IEEE Access

Multidisciplinary : Rapid Review : Open Access Journal

Received May 27, 2019, accepted June 20, 2019, date of publication July 2, 2019, date of current version July 22, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2926384

A Comprehensive Investigation of Modern Test
Suite Optimization Trends, Tools and Techniques

AYESHA KIRAN, WASI HAIDER BUTT™, MUHAMMAD WASEEM ANWAR™,

FAROOQUE AZAM, AND BILAL MAQBOOL

Department of Computer & Software Engineering, College of Electrical and Mechanical Engineering, National University of Sciences and Technology (NUST),

Islamabad 44000, Pakistan

Corresponding author: Muhammad Waseem Anwar (waseemanwar @ceme.nust.edu.pk)

ABSTRACT Software testing is an important but expensive activity of software development life cycle, as it
accounts for more than 52% of entire development cost. Testing requires the execution of all possible test
cases in order to find the defects in the software. Therefore, different test suite optimization approaches
like the genetic algorithm and the greedy algorithm, etc., are widely used to select the representative
test suite without compromising the effectiveness. Test suite optimization is frequently researched to
enhance its competences but there is no study published until now that analyzes the latest developments
from 2016 to 2019. Hence, in this article, we systematically examine the state-of-the-art optimizations’
approaches, tools, and supporting platforms. Principally, we conducted a systematic literature review (SLR)
to inspect and examine 58 selected studies that are published during 2016-2019. Subsequently, the selected
researches are grouped into five main categories, i.e., greedy algorithm (seven studies), meta-heuristic
(28 studies), hybrid (six studies), clustering (five studies), and general (12 studies). Finally, 32 leading
tools have been presented, i.e., existing tools (25 tools) and proposed/developed tools (seven tools) along
14 platform supports. Furthermore, it is noted that several approaches aim at solving the single-objective
optimization problem. Therefore, researchers should focus on dealing with the multi-objective problem,
as multi-objective versions outperform the single-objective ones. Moreover, less attention has been given to
clustering-based techniques. Thus, we recommend exploring the machine learning and artificial intelligence-
based optimization approaches in the future. A broad exploration of tools and techniques, in this article, will
help researchers, practitioners, and developers to opt for adequate techniques, tools, or platforms as per
requirements.

INDEX TERMS Software testing, test suite optimization, single objective optimization, multi-objective

optimization.

I. INTRODUCTION

Software testing is one of the most important activities of
the software development life cycle. It is done to strengthen
the quality of the product before delivering it to the
client [1]. However, in spite of that, software testing is
high-priced. More than fifty-two percent (>52%) of entire
development cost is accounted for it. Hence, it is necessary
to control the cost of testing process as much as possible
because of its monotonous and time-consuming nature [2].
In software testing, optimization of test data can be done
to control this cost [3]. Because when new test cases are
added to the existing test suite for checking enhanced

The associate editor coordinating the review of this manuscript and
approving it for publication was Hui Liu.

VOLUME 7, 2019

This work is licensed under a Creative Commons Attribution 3.0 License. For more information, see http://creativecommons.org/licenses/by/3.0/

functionality, [4] some of the test cases become obsolescent
which simply result in a waste of time, money and resources
in the testing phase. However, the purpose of software testing
cannot be accomplished by simply decreasing the test data.
All the probable lapses existing in product or software must
be adequately uncovered by the test data. Amongst several
available solutions, the procedure of finding the optimum
solution is regarded as optimization [5]. Fittest dataset can
be filtered out with the aid of optimization and then it can be
used to test different software or product related properties.
Until now, many research efforts have been devoted to test
suite optimization. As a result, various algorithms/techniques
for test suite optimization have been introduced intensively.
These algorithms include: ACO (Ant Colony Algorithm) [6],
genetic algorithm [7] and its variants like NSGA

89093

https://orcid.org/0000-0002-1347-3662
https://orcid.org/0000-0002-1193-5683
https://orcid.org/0000-0002-1309-2413

IEEE Access

A. Kiran et al.: Comprehensive Investigation of Modern Test Suite Optimization Trends, Tools and Techniques

Test Inputs

Source code

Test case analysis

=

Test Case
Selection

Implementation
of Optimization

Optimized Test Suite

=

Technique

FIGURE 1. Major test suite optimization activities.

(Non-Dominated Sorting Genetic Algorithm) [8], PSO (Par-
ticle Swarm Optimization) [9], greedy algorithm [10], and
clustering based optimization approaches e.g. hierarchical
agglomerative clustering [11], fuzzy ¢ mean clustering [12]
etc. In literature, mostly different meta-heuristic algorithms
are used to carry out the optimization of test data. Two
components, namely exploitation i.e. to find out a better
solution in specific region and exploration i.e. searching for
a solution on a global level, are included in meta-heuristic
algorithms which help to achieve a global optimum solution.

Figure 1 shows the following core activities of test suite

optimization.

1. In the first step, test cases generated from software
requirements specifications or source code of a soft-
ware program are used as an input.

