‘Reading’’ and
‘‘Sitting’’ could be assigned to the same person at the same
time.

III. METHODOLOGY
Our proposed framework coherently generates patches,
bounding boxes, spatio-temporal tubes, 2D CNN features,
attention maps, and multi-label action classes (see
FIGURE 3). Using a video frame of size 2160 × 3840, our
C-RPN first generates patches of size 608 × 608. Based on
selected patches, normal detectors (e.g., YOLOv3-tiny [5])
can generate fine-grained bounding boxes for each person.
After that, fine-grained bounding boxes are connected to form
spatio-temporal tubes by a multi-person tracking algorithm
(e.g., Deep SORT [22]). Next, we sample L frames from
spatio-temporal tubes and obtain their corresponding 2D
CNN features. STAM then takes 2DCNN features to generate
attention maps that focus on target persons. In the end,
the concatenation of 2D CNN features and their multipli-
cation with attention maps, are used to estimate multi-label
action classes by a 3D ConvNet. For the overall processing,
it is a special multi-label AVA detection that serves for aerial
surveillance videos.

A. CLUSTERING REGION PROPOSAL NETWORK (C-RPN)
The Clustering Region Proposal Network (C-RPN) takes
downsized aerial images (544× 960) as its input. Since each
person is relatively tiny compared with the aerial image,
the coarse position of person could be modeled by a 2DGaus-
sian density map. The mean of 2D Gaussian is the centroid
of a person and the covariance represents the uncertainty of
this position, which is set to be roughly half of the bounding
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FIGURE 3. Architecture of the proposed framework. Given each ultra-high-resolution aerial image of size 2160× 3840, C-RPN is utilized to
select patches (608× 608) that might contain persons. Based on selected patches, normal detectors are used to generate fine-grained
bounding boxes for each person. After that, fine-grained bounding boxes are further connected to be spatio-temporal tubes by a
multi-person tracking algorithm. Next, we sample L frames from spatio-temporal tubes and obtain their corresponding 2D CNN features.
STAM then takes 2D CNN features to generate attention maps that focus on target persons. In the end, the concatenation of 2D CNN
features and their multiplication with attention maps, are used to estimate multi-label action classes by a 3D ConvNet.

box size. Thus, coarse person locations can be learned by
density map regression. Based on the predefined patch size,
coarse person locations can be further clustered by their
relative distances and patches that may contain persons are
generated (see FIGURE 4).

At frame k , let the network output of C-RPN be Hpred
k and

its ground truth be H true
k . When both Hpred

k and H true
k have a

row number ofR and a column number ofC , we can represent
them by

Hpred
k =

R⋃
r=1

C⋃
c=1

hpredkrc ,

H true
k =

R⋃
r=1

C⋃
c=1

htruekrc , (1)

where r and c are the row index and column index of the
heat map, respectively; hpredkrc and htruekrc denote the pixel at
position [r, c] of Hpred

k and H true
k , respectively.

The htruekrc is generated by

htruekrc

=

N∑
i=1

exp
(
−

(
r−pki(x) ∗ s1 ∗ s2

)2
+
(
c−pki(y) ∗ s1 ∗ s2

)2
2σ 2

ki

)
;

htruekrc

=

{
1, if htruekrc > 1;
htruekrc , else.

(2)

where [pki(x), pki(y)] are the center coordinates of the ith

ground-truth bounding box. Since the overlapping boxes may

generate values larger than 1, we clip the maximum value of
htruekrc at 1. The downscale factor from original image to C-RPN
input is denoted as s1, and the down-sampling factor from
C-RPN input to C-RPN output is denoted as s2. In this work,
we set s1 ≈ 1/4 (to be divisible by s2) and s2 = 1/8.

More specifically, σki, pki(x) and pki(y) are generated by

σki =
s1 ∗ s2

4

(
(xmaxki − x

min
ki )+ (ymaxki − y

min
ki )

)
;

pki(x) =
s1 ∗ s2

2
(xmaxki + x

min
ki );

pki(y) =
s1 ∗ s2

2
(ymaxki + y

min
ki ); (3)

where [xminki , y
min
ki , x

max
ki , ymaxki ] are corner positions of the ith

ground-truth bounding box at frame k . Here, σki is roughly
half size of the bounding box i at frame k .

