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ABSTRACT This paper addresses the problem of Cramér–Rao lower bound (CRLB) analysis for joint target
location and velocity estimation in a multistatic passive radar system comprised of multiple noncooperative
illuminators of opportunity (IOs) and multiple geographically separated receivers. Unlike other existing
studies, special attention in this paper is paid to a more ubiquitous scenario, in which no reference channel
exists in receiver networks. Besides, the situation where the measurements collected at the receivers are con-
taminated by the interference directly illuminated from the IOs is taken into account. Namely, each receive
station simultaneously obtains direct-path interference (DPI) from all the IOs and echo signals reflected
by the target. Furthermore, the IO waveform is modeled as a stochastic process in which samples of the
unknown IO waveform are treated as a complex Gaussian sequence. Finally, the effects of multipath clutter
on the signal model and CRLB are well analyzed. The numerical results are provided to prove that the joint
CRLB is not only a function of the signal-to-noise ratio (SNR), DPI-to-noise ratio (DNR), and clutter-
to-noise ratio (CNR) but also associated with both IO waveform parameters and relative geographical
distribution of the system.

INDEX TERMS Passive radar, passive multistatic radar, Cramér–Rao lower bound, direct-path
interference (DPI), stochastic process.

I. INTRODUCTION
Passive radar, also known as passive coherent location (PCL),
utilizes existing noncooperative illuminators of opportunity
(IOs) rather its own dedicated transmitter for target detec-
tion and estimation [1]–[6]. Such radars have a number of
advantages compared with their conventional active counter-
parts. First, passive radar is much smaller, utmost economi-
cal, and easily designed since no additional transmitters are
required. Additionally, electromagnetic spectrum resources
are effectively saved. Second, the receiver is able to operate
covertly, which greatly reduces the detectability and improves
the viability of the system. Furthermore, the target can be
viewed from different perspectives in bistatic or multistatic
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configuration, which provides the system with advantages of
anti-stealth and anti-low altitude penetration. However, these
superiorities are obtained at the expense of extensive com-
putation, complex processing, and complicated algorithm.
Besides, unlike active radar that uses cooperative transmitter
and dedicated signal designed for target detection and estima-
tion, prior knowledge of IO waveform is generally unknown
to the receiver in passive radar. Whereby, the characteristics
of these waveforms must be analyzed in essence. Hence,
in recent years, many available IOs have been attracting
intensive attention such as global positioning system (GPS)
[7], digital video broadcasting-terrestrial (DVB-T) [8], [9],
frequency modulation (FM) radio [10], [11], WiFi [12], and
analogue TV (ATV) [13].

The Cramér–Rao lower bound (CRLB) is a predominant
theoretical analysis tool for parameter estimation, which
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specifies the minimum error variance of any unbiased esti-
mator. Namely, it tells us the best that could be achieved.
In passive radar systems, CRLB and some of its variations
are frequently used for setting a lower bound of the param-
eter estimation under different scenarios, benchmarking the
performance of a certain delay-Doppler estimator, evaluating
the merits of different algorithms, and designing a transmitter
selection scheme [14]–[26]. In [14], the ambiguity function
(AF) and modified CRLBs (MCRLBs) for target range and
velocity of the PCL system using universal mobile telecom-
munications system (UMTS) signal as the IO in both bistatic
andmonostatic configurationwere calculated. Reference [15]
extends the results in [14] from bistatic to a multistatic sce-
nariowithmultiple IOs.Moreover,MCRLB for target estima-
tion is deduced under both coherent and non-coherent modes,
which indicates that the MCRLB expression relies on not
only the IOwaveform but also the relative geographic relation
of the multistatic radar-target configuration. Reference [16]
further extends the MCRLB on target position and velocity
considering the line-of-sight (LOS) and non-LOS compo-
nents of the echo signals reflected by a single target in a three-
dimensional (3D) coordinate system. In [17], a more practical
expression of CRLB is provided, which considers that the
system may miss detection. Reference [18] calculates the
CRLB of the target location and velocity on the assumption
that IOs can be precisely estimated in a passive radar net-
work, where the multiple transmitters and multiple receivers
with single antenna are all widely distributed. It proves that
the parameter estimation performance can be improved by
increasing the number of transmitters or receivers. Similar
to [15], the CRLB for joint target estimation in FM-based
passive radar networks under both coherent and non-coherent
cases is deduced in [19]. Based on [19], [20] is committed to
a transmitter selection problem in the same sensor network
using the coherent CRLB as the selection criteria. Further-
more, [21] and [22] also study the sensor selection problem
based on CRLB. In particular, [21] studies how to optimally
arrange receiver location, while [22] expounds a scheme to
dynamically select IOs. Despite numerous research on CRLB
has been carried out in the field of passive radar, whereas,
most of those work is limited by a surge of factors in practice.