2. In the second step, an analysis is performed on these
test cases in order to analyze them as per given
requirements

3. On the basis of analysis performed in the second step,
the initial test suite is selected from the pool of gener-
ated test cases

4. Then, an appropriate optimization algorithm, tool or
technique, selected according to given requirements
e.g. specific coverage criteria, fault effectiveness etc.,
is applied on the test suite

5. Finally, the optimized test suite is produced as an output

Test suite optimization is frequently researched topic and a

recent review study has also been found [13] which partially
analyzes 113 studies published up to 2016. However, the field
of test suite optimization is quite intensive and there exist
several studies in renowned scientific repositories (e.g. IEEE,
ACM etc.) during the period of 2016 to 2019. Consequently,
there is a dire need to perform a genuine and comprehensive
SLR to investigate the latest developments in the area of
test suite optimization. Hence, in this article, we extensively
examine the 58 latest optimization studies in order to find
state-of-the-art approaches, tools and supporting platforms.
Following research questions are intended to be answered in
this study:

RQI: What are the primary approaches reported for

improving the test suite optimization process?

RQ2: What are the primary tools employed/developed for

the process of test suite optimization?

89094

RQ3: What are the supporting platform used along opti-
mization tools in the literature?

RQO4: How to improve modern test suite optimiza-
tion approaches to accommodate the future technological
advancements?

According to Kitchenham and Barbara [14] “An approach
to recognize, assess and infer all accessible studies
that relate to a particular research question, or subject
matter or phenomena of interest is referred to as systematic
literature review”. For answering above-mentioned research
questions, a Systematic Literature Review (SLR) is con-
ducted for selection and investigation of 58 studies [15-72]
published during 2016-2019. In Figure 2, an overview of this
research work is portrayed. Following are the key contribu-
tions of this paper:

« Firstly, a comprehensive investigation of latest develop-
ments in test suite optimization is done in this study. Par-
ticularly, 58 latest research studies are considered. To the
best of our knowledge, no research study is available
yet that summaries and examines the state-of-the-art test
suite optimization developments from 2016-2019.

o Secondly, the identification and analysis of different
optimization techniques and 32 leading tools along
14 platforms for supporting and performing various
test suite optimization tasks is done. Such analysis
certainly benefits the researchers/practitioners to select
the right technique, tool and platform as per the
requirements.

« Finally, the significant research gaps where improve-
ments are required in optimization approaches for
achieving an optimal test suite according to defined
criteria, are highlighted in this study

For conducting this SLR, a protocol for review (Section 2)
is developed. Initially, we have defined six major cate-
gories (Section 2.1) to simplify the process of data extrac-
tion and synthesis (Section 2.5). Four scientific databases
i.e. (Springer, ACM, Science Direct, IEEE) are used for
the search process (Section 2.3) according to inclusion and
exclusion rules (Section 2.2). Subsequently, 58 research stud-
ies that full complies with inclusion and exclusion criteria
are identified. As shown in Figure 2, the selected researches
are then analyzed and grouped (Section 3) into six major
categories.

Subsequently, a comprehensive analysis of all categories
is done i.e. Greedy algorithm (Section 3.1), Meta-Heuristic
algorithm (Section 3.2), Hybrid algorithm (Section 3.3),
Clustering algorithm (Section 3.4) and General (Section 3.5).
Furthermore, several existing tools (Section 3.6.1), proposed
tools (Section 3.6.2) and platforms support (Section 3.6.3)
are identified and evaluated in Section 3.6. A comparative
study is also performed to find out the strengths and weak-
nesses of each category (Section 3.7). The broad evaluation
of selected studies results in providing the answers to the
research questions (Section 4). Then, in Section Sthe signif-
icant findings are discussed. Finally, the conclusion of this
SLR is given in Section 6.

VOLUME 7, 2019

A. Kiran et al.: Comprehensive Investigation of Modern Test Suite Optimization Trends, Tools and Techniques

IEEE Access

Scientific Repositories

SCIENCE
DIRECT SPRINGER

Selection and Rejection Criteria

Selection of 58 studies

(2016-2019)

Data Extraction & Classification

Greedy Algorithm

7 studies

Meta-heuristic

28 studies

Hybrid

6 studies

Clustering

5 studies

General

12 studies

Analysis/ Synthesis for Answers of Research Questions

5

Greedy Analysis Meta-Heul"lstlc
Analysis
Single-Objective (5 studies)

Single-Objective (16 studies)
Multi-Objective (2 studies) 1

Multi-Objective (12 studies)

Hybrid Analysis

Single-Objective (5 studies)
Multi-Objective (1 study)

Clustering Analysis

Single-Objective (5 studies)
Multi-Objective (0 studies)

Tools Identification & Analysis

Existing Tools
25)

Proposed Tools

()]

Platform Supports
a4)

FIGURE 2. Overview of systematic literature review.

Il. REVIEW PROTOCOL
A review protocol has seven basic elements. In Introduc-
tion (Section I), the first two elements (i.e. Background and
Research questions) are already presented. Thus, the details
related to these two elements are not included in this section. .
Subsequently, the description of other five elements is given
in following sections.