We modify a penalty-reduced pixel-wise logistic regres-
sion with focal loss [23] and let it be our loss function
Lraw_pos,k as follows:

Lraw_pos,k

= −

R∑
r=1

C∑
c=1



(
1− hpredkrc

)α
log

(
hpredkrc

)
,

if htruekrc = 1;(
1− htruekrc

)β (hpredkrc

)α
log

(
1− hpredkrc

)
,

otherwise;

(4)

where α and β are hyper parameters for focal loss and we
follow work [23] to set α and β to be 2 and 4, respectively.

Ideally, each object center is a peak point on this
density map, thus, we can apply peak point Non-Max
Suppression (NMS) to obtain corresponding peak points.
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Nonetheless, there is no magic in the network of C-RPN,
and it is still suffering the dilemma of detectors in setting
a confidence threshold: better precision, or better recall.
In C-RPN, although false-positive (FP) peak points may gen-
erate redundant patches, such a redundancy has little effect
on the final fine-grained object detection. Therefore, we set a
low confidence threshold for peak point NMS to obtain peak
points, regardless of it may end up with low precision and
high recall.

Because peak points could be sparsely distributed, group-
ing neighboring peak points to guide patch generalization
can reduce the number of patches. As we have discussed
in the section of related works, grid-based clustering may
not fit our requirements as it may incompletely crop per-
son appearance in all patches. To make a trade-off between
reducing the number of patches and preserving the objects
appearance, we choose hierarchical clustering. In hierarchical
clustering, by adjusting the threshold distance to generate
suitable overlapping regions dynamically, we could make
person appearance complete in at least one patch.

We do not need to specify how many persons are
included in each patch, because another object detector (e.g.,
YOLOv3) will take patches as inputs to generate bounding
box for each person. Since overlapping patches could be
generated, we not only have duplicated boxes in the same
patch, but also have duplicated boxes on the overlapping
regions between patches. In our approach, therefore, we only
perform bounding box NMS once after transferring bounding
boxes from the patch coordinate to the original aerial image
coordinate.

B. ATTENTION ACTION RECOGNITION NETWORK (AARN)
In our approach, Deep SORT [22], a multiple-object tracking
method, is employed to link bounding boxes into spatio-
temporal tubes. Deep SORT takes an IoU (Intersection over
Union) descriptor, an appearance descriptor, and a Kalman
filter to perform bipartite bounding box assignments across
frames. The appearance descriptor, which is used to overcome
occlusion and long-time tracking issues, is a CNN network
trained on a person re-identification dataset [24] by a Cosine
Softmax Classifier [25].

After obtaining the spatio-temporal tube for each person,
we obtain their actions at each frame by a novel Attention
Action Recognition Network (AARN). Since AVA detec-
tion focuses on instantaneous actions other than long-term
actions, we only take a short-term temporal context and sam-
ple L frames from each spatio-temporal tube for action recog-
nition. Frames within 2 seconds (i.e., 60 frames in 30 FPS
videos) ahead of the target frame are excluded. For a person
whose track ID is n, we denote the earliest and latest frames
in the corresponding spatio-temporal tube as kmin and kmax ,
respectively. Setting kmax as the target frame, then L frames
are sampled to form a set {xn0 , x

n
1 , ..., x

n
L} ∈ X

n
kmax for action

recognition. The details of our online sampling strategy are
described in Algorithm 1.

FIGURE 4. The demonstration of generating patches by C-RPN. The
downscale factor s1 ≈ 1/4, and the down-sampling factor s2 = 1/8.

Algorithm 1 On-Line Sampling From a Spatio-
Temporal Tube
Input : Spatio-temporal tube T n[kmin:kmax ]

1 if len(T n[kmin:kmax ]) < L then
2 Xnkmax ← {T n[kmin:kmax ] + Repeat Padding with T nkmax};
3 else
4 δ = len(T n[max(kmin,kmax−60):kmax ])//L;
5 Xnkmax ← {Randomly choose L frames from

T n[max(kmin,kmax−60):kmax ] with the interval δ}.