This paper completes a detailed investigation of CRLB for
joint target location and velocity estimation in a more practi-
cal scenario. First, different from most existing research with
the investigation of deterministic signal model, our CRLB
analysis is carried out treating the IO waveform as a stochas-
tic process [24], [27]–[29]. This is because, the waveform
information of the IO signal cannot be completely acquired
in many cases, but only its statistical distribution. Moreover,
IOs transmitted withmultiplexing techniques, such as orthog-
onal frequency division multiplexing (OFDM) signals, are
widely deployed and quite appropriate for modeling as
stochastic process in the light of the central limit theo-
rem [30]. Therefore, modeling the IO signal as a stochastic
process without any information of the waveform is quite
reasonable and can be applied to more general scenarios

in passive radar systems. Whereby, with reference to [24],
an autoregressive process with known AR coefficient and
noise variance is exploited tomodel the IO signal in this work.

Second, we expand the system structure in [24] and [29]
to a multistatic configuration comprised of multiple IOs and
multiple geographically separated receivers. It is notewor-
thy at this point that only single antenna is established in
each receive station, namely, no additional antenna set to
collect direct-path signals for reference, which is similar to
the concept of active multiple-input multiple-output (MIMO)
radar systems [28]. That is because, significant performance
improvement can be obtained by increasing the number of
IOs and receivers [18], [19]. More importantly, the conven-
tional approach using reference channel is seriously affected
by the signal-to-noise ratio (SNR) of the direct-path sig-
nal. However, in practical applications, reference signal with
high SNR cannot be ideally obtained for many reasons, e.g.,
no LOS path existing between the IO and the receiver, which
may significantly lead to detection performance degradation
of the system [31]. The system model in this study can avoid
this problem whilst offering advantages of spatial diversity
and wider coverage to improve the detection and estima-
tion performance. Third, we also consider the impacts of
the direct-path signals enclosed in the target-path echoes
due to the still existing direct-path interference (DPI) after
some interference cancellation methods. In addition, signals
obtained by all receivers can be centrally processed to take
advantage of the correlations between all types of signals
across receivers in this configuration, which is able to get
better performance gains for detecting in practice [32].

Finally, the theoretical calculations are demonstrated by
simulation results, and corresponding analysis is then given.
It should be mentioned that [27] only provide the detection
analysis inmultistatic scenario with single IO, and no detailed
research of CRLB on parameter estimation is provided. Taken
all mentioned above, a more practical and adaptable problem
model is studied in this paper, and related CRLB expression
is derived, which is particularly worthy of academic inves-
tigation. To our knowledge, the specific study of the CRLB
for stochastic model based joint target location and velocity
estimation in multistatic passive radar with DPI is not yet
gained. For greater clarity, themain contributions of this work
are concluded as follows.

1) The signal model is formulated under the case where
the multistatic configuration are composed of multiple IOs
and receivers without reference channels, and the DPI is
simultaneously considered.

2) We calculate the joint CRLB for target location and
velocity estimation based on stochastic model under the fore-
going scenario.

3) The effects of multipath clutter on the model and
CRLB are analyzed in detail.

4) We have revealed that the CRLB depends on not only
the IO waveform parameters and relative geometry between
the target and the radar system, but also the value of SNR,
DPI-to-noise ratio (DNR), and clutter-to-noise ration (CNR).
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FIGURE 1. The passive radar system comprised of multiple IOs and
multiple receive stations with DPI.

The rest of the paper is organized as follows. In Section 2,
the collected signal model in the multistatic configuration
considering the existence of DPI is given. In Section 3,
we derive the expression of Fisher information matrix (FIM)
for unknown target parameters, and then the CRLB of interest
is given. Numerical simulations are presented in Section 4 to
verify the theoretical derivation. Finally, Section 5 summa-
rizes the results of this work and provides future directions of
research.

II. SIGNAL MODEL
Fig. 1 displays the considered multistatic geometry. Consider
a passive radar system involvingM separated noncooperative
transmitters, N distributed receivers, and one target located
at a certain location and speed. For simplicity, the problem is
analyzed in a two-dimensional plane. Without loss of gen-
erality, one can easily extend the results to a 3D scenario.
Hence, the positions of the pth transmitter and qth receiver
are denoted by Tp = [T xp ,T

y
p ]T and Rq = [Rxq,R

y
q]T ,

respectively. The target position and velocity states that are
unknown to the receive networks are defined as Xt = [x, y]T

andXv = [vx , vy]T , respectively. For the reason that the num-
ber of unknown parameters to be estimated will be increased
as the number of targets increases, which can make the anal-
ysis more complicated, only one target is considered in this
study. The case with multiple targets will be discussed in
future work. In addition, although some suppression methods
are taken to eliminate the direct-path signals contained in
target echoes, the received measurements will be inevitably
corrupted by the residual DPI. Let yq(t) be the signal received
at the qth receiver. Hence,

yq(t)=
M∑
p=1

γpqxp(t−τ dpq)+
M∑
p=1

αpqxp(t − τ tpq)e
j2π fpqt+nq(t),

(1)

where p = 1, 2, . . . ,M , q = 1, 2, . . . ,N .xp(t) is the
unknown signal emitted by the pth IO, which has a duration
of Tp seconds owing to the IO utilizing framed transmis-
sions [24]. γpq and αpq are complex channel coefficients
according to the pqth direct-path and target echo-path,

respectively. nq(t) is the additive zero-mean white Gaussian
noise of the qth receiver with variance σ 2

q , which is assumed
to be deterministic and known. The direct-path delay τ dpq,
target-path delay τ tpq, and Doppler frequency fpq of the
pqth bistatic pair are defined as