A. CATEGORIES DEFINITION

In order to simplify the process of data synthesis and extrac-
tion, we have defined five categories. The explanation of each
category is provided below:

o Greedy algorithm: Greedy algorithm is one of the .

renowned code reduction-based heuristics. The test
cases which comply with majority of disgruntled
requirements are picked by it, but in case of draw con-
dition, a random choice is made. The reduced test suite
is obtained by repeatedly applying this process to each

VOLUME 7, 2019

test case until every test requirement is fulfilled. From
selected literature, seven test suite optimization based
research studies that specifically deal with the greedy
algorithm are selected and placed in this category.
Meta-Heuristic Algorithms: Such researches which
utilize meta-heuristic based techniques for test suite
optimization are placed in this category. It is
sub-categorized into Ant Colony algorithm, Genetic
algorithm and Others (i.e. it incorporates different meta-
heuristic techniques like Dragon-fly or Flower Polli-
nation Algorithm (FPA), Harmony search (HS), Moth
Flame Optimization (MFO) or Bat algorithm.

Hybrid Algorithms: Several research studies are
identified which deal with the hybridization of differ-
ent approaches, such as genetic algorithm with bee
colony optimization, for the generation of optimal test-
suites. We have summarized all such researches in this
category.

89095

IEEE Access

A. Kiran et al.: Comprehensive Investigation of Modern Test Suite Optimization Trends, Tools and Techniques

TABLE 1. Summary of search terms with results.

Sr# Search Terms Operator IEEE ACM Springer Science Direct
1 Test suite optimization N/A 265 24700 7447 15650
) GA AND 35 2661 1483 2211
Test suite optimization OR 10881 39587 1987 67113
Hybrid algorithm AND 11 2661 1588 2029
3 . o
Test suite optimization OR 8690 40561 2232 17480
. AND 5 429 2554 4511
4 Clustering
Test suite optimization OR 28027 27801 7999 244828
5 Heuristics algorithms AND 3 2661 1324 >89
Test suite optimization OR 1577 39607 1631 26953

« Clustering: Clustering approach is used to optimize test
cases and it improves the efficiency of software testing
as well. Rather than checking the overall test cases,
the whole program can be checked through any clustered
test case. In our selected studies, there are five researches
which utilize clustering algorithms/techniques for gen-
erating optimized test cases with the intention of han-
dling the cost or time etc., of software testing process.
All studies belonging to clustering-based optimization
are considered in this category.

o General: From the pool of 58 selected studies, some
researches are identified which do not specifically
belong to a single approach e.g. researches that deal
with the integer linear programming, integer non-linear
programming, precision slicing, probability models and
other approaches for the purpose of test suite optimiza-
tion. All those studies are positioned in the general
category.

B. INCLUSION AND EXCLUSION RULES

To accomplish the desired objectives, logical inclusion,
as well as exclusion rules for conducting this SLR, are
declared. The rules are outlined below:

« Firstly, the overall structure of research studies is taken
into consideration i.e. state-of-the-art research studies,
highly relevant to test suite optimization and it should
belong to ACM, IEEE, Science Direct or Springer.

« Secondly, the content of abstract and title shall relate to
research questions.

o Finally, the introduction and conclusion section of
selected studies must contain the aspects of test suite
optimization.

The research studies that do not conform to the inclusion
criteria declared above and the following constraints, are
excluded:

« Only one of those research studies is selected which have
almost similar research contents.

89096

« No peer-reviewed studies are taken into consideration
« Editorials and abstracts are excluded from the search
process

C. SEARCH PROCESS

The process of finding research studies is started by search-
ing four databases i.e. IEEE, Springer, ACM, Science
Direct, according to our inclusion and exclusion criteria
(Section 2.2). In order to perform the search process, we have
also exploited several keywords. In Table 1, a brief descrip-
tion of keywords is given. For performing the search process,
two operators i.e. AND, OR are utilized. As the studies
obtained by using AND operator are not sufficient, so we have
also employed OR operator.

Moreover, we have also used different options for the
advance search that are available in selected databases e.g.
“year span”, “where keyword contains” etc. By using given
keywords, a huge number of research studies are obtained
which are not feasible to be examined entirely. The basic
reason is that the test suite optimization keyword relates
to different concepts. So, with the help of these advanced
search options, we have improved the results e.g. specifying
the subject as computer science, or machine learning etc.
Furthermore, we used complete “Test Suite Optimization™
keyword instead of TSO to accomplish the desired outcomes.
Conclusively, 58 research studies are selected (Figure 3) with
the help of this search process and our defined rules.

o Opverall, 3601 studies are selected and 1763 of them get

rejected on the basis of Title

« Subsequently, remaining 1838 research studies are taken

into consideration and after reading the abstract of those
studies 1456 more studies are excluded

o We thoroughly inspect the remaining 382 researches.

As aresult of our analysis, 324 studies get discarded and
58 research studies that entirely conform to our defined
inclusion and exclusion criteria (Section 2.2) are finally
selected.