Output: Xnkmax

Instead of directly processing RGB data Xnkmax by 3D
ConvNet, we extract their corresponding 2D CNN features
{f n1 , f

n
2 , ..., f

n
L } ∈ Fnkmax at the first step. Then, we proposed

a Spatio-temporal Attention Module (STAM), which is a 3D
encoder-decoder with skip connections, to generate attentions
maps {an1, a

n
2, ..., a

n
L} ∈ Ankmax by encoding and decoding

the global spatio-temporal representation of Fnkmax . After that,
we perform element-wise multiplication between Fnkmax and
Ankmax , and concatenate with Fnkmax to obtain a representation
that can selectively focus on the target person across all
frames. Finally, aforementioned 2DCNN features are stacked
to be 3D CNN features, which are then fed to a 3D ConvNet
to estimate multi-label action classes (see FIGURE 6).
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FIGURE 5. Visualizations of optical flow maps generated by PWC-Net [26], using Okutama-action Dataset. Due to the tiny
size of person and the drone camera movement, it is challenging to obtain person motion information from the optical flow.

FIGURE 6. An illustration of proposed Attention Action Recognition
Network (AARN), with its Spatio-temporal Attention Module (STAM).
Three frames are used in this illustration, where {xn

L−2, xn
L−1, xn

L } are RGB
features sampled by Algorithm 1, and they are fed to 2D ConvNet to
generate 2D CNN features {f n

L−2, f n
L−1, f n

L }. STAM takes stacking 2D CNN
features to obtain corresponding attention maps {an

L−2, an
L−1, an

L }. The
multiplication results of 2D CNN features and attention maps are
concatenated with 2D CNN features again, and then be used to estimate
multi-label actions by a 3D ConvNet.

Although it is common to utilize optical flow for action
recognition, we do not use it in our framework. In drone-
recorded aerial videos, even if the absolute location of an
instance is static, its relative location may have a huge change
across nearby frames, which is caused by the drone cam-
era movement and tiny object size. In Okutama-action data,
we use a state-of-the-art optical flow generator [26] to pro-
duce optical flows between nearby frames, and show them in
FIGURE 5. We can see, it is hard to identify the movement
of each person in the optical flow map.

IV. EVALUATION METRICS FOR MULTI-LABEL
AVA DETECTION
The evaluation metrics for object detection and multi-label
classification have beenwell studied separately [27], [28], but
the problem remains on how to associate them together for
multi-label AVA detection evaluation.

A simple approach could be evaluating the ‘‘person’’ object
detection performance for all detected samples and then
evaluating the multi-label action recognition performance for
positively detected samples. For instance, assuming that a
predicted sample is positive when IoU≥ 0.5 for the predicted
and ground-truth bounding boxes, we can apply h.l.@0.5,
which corresponds to Hamming Loss associated with IoU
≥ 0.5, to measure its multi-label classification performance.
Below, we show how the h.l.@0.5 is extended from the
original Hamming Loss.
h.l.@0.5

=
1

Npersons@0.5

1
Nlabels

Nperson@0.5∑
i=1

Nlabels∑
l=1

Y i,ltrue XOR Y
i,l
pred ,

(5)
where XOR is an exclusive-or operation and Nlabels stands for
the number of action categories. Ytrue and Ypred are boolean
arrays that denote the ground truth and predicted labels,
respectively. The number of positively detected samples are
represented by Npersons@0.5. To help understand the above
metrics, we illustrate how h.l.@0.5 is calculated by a toy
example in FIGURE 7.

Due to the complexity of multi-label classification evalua-
tion, usually more than one criterion is included to inspect the
performance from different perspectives [28]. By applying
the same modification as h.l.@0.5, we propose another three
criteria as follows.
• co.@0.5: this is extended from Coverage, and it evalu-
ates how far on average it is necessary to go through the
ranked scores to cover all true labels for positive samples
(IoU ≥ 0.5).
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FIGURE 7. An example of calculating h.l.@0.5. Only the first case with
IoU = 0.52 is considered as a positively detected sample, and therefore
the overall h.l.@0.5 = 0.5.

• r .l.@0.5: this is extended from Ranking Loss, and it
evaluates the average proportion of label pairs that are
incorrectly ordered for a positive sample (IoU ≥ 0.5).