τ dpq =

√
(T xp − Rxq)2 + (T yp − R

y
q)2

c

=

∥∥Tp − Rq
∥∥
2

c
, (2)

τ tpq =

√
(T xp − x)2+(T

y
p − y)2 +

√
(Rxq − x)2+(R

y
q − y)2

c

=

∥∥Tp − Xt
∥∥
2 +

∥∥Rq − Xt
∥∥
2

c
, (3)

λp fpq =

(
T xp − x

)
vx +

(
T yp − y

)
vy∥∥Tp − Xt

∥∥
2

+

(
Rxq − x

)
vx +

(
Ryq − y

)
vy∥∥Rq − Xt

∥∥
2

=

(
Tp − Xt

)T Xv∥∥Tp − Xt
∥∥
2

+

(
Rq − Xt

)TXv∥∥Rq − Xt
∥∥
2

, (4)

where c is the speed of light, λp is the carrier wavelength of
the pth IO signal, and ‖·‖2 represents the Euclidean distance
between two vectors. It is worth mentioning that the above
signal model is based on the assumption that the signals from
different IOs are able to be separated with some methods.

As with literature [24], the IO coordinates are assumed
to be entirely known. Whereas, due to multiple IOs locating
at different positions in this multistatic geometry, the direct-
path delays cannot be all compensated for by one of them.
Compared with [24] that derives the CRLB based on the
frequency domain representation of the received signal, time
domain representation is employed in our derivation. Let the
received signal yq(t) be sampled with sampling points Ns,
where the observation duration is To and the sampling inter-
val is Ts, i.e., To = TsNs. Thus, the digitized expression
of yq(t) after a series of equivalent transformation is
expressed as [29], [31]

yq =
M∑
p=1

γpqA(τ dpq)xp +
M∑
p=1

αpqB(τ tpq, fpq)xp + nq, (5)

where xp and nq are the vectors composed of sampling
points of xp(t) and nq(t), respectively. In particular, nq is a
zero-mean Gaussian noise sequence with covariance matrix
Unq . A(τ

d
pq) is the delay operator for DPI, and B(τ tpq, fpq) is

the delay-Doppler operator for target-path signal, which are
denoted as

A(τ dpq) = FH�(τ dpq)F, (6)

B(τ tpq, fpq) = ϕ(fpq)F
H�(τ tpq)F, (7)

where F is the discrete Fourier transform (DFT) matrix
with entries [F]m,n = exp [−j2π (m− 1)(n− 1)/Ns], and
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m, n = 1, 2, . . . ,Ns. ϕ(fpq), a diagonal matrix with diagonal
entries [ϕ(fpq)]m,m = exp[j2π (m − 1)fpqTs], represents the
phase shift of the transmitted signal caused by the Doppler
frequency. �(τ dpq) and �(τ

t
pq) indicate the phase shift in the

frequency domain due to the direct-path delay and target-path
delay of the pqth bistatic pair, both of which are also diagonal
matrices with diagonal entries calculated by [�(τ dpq)]m,m =
exp[ − j2π (m − 1)τ dpq/TsNs] and [�(τ tpq)]m,m = exp[ −
j2π (m− 1)τ tpq/TsNs], respectively.

Most existing research studies the target detection and esti-
mation problem based on deterministic signal with unknown
parameters. However, in most cases, the receiver networks
know nothing about the specific structure and modulation
of the IOs likely used, especially when the passive radar
system needs to be rapidly deployed in unfamiliar areas.
Hence, a universal solution for this problem is supposed to
be proposed. Modeling the IO signal as a stochastic process
is reasonable. First, OFDM modulation technology is widely
used in modern communication for its excellent performance,
which can be almost treated as a Gaussian process by the cen-
tral limit theorem. Second, correlations between the sampled
waveforms can be effectively exploited to improve the detec-
tion and estimation performance. Finally, Even if the actual
IO signal mismatches the model, a desired result can be still
obtained with certain algorithm [29]. Therefore, CRLB based
on a stochastic process model is necessary to be analyzed.
Here, the AR process is used to model the IO signal, where
xp is a zero-mean Gaussian distributed sequence with covari-
ance Uxp expressed as

[Uxp ]m,n =
σ 2
cp (−ρp)

|m−n|

1−
∣∣ρp∣∣2 , (8)

where m, n = 1, 2, . . . ,Ncp . Ncp = Tp
/
Ts + 1 indicates the

number of xp samples. σ 2
cp represents the noise variance in

AR process, and ρp denotes the AR coefficient that reflects
the correlation between the contiguous samples of xp in time
domain. It should be noted that σ 2

cp and ρp are deterministic
known, which can be determined by fitting the AR model
with some methods, e.g., recursive prediction error (RPE)
[33], maximum likelihood (ML) [34], and least squares (LS)
[35]. The actual parameters of the IO signal could affect its
physical model, and then, the characteristics of the signal
samples, which may determine the parameters in AR model.
However, the estimation accuracy of these parameters is
mainly dependent on sampled data, e.g., the number of the
samples.