VOLUME 7, 2019

A. Kiran et al.: Comprehensive Investigation of Modern Test Suite Optimization Trends, Tools and Techniques

IEEE Access

TABLE 2. Summary of selected studies w.r.t databases and publication type.

Database Type No. of studies Reference Total
[22] [23] [29] [31] [32] [35] [36] [39] [40] [43] [48] [51]
— Conference 18 [54] [55] [56] [58] [62] [69] ’
Journal 4 [30] [44] [33] [60]
Conference 1 [38 .
Science Direct Journal 6 [18][19] [24] [26] [47] [42]
Conference 9 [28] [34] [45] [50] [53]1[68]1[70][71][72]
Springer Journal 6 [15][16] [21][27] [49][52] 15
Conference 11 17]1[20] [25] [37] [41][46] [57] [61] [64] [65] [67
ACM . [11251 [37] [41] [46] [57] [61] [64] [65] [67] "
Journal [59 1[66]
IEEE SCIENCE ACM SPRINGER
DIRECT
1034 studies 445 studies 1135 studies 987 studies

[l I J

Rejection of studies on the basis of

|

” (1763)

Rejection of studies on the basis of “ ” (1456)

Analysis of “382” Studies

Selected Studies
58 324

Rejected studies

FIGURE 3. Summary of search process.

D. QUALITY ASSESSMENT

For assuring the reliable result of this systematic review, high
impact researches are selected from widely accepted and rec-
ognized databases. Twenty-two (22) researches are selected
from IEEE repository, seven (7) from Science Direct, four-
teen (14) from ACM and fifteen (15) from Springer, making a
total of fifty-eight (58) selected studies. To the max, we intend
to select researches that have a high impact as demonstrated
in Table 2. Additionally, the aim is to analyze state-of-the-art
research studies essentially as shown in Figure 4. Therefore,
we ensure that the results of this SLR are impactful and
reliable. In Table 2, the summary of selected repositories in
accordance with the type of publication is given. Database
signifies the name of repository from which research study
is retrieved, No. of studies depicts the quantity of confer-
ence and journal papers selected from each database. Type
signifies whether the selected study belongs to a conference
or journal. For each study, references are also given. In the
last column, sum of total studies is also provided for further
exploration. From Table 2, it is evident that most conferences
are from IEEE repository i.e. eighteen (18), while maximum
journals are from science direct and springer i.e. six (6) from
each repository.

VOLUME 7, 2019

FIGURE 4. Distribution of selected studies w.r.t publication year.

E. DATA EXTRACTION AND SYNTHESIS

A complete template is developed for extraction of data as
well as synthesis as shown in Table 3. Initially, the extraction
of information related to bibliography i.e. title, authors, year
of publication and research paper type is done. Next, fun-
damental findings like technique which is proposed, details
of implementation, evaluation and experimentation process
are extracted. For achieving objectives of SLR, this extracted
data help to conduct a complete analysis. Techniques and
tools used/proposed for implementing test suite optimization
process are identified from selected research studies. Lastly,
a detailed analysis is done to obtain answers about research
questions defined in Section 1.

IIl. RESULTS AND ANALYSIS

As shown in Table 4, we have classified selected studies into
five main categories. For further investigation, the references
for subsequent studies are also given. From Table 4, it is
observable that there’re seven (7) studies that belong to the
greedy algorithm. Twenty-eight (28) researches are associ-
ated with the meta-heuristic category and it is sub-categorized
into a genetic algorithm that comprises of thirteen (13)
studies, ACA algorithm which incorporates four (4) stud-
ies and other meta-heuristic algorithms/techniques embodies
eleven (11) studies. Six (6) research studies are found in the
hybrid category while five (5) researches are associated with
clustering category. Lastly, twelve (12) studies are placed in
the general category.

89097

IEEE Access

A. Kiran et al.: Comprehensive Investigation of Modern Test Suite Optimization Trends, Tools and Techniques

TABLE 3. Data extraction and synthesis template.

Sr.# Description Details
1 Bibliographic Information Title, authors, year of publication and research paper type is analyzed
2 Proposed Technique The approach followed by selected researches is observed
3 Implementation Details Technologies that are used for implementation of proposed methodology are observed
4 Results Results of each selected paper are analyzed thoroughly
. . Grouping of selected studies according to categories defined in Section 3. In Table 4, a summary
5 Classification . .
of results is provided
For finding the solutions of selected research questions, analysis of each category is performed.
L . Results are summarized as follows: Greedy algorithm category (Table 5) Meta-heuristic algorithm
6 Investigation of Categories
category (Table 6, Table 7, Table 8), Hybrid algorithm category (Table 9), Clustering algorithm
category (Table 10), General category (Table 11)
Tools used or proposed (Table 12, Table 13,) and supporting platform (Table 14) in each study
7 Tools and Platform Support

are analyzed

TABLE 4. Classification of selected researches into five main categories.