• o.e.@0.5: this is extended from One Error, and it
evaluates the average number of top-ranked pre-
dicted labels that are not true labels for the positive
sample (IoU ≥ 0.5).

V. EXPERIMENTS
A. TRAINING AND TESTING SETUP
By following the previous work [12], Okutama-action dataset
is split into a training set with 33 aerial videos and a testing
set with 10 aerial videos.

For C-RPN, the Adam [29] optimizer with a learning rate
0.001 is applied for the first 50 epochs and then the learning
rate is changed to be 0.0001 for another 150 epochs. The
batch size is set up to be 8. Images and their corresponding
density maps are jointly augmented by Albumentations [30].

We perform a peak point detection on a validation set (i.e.,
20% of the training set) and find that a density map can
reach the confidence of 0.5 ∼ 1.0 and 0.0 ∼ 0.1 at the
target and the non-target positions, respectively. To reach a
high recall on the testing set, we set the peak point NMS
confidence threshold as 0.3. We search the maximum person
bounding boxes size in Okutama-action dataset to decide the
distance threshold in peak point NMS. More specifically,
the maximum person bounding box size is about 200 on the
original size image. Considering the total downscale from the
original size image (2160× 3840) to the output density map
(68 × 120) is about 32, the maximum person size on output
density map is about 6. Since distance threshold should be an
odd number, we take value 5 here. Using Python code, peak
point NMS can easily be implemented by

LISTING 1. Peak piont NMS.

For other detectors used for comparison, as R-FCN-
ResNet50 [3], Retinanet-ResNet50 [4], SSD-ResNet50 [2]
and YOLOv3-tiny [5], we take their pre-trained weights on
COCO dataset [31] and fine-tune them on our experimental
datasets by their default training strategy.

To train AARN, we equally sample 64 ground-truth spatio-
temporal tubes from each action class, and then sample Xnkmax
from each spatio-temporal tube (see Algorithm 1). As only
part of the training samples are included in one epoch train-
ing, it takes more iterations to get converged. We also apply
the Adam optimizer for it, with learning rate 0.001, 0.0001,
and 0.00001 for each 500 epochs. The batch size is set up
to be 16. We perform the same data augmentation, i.e., flip-
ping, rotation, resizing, and cropping to all samples in Xnkmax .
During the inference process, Algorithm 1 is applied again to
obtain inputs for the inference process.

Even though we are working on AVA detection with large-
size aerial videos, our framework decomposes the whole
problem into multiple simple tasks. Thus, all our experiments
can be implemented on a single NVIDIA TITAN X GPU.

B. PERFORMANCE EVALUATION
Our proposed metrics evaluate the multi-label AVA detec-
tion performance by two steps. Firstly, we evaluate person
detection performance, by using the mAP@0.5 metrics [31].
Secondly, we evaluate multi-label action recognition perfor-
mance for positively detected samples (i.e., a sample with
mAP> 0.5). We jointly inspect the performance of two steps
to obtain the overall multi-label AVA detection performance.

1) DETECTION EVALUATION
For the person detection evaluation, our main purpose is
to verify three assumptions: (1) compared with detectors
that work on the downsized aerial image (608 × 608 with
padding), although using our proposed C-RPNmay takemore
running time, it should improve the person detection perfor-
mance; (2) compared with partitioning the entire aerial image
(2160 × 3840) into patches with a sliding window [8], our
C-RPN should be faster when persons are sparsely located;
(3) in contrast to grid-based clustering [15], using hierarchi-
cal clustering with a proper distance threshold can keep the
complete appearance in at least one patch so that our method
can achieve better person detection performance.

For detectors that take the entire aerial image as input,
we standardize their input size to be 608 × 608 by padding,
since it is difficult to train and test a detector with larger
input size. When the sliding window passes the aerial image
margin, we pad zeros to the inputs. To reach a fast speed,
we choose YOLOv3-tiny [5] as the base detector in our
framework. Although our default setting is hierarchical-
clustering C-RPN, for a fair comparison with previous
work [15], we form a grid-clustering C-RPN by solely replac-
ing the clustering method.