III. DERIVATION OF CRLB
This CRLB analysis offers a performance benchmark for
joint estimation of the unknown target parameters. Let
y = [yT1 , y

T
2 , · · · y

T
N ]

T be the measurements collected at N
receivers, where yq = {yq(0), yq(Ts), · · · yq[(Ns − 1)Ts]}T .
Since receivers are widely separated, it is reasonable to
suppose that yq are mutually independent for each other.
Obviously, y is complex zero-mean Gaussian distributed with

covariance Uy, where

Uy = E[yyH ] = E

 y1yH1 · · · y1yHN
...

. . .
...

yNyH1 · · · yNyHN

 . (9)

For convenience of calculation, we rewrite formula (9) in
a more simplified form as [27]

Uy =

M∑
p=1

{Ap[(γ pγ
H
p )⊗ Uxp ]A

H
p + Bp[(αpαHp )⊗ Uxp ]B

H
p

+Bp[(αpγHp )⊗ Uxp ]A
H
p +Ap[(γ pα

H
p )⊗Uxp]B

H
p }+Uv,

(10)

where γ p = [γp1, γp2, . . . , γpN ]T, αp=[αp1, αp2, . . . , αpN ]T,
Ap = diag[Ap1,Ap2, . . . ,ApN ], and Bp = diag[Bp1,
Bp2, . . . ,BpN ] represent the parameter vectors and matri-
ces generated by the pth IO for all receivers. A(τ dpq) and
B(τ tpq, fpq) are here after referred to as Apq and Bpq, respec-
tively. ⊗ is the Kronecker product operator. Uv is a diagonal
matrix whose diagonal entries are composed of the covari-
ance matrices of the N receiver channel noise, i.e.,

Uv =

Un1
. . .

UnN

 . (11)

We define the unknown parameter vector as 2 =

[γ T ,αT , τT , fT ]TL=(6MN )×1 comprised of direct-path channel
coefficients γ = [γ R11, . . . , γ

R
MN , γ

I
11, . . . , γ

I
MN ]

T
(2MN )×1,

target-path channel coefficients α = [αR11, . . . , α
R
MN ,

αI11, . . . , α
I
MN ]

T
(2MN )×1, time delay τ = [τ t11, τ

t
12, . . . ,

τ tMN ]
T
(MN )×1, and Doppler frequency f = [f11, f12, . . . ,

fMN ]T(MN )×1 of the target. Since channel coefficients are com-
plex, R and I represent the real and imaginary parts of the
parameter, respectively. In line with [24], the elements of the
FIM of2 are

[I(2)]m,n= trace
[
U−1y

∂Uy

∂2m
U−1y

∂Uy

∂2n

]
(m, n=1, 2, . . . ,L) ,

(12)

where ∂Uy
∂2m

denotes the derivative of observation covariance
matrix with respect to the mth element of the unknown
parameter vector, whose concrete expressions are given as
follows.

∂Uy

∂γ Rpq
= Ap[(EqγHp + γ pE

H
q )⊗ Uxp ]A

H
p

+Bp[(αpEHq )⊗ Uxp ]A
H
p + Ap[(EqαHp )⊗ Uxp ]B

H
p ,

(13)
∂Uy

∂γ Ipq
= Ap[(Cqγ

H
p + γ pC

H
q )⊗ Uxp ]A

H
p

+Bp[(αpCH
q )⊗ Uxp ]A

H
p + Ap[(Cqα

H
p )⊗ Uxp ]B

H
p ,

(14)
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∂Uy

∂αRpq
= Bp[(EqαHp + αpE

H
q )⊗ Uxp ]B

H
p

+Bp[(EqγHp )⊗ Uxp ]A
H
p + Ap[(γ pE

H
q )⊗ Uxp ]B

H
p

(15)
∂Uy

∂αIpq
= Bp[(Cqα

H
p + αpC

H
q )⊗ Uxp ]B

H
p

+Bp[(Cqγ
H
p )⊗ Uxp ]A

H
p + Ap[(γ pC

H
q )⊗ Uxp ]B

H
p ,

(16)
∂Uy

∂τ tpq
= 0pq[(αpαHp )⊗ Uxp ]B

H
p + Bp[(αpαHp )⊗ Uxp ]0

H
pq

+0pq[(αpγHp )⊗Uxp ]A
H
p +Ap[(γ pα

H
p )⊗ Uxp ]0

H
pq,

(17)
∂Uy

∂fpq
=9pq[(αpαHp )⊗Uxp ]B

H
p +Bp[(αpα

H
p )⊗ Uxp ]9

H
pq

+9pq[(αpγHp )⊗ Uxp ]A
H
p +Ap[(γ pα

H
p )⊗Uxp ]9

H
pq,

(18)

where Eq is a column vector with N element length, whose
qth element is 1 and the rest is 0, i.e., Eq =

[
0 · · · 1 · · · 0

]T .
In a similar way,Cq =

[
0 · · · j · · · 0

]
, where j is the operator

of the imaginary part, i.e., j2 = −1. 0pq represents the
delay-Doppler operator matrixBp taking the derivative of τ tpq,
which is expressed as

0pq =



0
. . .