Sr.# Category References of corresponding studies Total
1. Greedy Algorithm [15][16] [17] [18] [19] [20] [21] 7
2. Meta-Heuristic Techniques: 28

Genetic Algorithm [22][23] [24] [25] [26] [27] [28] [29] [30] [31] [32] [33] [34] 13
Ant Colony algorithm [351[36][37][38] 4

Other Meta-heuristic techniques

3. Hybrid
4. Clustering
5. General

[39] [40] [41] [42]
[50] [51] [52] [53]
[56] [57] [58] [59]
[61] [62] [63] [64]

43] [44] [45] [46] [47] [48] [49] 11
541 [55]

60] 5
65] [66] [67] [68] [69] [70] [71] [72] 12

— /= ..

As depicted from selected literature, a fair amount of work
is done on algorithms for optimization of the test suite. Yet,
researchers are making efforts to explore test suite optimiza-
tion in other directions too. The process of analysis/synthesis
is simplified by the categorization of studies (Table 4). Each
category is investigated comprehensively so that precise out-
come can be presented and the objective of SLR can be
achieved. In later sections, the details are given for each of
them. In order to clearly state we evaluate them according
to certain parameters. Firstly, the name of the algorithm
used for optimization in each study, is outlined. Secondly,
the objective of each study is stated to depict whether the
test cases are generated to reduce execution time or cost,
increase fault detection ability or maximize their code cov-
erage, path coverage, or requirement coverage etc. Thirdly,
the tool used or proposed in each study is also extracted,
so that researchers can select the appropriate tool as per their
requirements.

The detail of each tool is further given in Section 3.6.
Subsequently, the running environment of each study is also
included to help researchers in selecting the appropriate
tool or technique according to the compatibility with their
systems’ specification. It includes the details about Operating

89098

System (OS) version, memory (RAM) and processor required
for the proper functioning of the tool. Lastly, the dataset
is enlisted to represent the test data used in each study for
validation of proposed techniques, which will help to figure
out the suitability of the proposed technique for a specific
programming language.

A. GREEDY ALGORITHM CATEGORY

A greedy algorithm is one of the well-known code reduction-
based heuristics. The test cases that satisfy the majority of
disgruntled requirements are picked by it, but in case of a
draw condition a random choice is made. The reduced test
suite is obtained by repeatedly applying this process to each
test case until every test requirement is fulfilled. In Table 5,
the evaluation of seven greedy based studies is performed
according to parameters defined in Section 3.

Singh and Shree [15] presents a systematic approach
using CMMIX (enhanced greedy algorithm) for the reduc-
tion of test suite size. An experiment conducted on small
program code indicates that with the help of this approach,
the test suite can be optimized effectively without chang-
ing its coverage value. Wang et al. [16] propose a multi-
criteria based selection of test cases using a greedy algorithm.

VOLUME 7, 2019

A. Kiran et al.: Comprehensive Investigation of Modern Test Suite Optimization Trends, Tools and Techniques

IEEE Access

TABLE 5. Summary of investigation for greedy approach.

Sr.# Running environment Dataset
Ref. Algorithm Objective Tool
(N RAM PROCESSOR
1 [15] CMMIX Path coverage N/A N/A N/A N/A Program code
. Fault localization Ubuntu Siemens test suite,
2 [16] Greedy algorithm . GCoV 4GB Core 4 Duo
Reduction rate 8.04 Space benchmark
Approximate Monkey . .
3 [17] . eCoverage Windows 7 16 GB Core i7 15 apps
greedy algorithm EMMA
Cost-aware . Windows 7 SIR , Siemens, space,
4 [18] . Fault detection N/A 2GB Core Duo .
greedy algorithm SP1 gzip, ant
Scope-aided . KLEE 17 variant versions
5 [19] . Fault detection N/A N/A N/A .
Greedy algorithm MILU from 3 C subjects
. Failed-Build Detection Dataset from Travis
6 [20] Greedy algorithm PIT N/A N/A N/A
Loss torrent
. Fault detection SIR, Siemens
7 [21] Greedy algorithm . . N/A N/A N/A N/A
Execution time reduction benchmark

Experimentation done on 3535,392 test cases reveals that
the proposed approach performs better in terms of test
suite reduction and effectiveness of fault localization as
compared to the statement and vector-based approaches.
Jabbarvand et al. [17] describe two ways of reducing the tests:
an integer programming formulation and a greedy algorithm
using EMMA tool and Ip-solve. Evaluation of proposed tech-
niques on 15 apps selected from F-droid repository shows that
both algorithms maintain the quality of test and a consider-
able reduction in the size of the test suite is achieved.