The qualitative results of our patch generation and bound-
ing box estimation are shown in FIGURE 8 and FIGURE 9,
respectively. The quantitative results of the Okutama-action
testing set are shown in TABLE 1. Taking the original-
size aerial images (2160 × 3840), our C-RPN + YOLOv3-
tiny achieves 85.2 mAP@0.5 in terms of ‘‘person’’ object
detection, which remarkably outperforms detectors that uti-
lize downsized aerial images. Besides, by using C-RPN,
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FIGURE 8. Patch proposals in Okutama-action testing sets, which are generated by C-RPN. Generated peak points are marked by
red, and patches are enclosed by colorful rectangles. The first row shows three sequential frames (i.e., 300, 400 and 500) in video
1.2.3. The second row shows three sequential frames (i.e., 250, 300 and 350) in video 2.2.1. To efficiently cover target persons,
clusters automatically merge and split, based on the relative distance within peak points.

TABLE 1. ‘‘Person’’ object detection performance on Okutama-action dataset. The symbol ↑(↓) indicates that the larger(smaller) the value, the better the
performance.

the final object detection performance is even better than
using a sliding window, since some ambiguous background
might be excluded by C-RPN in advance. Last but not least,
because we try to make the person appearance complete in
at least one patch, the performance of hierarchical-clustering
C-RPN outperforms grid-clustering C-RPN [15]. Moreover,
we quantitatively calculate the average number of patches
generated by each method in Okutama-action testing set.
When hierarchical-clustering C-RPN reach the best detec-
tion performance, it only generates 3.1 patches averagely
on Okutama-action testing set, which is more efficient than
sliding window approach and similar to the grid-clustering
C-RPN. Therefore, our approach can achieve a comparable
speed of 30 FPS on the full resolution data.

2) MULTI-LABEL AVA DETECTION EVALUATION
Better-AVA model [10] is one of the state-of-the-art models
for AVA detection on movie data. It performs AVA detection
for the central frame and need an odd number of frames as its

inputs. We modify it to jointly estimate multi-label actions
and bounding boxes. Its inputs are L frames of downscale
aerial images (608 × 608 with padding), which are sampled
near the target frame. Due to the limitation of our computa-
tional resource, we choose L = 5 for it.
To inspect whether our AARN can improve the action

recognition performance by introducing spatio-temporal
attention, we construct an ablation study by replacing AARN
with I3D [32] and Lite ECO [33] in our framework. The
results of applying our proposed metrics are shown in
TABLE 2.

Compared with Better-AVA, our framework achieves bet-
ter performance in both person detection and multi-label
action recognition. Besides, our framework is faster than
Better-AVA on our target task. Considering our framework
decomposes the whole pipeline into several independent
steps, less memory cost is needed in our framework.

Through introducing spatio-temporal attentions, our
AARN performs better than I3D and Lite ECO, in terms of
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FIGURE 9. Examples of multi-label AVA detection results in our framework.

TABLE 2. Multi-label AVA detection results. The symbol ↑(↓) indicates that the larger(smaller) the value, the better the performance. Only RGB data is
used in this test. Note, we choose L = 5 for Better-AVA due to computation memory limitation and it has to be an odd number. While other models utilize
L = 8 since instantaneous actions are defined in AVA detection. Except for Better-AVA, other action detection models use bounding boxes that are
generated by C-RPN + YOLOv3-tiny, which achieves mAP@0.5 = 85.2.

FIGURE 10. Visualization of attentions for the target person. We assume
that the target person consistently appears in his/her spatio-temporal
tube while others may not. The attention mask is learned in an
unsupervised manner.

action recognition in our target task. Examples of attention
maps generated by STAM can be visualized in FIGURE10,
which shows that STAM can learn to focus on the target
person in an unsupervised manner.

VI. CONCLUSION
The aerial surveillance videos make it possible to increase
public safety in sparsely populated regions. To automatically
analyze ‘‘who is doing what?’’ in such videos, we specifically

propose a novel multi-label AVA detection framework and
corresponding evaluation metrics. Our framework gives the
flexibility to replace its detector and tracker based on the
need, which makes it possible to train and infer all modules
on a single GPU. Thus, our framework can be more suitable
than existing solutions for multi-label AVA detection in aerial
videos. On a final note, our proposed evaluation metrics are
not limited to aerial videos, and other AVA detection tasks can
also leverage suchmetrics to perform a reasonable evaluation.
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