3pq
. . .

0

 , (19)

where

3pq = ϕ(fpq)FH
∂�(τ tpq)

∂τ tpq
F, (20)

and

[
∂�(τ tpq)

∂τ tpq
]m,m =

−j2π (m− 1)
TSNs

e−j2π (m−1)τ
t
pq/TSNs , (21)

Similarly, 9pq is defined as

9pq =



0
. . .

ςpq
. . .

0

 , (22)

where

ςpq =
∂ϕ(fpq)
∂fpq

FH�
(
τ tpq

)
F, (23)

and

[
∂ϕ(fpq)
∂fpq

]m,m = j2π (m− 1)Tsej2π (m−1)fpqTs . (24)

FIGURE 2. The system configuration with two IOs, two receivers, and one
target.

Now, the target parameter vector of interest is defined as
8 = [γ T , αT , x, y, vx , vy]TLp=(4MN+4)×1. According to the
chain rule, we can obtain

I(8)Lp×Lp = (
∂2T

∂8
)I(2)(

∂2T

∂8
)T . (25)

∂2T

∂8
, the Jacobian matrix whose entries are comprised of the

derivatives of formulas (3) and (4) with respect to the target
position and velocity, is computed as

λp
∂fpq
∂x
= −

vx∥∥Tp − Xt
∥∥
2

−
vx∥∥Rq − Xt

∥∥
2

−
(Tp − Xt )TXv(x − T xp )∥∥Tp − Xt

∥∥3
2

−
(Rq − Xt )TXv(x − Rxq)∥∥Rq − Xt

∥∥3
2

, (26)

λp
∂fpq
∂y
= −

vy∥∥Tp − Xt
∥∥
2

−
vy∥∥Rq − Xt

∥∥
2

−
(Tp − Xt )TXv(y− T

y
p )∥∥Tp − Xt

∥∥3
2

−
(Rq − Xt )TXv(y− R

y
q)∥∥Rq − Xt

∥∥3
2

, (27)

λp
∂fpq
∂vx
=

T xp − x∥∥Tp − Xt
∥∥
2

+
Rxq − x∥∥Rq − Xt

∥∥
2

, (28)

λp
∂fpq
∂vy
=

T yp − y∥∥Tp − Xt
∥∥
2

+
Ryq − y∥∥Rq − Xt

∥∥
2

, (29)

∂τ tpq

∂x
=

1
c

[
x − T xp∥∥Tp − Xt

∥∥
2

+
x − Rxq∥∥Rq − Xt

∥∥
2

]
, (30)

∂τ tpq

∂y
=

1
c

[
y− T yp∥∥Tp − Xt

∥∥
2

+
y− Ryq∥∥Rq − Xt

∥∥
2

]
. (31)
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FIGURE 3. CRLB in target location dimension versus SNR and DNR.
(a) Location CRLB versus SNR. (b) Location CRLB versus DNR.

Hence, ∂2
T

∂8
can be rewritten as

∂2T

∂8
=

[
I(4MN )×(4MN ) 0

0 Z(f ,τ )
4×(2MN )

]
, (32)

where I(4MN )×(4MN ) is the unit matrix, and

Z(f ,τ )
=



∂τ t11

∂x
· · ·

∂τ tMN

∂x
∂f11
∂x

· · ·
∂fMN
∂x

∂τ t11

∂y
· · ·

∂τ tMN

∂y
∂f11
∂y

· · ·
∂fMN
∂y

0 · · · 0
∂f11
∂vx

· · ·
∂fMN
∂vx

0 · · · 0
∂f11
∂vy

· · ·
∂fMN
∂vy


.

(33)

Therefore, the CRLB of interest in this paper is

CRLB(8) = I−1(8), (34)

where the CRLB for each parameter is given as

CRLB8m =

[
I−1(8)

]
m,m

(m = 1, 2, ...,LP). (35)

FIGURE 4. CRLB in target velocity dimension versus SNR and DNR.
(a) Velocity CRLB versus SNR; (b) Velocity CRLB versus DNR.

IV. SIMULATION RESULTS
Numerical simulation results will be taken over in this section
to compute the CRLB for a stochastic process based multi-
static passive radar network with DPI. Parts of the simulation
parameters in [19] are used for reference, and a multistatic
configuration with two IOs and two receivers (See Fig. 2) is
considered. The location states of IOs and receivers are set as

T1 = [0, 0]T km, T2 = [0, 4]T km,

R1 = [4, 0]T km, R2 = [4, 4]T km.