Lin et al. [18] focus on the Greedy-based techniques and
empirically evaluates the additional Greedy and two cost-
aware Greedy techniques using Siemens, gzip space, and
ant programs. Execution of test cases is done on Ubuntu
10.10 running on Windows 7 SP1, having an intel core duo
processor with two GB memory. According to evaluation
results, lower cost of regression testing and higher efficiency
of fault detection is accomplished with cost-aware methods.
Miranda and Bertolino [19] employs scope-aid for boost-
ing total and additional greedy, similarity-based and search-
based prioritization; greedy additional selection; and the GE
algorithm for minimization. For experimentation, 17 variant
versions from grep, gzip, and sed are selected. In order to
determine the in-scope entities and mutant generation, KLEE
and MILU tools are also used. Empirical evaluation shows
that without affecting the fault-detection ability, this tech-
nique results in significant reduction in size of the test suite.
Shi et al. [20] consider the problem of missing faults after
the reduction of test suite, which can be covered by the orig-
inal test suite. Greedy algorithm and three other approaches
namely: GE, GRE, and HGS are used for evaluation purpose.
From 32 GitHub projects, 1478 failed builds are selected for
evaluation. Results suggest that FBDL (Failed-Build Detec-
tion Loss) cannot be predicted properly using traditional test

VOLUME 7, 2019

suite reduction metrics. Wang et al. [21] propose a distance-
based test suite reduction technique for increasing the fault
localization efficiency. A greedy algorithm is used for deter-
mining the optimal solution. An empirical investigation
conducted on SIR benchmark and Siemens indicates that
reduction in test suite size, as well as time and cost of test-
ing based fault localization, is achieved using the proposed
approach.

From Table §, it is analyzed that SIR and Siemens bench-
marks are mostly used as a dataset in greedy algorithm
based test suite optimization studies. By evaluating the results
obtained from selected studies, it is evident that the greedy
algorithm mainly focuses on achieving higher efficiency in
terms of fault detection.

B. META-HEURISTIC ALGORITHM CATEGORY

A meta-heuristic is an advanced algorithm framework which
is independent of problem. It offers strategies which help in
developing heuristic algorithms for optimization purposes.
In this study, we have selected twenty-eight researches which
belong to different meta-heuristic based methods, for exam-
ple genetic algorithm, ACO algorithm and some other meta-
heuristic techniques/algorithms. Given below are the details
of each sub-category:

1) GENETIC ALGORITHM

An interesting area for researchers is the implementation of
evolutionary algorithms for the generation of optimized test
cases. One such type of algorithm is computational intelli-
gence based methodology called Genetic Algorithm (GA).
From our fifty-eight (58) selected research studies, we have
found thirteen researches which have utilized a genetic algo-
rithm for the purpose of test suite optimization. In Table 6,

89099

IEEE Access

A. Kiran et al.: Comprehensive Investigation of Modern Test Suite Optimization Trends, Tools and Techniques

TABLE 6. Summary of investigation for a genetic approach.

Sr. Ref. Algorithm Objective Tool Running Environment Dataset
oS Processor RAM
Fitness based
1 [22] . . Path coverage N/A N/A N/A N/A C program
Genetic algorithm
. . EMMA,
2 [23] Genetic algorithm Code Coverage TUnit N/A N/A N/A N/A
ni
. o . Windows .
3 [24] Genetic Strategy Execution time reduction N/A 7 Core i7 6GB CA(N;2,7,5)
4 [25] Genetic algorithm Execution cost Randoop N/A N/A N/A Randoop Test suite
Requirement coverage
5 [26] MORTOGA . N/A N/A N/A N/A 30,834 test cases
Fault detection
Parallelized L . .
6 [27] . . Execution time reduction Spark Ubuntu Core i5 4GB 19 benchmarks
genetic algorithm
Code & Branch coverage, .
7 [28] NSGA-II . . . Mockito N/A N/A N/A 420 tests
Execution time reduction
Steady-state Execution time reduction,
8 [29] : . . N/A N/A N/A N/A 1, 000 test cases
genetic algorithm Requirement & code coverage
Statement Mutation & Branch . .
9 [30] DynaMOSA EvoSuite N/A N/A N/A 346 java classes
coverage
. Functional & Structural
Enhanced Genetic . . .
10 [31] . coverage, Execution time QuestaSim N/A Core i7 N/A Case Study
Algorithm .
reduction
11 [32] NSGA-II Frequency, Order, Constraint N/A N/A N/A N/A 35 SUT models
Code coverage, requirements
12 [33] NSGA-II coverage, Execution time N/A N/A N/A N/A 20 java apps
reduction
. Triangle classifier,
Real-coded genetic
13 [34] Path coverage N/A N/A N/A N/A Greatest Common

algorithm

Divisor program

we have summarized the algorithm name, the objective of the
study, a tool used, a specific requirement of running environ-
ment and dataset extracted from the respective studies.

Khan et al. [22] employ a genetic algorithm in order to
automate the generation of the optimized test case. A cri-
terion for du-path adequacy is introduced with the help of
fitness function. Authors validate the given method with the
help of a C program. Similarly, Kothari and Rajavat [23]
implement a model for software testing with the help of a
genetic algorithm. They develop the application with the help
of EMMA and JUnit testing tool. According to the results,
the proposed model is capable of producing optimized test
data, accompanied by the improvements in space as well as
the time complexity of the system. Esfandyari and Rafe [24]
proposes an approach for the minimal generation of test
suite using GA, known as Genetic Strategy (GS). They used
CA (N; 2, 7, 5) with a population of size 150 for exper-
imentation. The approach is implemented in MATLAB

89100

on windows 7 with six GB RAM and 2.20 GHz core
i7QM CPU. Experimental results reveal that GS supports
higher interaction strengths as compared to other strategies.
Schuler [25] attempts to reduce the time of execution and size
of test data whilst maintaining their coverage. Test data is
generated with the help of randoop framework and genetic
algorithm is applied to it. 3 open source projects selected from
the F-Droid repository are used as a case study to empirically
evaluate the proposed approach.

Garousi et al. [26] introduce a genetic algorithm based
approach called MORTOGA. An empirical study performed
on this approach shows that it provides better coverage of
changed requirements as well as cost and benefit analysis as
compared to the manual approach. In order to deal with time-
consuming nature of NP-hard problems that often results in
substantial limitations for the real time application of genetic
algorithms in large-scale problems, Qi et al. [27] propose
a two-way parallelization algorithm in order to parallelize

VOLUME 7, 2019

A. Kiran et al.: Comprehensive Investigation of Modern Test Suite Optimization Trends, Tools and Techniques

IEEE Access

the genetic algorithm. Implementation of propose technique
on 5 real-world and 14 pairwise synthetic benchmarks using
Ubuntu 12.04 shows that it competes for sequential tech-
niques in terms of reduced test data size and computa-
tion. Turner et al. [28] apply a well-known multi-objective
approach i.e. Non-dominated Sorting Genetic Algorithm II
(NSGA-II) on the test suite of Mockito 2.0. By using multi-
objective optimization, they analyze the trade-off among exe-
cution time and code coverage for the selected test suite. It is
obvious from the results that minor reduction in coverage of
code can result in a significant decrease in execution time.

Yamug et al. [29] presents a GA based approach for test
case reduction along its comparison with a greedy approach
using 1, 000 test cases and a sum of 10, 000 test require-
ments. Although, greedy approach produces better results
in terms of execution time GA substantially outperforms
greedy algorithm in terms of cost reduction with a factor
of 26.14%. Subsequently, by considering the cost reduc-
tion factor, the overhead of processing time can be ignored.
Panichella er al. [30] propose a novel many objective
genetic algorithm DynaMOSA to redevelop the problem
of test case generation as a problem of many objective
optimizations. A prototype tool i.e. extension of EvoSuite
framework, for test data generation, is used for imple-
mentation. Empirical assessment done on 346 java classes
shows that DynaMOSA holds substantial improvements with
respect to statement, branch and mutation coverage as com-
pared to whole suite approach and its antecedent MOSA.
Zacharidovi et al. [31] employ the genetic algorithm in order
to build a new approach for regression suite optimization
of Application-specific Instruction-Set Processors (ASIPs).
According to simulation results generated by QuestaSim tool,
this optimization technique reduces the simulation runtime
and the resulting statistics for coverage remains equal to
actual suite coverage.

Sabbaghi and Keyvanpour [32] employ the non-dominated
sorting genetic algorithm-II (NSGA-II) to deal with multi-
objective optimization problem of combinatorial testing.
Different criteria are taken into consideration i.e. Consid-
ering order (CO), Considering frequency (CF), Considering
constraints (CC). Experimental evaluation done on 35 SUT
models reveals that the proposed approach results in the
generation of the prioritized and reduced test suite. In another
work, Marchetto et al. [33] propose an NSGA-II based multi-
objective test suites reduction approach named MORE+-.
It considers coverage of source code and application require-
ments along the reduction in execution cost. According
to experiments performed on 20 java applications, pro-
posed approach provides better results in terms of cost-
effectiveness as compared to baseline approaches. Lastly,
Mishra et al. [34] propose e real-coded genetic algorithm for
path coverage (RCGAPC). The proposed approach is more
efficient in covering the critical paths as compared to tradi-
tional genetic algorithm. Evaluation of proposed approach
done on two programs i.e. triangle classifier and greatest
common divisor, shows that it reduces the number of test data

VOLUME 7, 2019

generation required for path testing and produce an optimized
test suite that covers 100% path for specific software.

From Table 6, it is analyzed that the genetic algorithm
is used as a significant approach for test suite optimization.
In most of the selected research studies, this algorithm mainly
provides support to reduce the execution time of test cases.

2) ANT COLONY ALGORITHM

Ant colony optimization (ACO) is a computational problem-
solving algorithm which is based on probability. It generates
a solution by traversing a graph that consists of several states
of the system. In software testing, ACO is used for generating
test sequences. It maximizes their code coverage, path cover-
age, or requirement coverage etc. In Table 7, The evaluation
of ACO based studies is performed according to parameters
defined in Section 3. The parameter Running environment
is not included in this sub-category, as none of these studies
contains the details about OS, processor and RAM used in
their experimentation process.