For simplicity, only one target located at [1,−3]T km with
velocity states [30, 50]T m/s is considered in this scenario.
In simulation, first-order AR process is employed to model
the signals transmitted by IOs. We set the waveform parame-
ters be the same as in [24]. Since we emphasize on the impact
of parameter changes on the CRLB, the same parameters of
different IOs are assumed to remain the same, e.g., λ1 =
λ2 = · · · = λM = λ, Nc1 = Nc2 = · · ·NcM = Nc, and
ρ1 = ρ2 = · · · ρM = ρ. Let Ns = 256, Nc = 200, ρ = −0.9,
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FIGURE 5. CRLB in target location dimension versus SNR and DNR after
changing the geometry. (a) Location
CRLB versus SNR; (b) Location CRLB versus DNR.

Ts = 1, and λ = 3m. In terms of the configuration shown
in Fig. 1, the SNR and DNR are defined as

SNR = 10 log10

M∑
p=1

N∑
q=1

∣∣αpq∣∣2
σ 2
q
, (36)

DNR = 10 log10

M∑
p=1

N∑
q=1

∣∣γpq∣∣2
σ 2
q
. (37)

It is supposed to note that the SNR and DNR of each
receiver remain the same, and fix σ 2

1 = σ 2
2 · · · = σ 2

N = 1.
The square root of CRLB (RCRLB) will be computed in each
analysis.

Fig. 3 illustrates how the CRLB in target location dimen-
sion changes as SNR and DNR increase. We set DNR =
15dB and SNR = −10dB in Figs. 3 (a) and (b), respectively.
In Fig. 4, the results of the velocity CRLB against SNR and
DNR are rendered, where the SNR and DNR are the same
as defined in Fig. 3. Relying on obtained results, one can
find that the SNR and DNR noticeably affect the CRLB.
Specifically, both the location CRLB and the velocity

FIGURE 6. CRLB in target velocity dimension versus SNR and DNR after
changing the geometry. (a) Velocity CRLB versus SNR. (b) Velocity CRLB
versus DNR.

CRLB decrease with increasing SNR, and increase with
increasing DNR. Moreover, the CRLB in the y-axis compo-
nent is lower than the x-axis component for both location
and velocity, which means the estimation of the unknown
target parameters in the y-dimension might obtain better
performance. Furthermore, the curves as a function of SNR
in Figs. 3 and 4 decrease more and more slowly as the SNR
becomes stronger. However, the increasing DNR exacerbate
the estimation performance more and more significant.

Next, the effect of the geographical distribution of the
passive radar network on the target location and velocity
CRLB is analyzed through an illustrative example. Since the
position of the IO is generally fixed in practice, this analysis
is achieved by only adjusting the locations of the receivers.
Let the positions of receive station 1 and receive station 2 be
changed to [5, 4]T km and [5, 0]T km, respectively. The CRLB
calculation results are plotted in Fig. 5 and Fig. 6. As one
can see that changing the geometry will affect the variation
of the CRLB. The trend of the curves with varying SNR and
DNR is analogous to that depicted in the first configuration.
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FIGURE 7. The location and velocity CRLB versus the number of IO signal
samples. (a) CRLB in location dimension. (b) CRLB in velocity dimension.

Besides, the CRLB in the y-dimension is still lower than
that in the x-dimension. Differently, the second configura-
tion after changing the geometry has a certain performance
regression of CRLBon location, whereas a little improvement
on velocity.

In what follows, the system geometry remains unchanged
as presented in Fig. 2, i.e., the first configuration. The curves
of CRLB as a function of signal parameters are displayed
in Fig. 7 and Fig. 8, where the SNR and DNR are both set
as 0dB and −10dB. In Fig. 7, the results depict how the
CRLB changeswith regard to varying number of the IO signal
samplesNc, which indirectly reflects the relationship with the
signal duration T . Intuitively, as the Nc is increased, there is
a decrease in the CRLB for the parameters. This is reason-
able because more IO signal samples represent longer signal
duration, which illustrates that more useful information will
be included in the receivedmeasurement, that is, the system is
able to obtain more dramatical improvement of the estimation
performance.

Fig. 8 gives detailed insights into the CRLB performance
on location and velocity dimensions according to varying

FIGURE 8. The location and velocity CRLB versus AR coefficient. (a) CRLB
in location dimension. (b) CRLB in velocity dimension.

IO waveform correlations. Note that η represents the absolute
value of the AR coefficient, i.e., η = |ρ|. One obvious
feature is that the CRLB performance is gradually facilitated
as η increases. Moreover, the sensitivity of both location and
velocity CRLB to the correlation between the IO waveform
samples will become stronger as η increases. This is expected
since larger η denotes stronger correlation between the
IO waveform samples under the adopted signal model in this
work. When the IO waveform is highly correlated, there will
exist extensive potential waveform information that can be
utilized for enhancing the estimation performance.

We also investigate the impacts of multipath clutter on
CRLB. According to (1), the received signal model after
considering multipath components is rewritten as

yq(t) =
M∑
p=1

γpqxp(t − τ dpq)+
M∑
p=1

αpqxp(t − τ tpq)e
j2π fpqt

+

M∑
p=1

W c
pq∑

w=1

δwpqxp(t − τ
w
pq)+ nq(t), (38)
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FIGURE 9. The location and velocity CRLB versus SNR while considering
multipath components. (a) CRLB in location dimension. (b) CRLB in
velocity dimension.

where W c
pq is the number of clutter components of the pqth

bistatic pair, and δwpq and τ
w
pq denote the associated complex

channel coefficient and time delay of the wth multipath com-
ponent, respectively. For simplicity, we assume that only one
multipath clutter exists in each pqth transmitter-receiver path.
Hence, the received signal model is simplified as

yq(t) =
M∑
p=1

γpqxp(t − τ dpq)+
M∑
p=1

αpqxp(t − τ tpq)e
j2π fpqt

+

M∑
p=1

δpqxp(t − τ cpq)+ nq(t). (39)

The specific derivation of CRLB in this case is demon-
strated in Appendix A. Herein, the CNR is defined as

CNR = 10 log10

M∑
p=1

N∑
q=1

∣∣δpq∣∣2
σ 2
q
. (40)

The curve of CRLB with varying SNR is taken as an
example to study how multipath clutter affects the estimation

FIGURE 10. The location and velocity CRLB versus CNR. (a) CRLB in
location dimension. (b) CRLB in velocity dimension.

performance, where CNR = 20dB and other parameters
keep the same as defined in Fig. 2. The results are plotted
in Fig. 9 with multipath delay assigned as 1.05τ d11, 1.15τ

d
12,

1.25τ d21, and 1.35τ d22. One can observe that there exists a
significant performance degradation on CRLBwhen the mul-
tipath components of the transmitted signal are considered.

In Fig. 10, we demonstrate the relationship between the
CRLB and the CNR. The multipath delays remain the same
as Fig. 9 with the SNR and DNR set as 5dB and -10dB,
respectively. It can be seen that the CRLB curves on both
position and velocity dimension shift upward more and more
significant as CNR increases. Hence, in practice, multipath
interference should be suppressed as much as possible.

V. CONCLUSION
In this paper, we have completed a detailed investigation of
the joint estimation for target location and velocity in the
passive radar system comprised of multiple noncooperative
transmitters and geographically distributed receive stations
based on stochastic process model. The CRLB for a single
target is computed with the absence of reference channel
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and the existence of DPI. We observe that the joint CRLB
value is a function of both the system geometry and the IO
waveform parameters. Furthermore, numerical results have
been revealed to validate that the CRLB is dependent on SNR,
DNR, and CNR. In future work, the computation will be
extended to the case, where multiple targets are taken into
account. Additionally, the problem of transmitter selection
and optimal receiver arrangement strategy will be studied.

APPENDIX
A. Derivation of CRLB considering multipath components

According to (39), the digitized expression of the received
signal is expressed as

yq =
M∑
p=1

γpqA(τ dpq)xp +
M∑
p=1

αpqB(τ tpq, fpq)xp

+

M∑
p=1

δpqW(τ cpq)xp + nq, (41)

where W(τ cpq) is the delay operator for multipath signal,
which is denoted as

W(τ cpq) = FH�(τ cpq)F. (42)

The covariance matrix of joint measurements y is

Uy =

M∑
p=1

{Ap[(γ pγ
H
p )⊗ Uxp ]A

H
p + Bp[(αpαHp )⊗ Uxp ]B

H
p

+Bp[(αpγHp )⊗ Uxp ]A
H
p + Ap[(γ pα

H
p )⊗ Uxp ]B

H
p

+Ap[(γ pδ
H
p )⊗ Uxp ]W

H
p + Bp[(αpδHp )⊗ Uxp ]W

H
p

+Wp[(δpδHp )⊗ Uxp ]W
H
p +Wp[(δpγHp )⊗ Uxp ]A

H
p

+Wp[(δpαHp )⊗ Uxp ]B
H
p } + Uv, (43)

where δp = [δp1, δp2, . . . δpN ]T and Wp = diag[Wp1,

Wp2, . . . ,WpN ]. Here, Wpq is the simple representation of
W(τ cpq). Under this circumstances, the unknown parameter
vector is redefined as

2 = [γ T ,αT , δT , τT , fT , τTc ]
T
L=(9MN )×1, (44)

where δ = [δR11, . . . , δ
R
MN , δ

I
11, . . . , δ

I
MN ]

T
(2MN )×1 and τ c =

[τ c11, τ
c
12, . . . , τ

c
MN ]

T
(MN )×1. Hence, in the light of (12),

the derivatives of Uy with respect to the unknown parameters
in (43) are expressed as follows.

∂Uy

∂γ Rpq
= Ap[(EqγHp + γ pE

H
q )⊗Uxp ]A

H
p

+Bp[(αpEHq )⊗Uxp ]A
H
p + Ap[(EqαHp )⊗Uxp ]B

H
p

+Ap[(EqδHp )⊗Uxp ]W
H
p +Wp[(δpEHq )⊗Uxp ]A

H
p ,

(45)
∂Uy

∂γ Ipq
= Ap[(Cqγ

H
p + γ pC

H
q )⊗Uxp ]A

H
p

+Bp[(αpCH
q )⊗Uxp ]A

H
p + Ap[(Cqα

H
p )⊗Uxp ]B

H
p

+Ap[(Cqδ
H
p )⊗Uxp ]W

H
p +Wp[(δpCH

q )⊗Uxp ]A
H
p ,

(46)

∂Uy

∂αRpq
= Bp[(EqαHp + αpE

H
q )⊗Uxp ]B

H
p

+Bp[(EqγHp )⊗Uxp ]A
H
p + Ap[(γ pE

H
q )⊗Uxp ]B

H
p

+Bp[(EqδHp )⊗Uxp ]W
H
p +Wp[(δpEHq )⊗Uxp ]B

H
p ,

(47)
∂Uy

∂αIpq
= Bp[(Cqα

H
p + αpC

H
q )⊗Uxp ]B

H
p

+Bp[(Cqγ
H
p )⊗Uxp ]A

H
p + Ap[(γ pC

H
q )⊗Uxp ]B

H
p

+Bp[(Cqδ
H
p )⊗Uxp ]W

H
p +Wp[(δpCH

q )⊗Uxp ]B
H
p ,

(48)
∂Uy

∂δRpq
= Wp[(EqδHp + δpE

H
q )⊗Uxp ]W

H
p

+Bp[(αpEHq )⊗Uxp ]W
H
p + Ap[(γ pE

H
q )⊗Uxp ]W

H
p

+Wp[(EqγHp )⊗Uxp ]A
H
p +Wp[(EqαHp )⊗Uxp ]B

H
p ,

(49)
∂Uy

∂δIpq
= Wp[(Cqδ

H
p + δpC

H
q )⊗Uxp ]W

H
p

+Bp[(αpCH
q )⊗Uxp ]W

H
p + Ap[(γ pC

H
q )⊗Uxp ]W

H
p

+Wp[(Cqγ
H
p )⊗Uxp ]A

H
p +Wp[(Cqα

H
p )⊗Uxp ]B

H
p ,

(50)
∂Uy

∂τ tpq
= 0pq[(αpαHp )⊗Uxp ]B

H
p + Bp[(αpαHp )⊗Uxp ]0

H
pq

+0pq[(αpγHp )⊗Uxp ]A
H
p + Ap[(γ pα

H
p )⊗Uxp ]0

H
pq

+0pq[(αpδHp )⊗Uxp ]W
H
p +Wp[(γ pδ

H
p )⊗Uxp ]0

H
pq,

(51)
∂Uy

∂fpq
= 9pq[(αpαHp )⊗Uxp ]B

H
p + Bp[(αpαHp )⊗Uxp ]9

H
pq

+9pq[(αpγHp )⊗Uxp ]A
H
p +Ap[(γ pα

H
p )⊗Uxp ]9

H
pq

+9pq[(αpδHp )⊗Uxp ]W
H
p +Wp[(δpαHp )⊗Uxp ]9

H
pq,

(52)
∂Uy

∂τ cpq
= Ap[(γ pδ

H
p )⊗Uxp ]ξ

H
pq + Bp[(αpδHp )⊗Uxp ]ξ

H
pq

+ ξpq[(δpδ
H
p )⊗Uxp ]W

H
p +Wp[(δpδHp )⊗Uxp ]ξ

H
pq

+ ξpq[(δpγ
H
p )⊗Uxp ]A

H
p + ξpq[(δpα

H
p )⊗Uxp ]B

H
p ,

(53)

where ξpq is the derivative of Wp with respect to τ cpq, which
is expressed as

ξpq =



0
. . .

5pq
. . .

0

 , (54)

where

5pq = FH
∂�(τ cpq)

∂τ cpq
F, (55)
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and[
∂�(τ cpq)

∂τ cpq

]
m,m

=
− j2π (m− 1)

TsNs
e−j2π (m−1)τ

c
pq/TsNs . (56)

The target parameter vector 8 is changed to

8 = [γ T ,αT , δT , x, y, vx , vy]TL ′p=(6MN+4)×1
. (57)

The FIM of 8 is calculated using (25), and ∂2T

∂8
has a

similar representation to (32), i.e.,

∂2T

∂8′
=

[
I(6MN )×(6MN ) 0

0 Z′(f ,τ )4×(3MN )

]
, (58)

where

Z′(f ,τ ) =



∂τ t11

∂x
· · ·

∂τ tMN

∂x
∂f11
∂x
· · ·

∂fMN
∂x

0 · · · 0

∂τ t11

∂y
· · ·

∂τ tMN

∂y
∂f11
∂y
· · ·

∂fMN
∂y

0 · · · 0

0 · · · 0
∂f11
∂vx
· · ·

∂fMN
∂vx

0 · · · 0

0 · · · 0
∂f11
∂vy
· · ·

∂fMN
∂vy

0 · · · 0


.

(59)

Finally, the CRLB for each target parameter is calculated
by (35).
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