Zhang et al. [35] put forward a method for reduction of
test suite based on modified quantum ant colony algorithm.
They utilize seven programs written in C from the Siemens
test suite and run it on a Linux platform. GCOV is used for
calculating the statement coverage of this program. Results of
simulation experiments show that the modified quantum ant
colony system can effectively solve problems as compared
to other algorithms. Kumar et al. [36] propose a solution for
test cases optimization in large search space using modified
ant colony optimization. A dataset consisting of 10 test cases
is taken into consideration in order to validate the technique.
Results show that the modified algorithm helps to reduce both
effort and cost by selecting the test cases which take less time
to find maximum faults. Han er al. [37] present a solution
for discrete multimodal optimization by introducing a new
niching algorithm named NACS. A test suite comprising
ten MMO-TSP instances is also introduced for testing the
performance of this algorithm. The result shows that during
optimization, NACS exhibit great ability in terms of explo-
ration by locating and maintaining multiple distinct optima.
Ansaria et al. [38] employ the ant colony optimization tech-
nique to automate the optimization of test cases list. Five
test cases are taken as input along their disclosed faults and
execution time. For the assessment of the proposed technique,
APFD metric is utilized.

From Table 7, it is observable that different optimization
approaches are introduced based on ant colony algorithm.
However, these algorithms are not practically more useful
because only one of these researches has used a standard
dataset for validation of the proposed technique and no ade-
quate tool support is mentioned. Only the partial implemen-
tation has been focused in these researches, thus more work
is needed in this direction for practical achievements.

3) OTHER META-HEURISTIC ALGORITHMS
We have evaluated eleven studies where some random meta-
heuristic algorithms, such as harmony search, PSO, flower

89101

IEEE Access

A. Kiran et al.: Comprehensive Investigation of Modern Test Suite Optimization Trends, Tools and Techniques

TABLE 7. Summary of investigation for ant colony algorithm.

Sr.# Ref Algorithm Objective Tool Dataset
[35] Modified Quantum Ant Colony Statement coverage GCOV Siemens
. L Fault coverage rate, Execution time
[36] Modified ant colony optimization . N/A 10 test cases
reduction, Code coverage
[37] Niching Ant Colony System Path coverage N/A A test suite with 10 MMO-TSP instances
[38] Ant Colony Optimization Fault coverage, Execution time reduction N/A Five test cases

TABLE 8. Summary of investigation for different meta-heuristic techniques.

Sr Running Environment Dataset
Ref Algorithm Objective Tool
0s Processor ~ RAM
1 [39] Modified Flower Pollination Execution time reduction ~ N/A Windows 7 corei7 4GB 2 experiments
2 [40] Moth Flame Optimization Branch coverage N/A N/A N/A N/A 5 benchmark
Multi-Objective Particle MOTestG
3 [41] L Branch coverage Windows 8 Core i3 4GB Triangle classifier SUT
Swarm Optimization en
Adaptive Teaching Learning- L . Windows .
4 [42] L Execution time reduction ~ N/A Core 15 16GB CA, VCAs
based Optimization 10
5 [43] Diversity Dragonfly Execution time reduction ~ N/A Windows 7 N/A 2GB 5 SIR subjects
6 [44] DIVersity-based BAT Requirement coverage N/A N/A N/A N/A 8 SIR subjects
Test Generator Flower o . Windows .
7 [45] L Execution time reduction ~ N/A Core i5 4GB 3 benchmarks
Pollination 8.1
Fault coverage,
8 [46] Harmony search L . N/A N/A N/A N/A 5 SIR benchmarks
Execution time reduction
Lo . Cost, statement, branch,)
Multi-objective evolutionary . .. 6 SIR subject,
9 [47] . and modified condition GCOV N/A N/A N/A .
algorithm (MOEA/D) . VoidAuth program
/decision coverage
. s Branch & statement)
10 [48] Many-objective optimization N/A N/A N/A N/A 4 SIR subjects
coverage
Harrolds—Gupta—Soffa Fault coverage, .
11 [49] N/A N/A N/A N/A 12 SIR versions

(HGS) method Execution time reduction

pollination, dragon-fly and bat algorithms are used for the
purpose of test suite optimization. Table 8 represents the data
extracted from these studies. As different existing or pro-
posed meta-heuristic approaches are used for optimization
purposes in this sub-category, the names of different algo-
rithms/techniquesare included in Table 8. Subsequently,
the objective of each study along the tool name, running
environment and dataset is also listed in the table.

Kabir et al. [39] introduce an optimization technique
namely Modified Flower Pollination Algorithm (MPFA)
and implements it in java under Windows 7 OS and Net
Beans environment. Results of experimentation done on
two programs reveal that MPFA algorithm provides bet-
ter convergence rate as compared to other techniques.

89102

Metwally et al. [40] propose an approach that is based on
MFO (Moth Flame Optimization) algorithm. It attempts to
obtain a reduced test suite that achieves maximum coverage.
For the evaluation of proposed technique, experiments are
performed on five benchmark methods using MATLAB. The
outcome shows that the MFO technique is better up to two
orders of magnitude in comparison to the random generator.
In four benchmark methods, MFO produces better results
than Genetic approach. Gopi et al. [41] propose MOPSO
(Multi-Objective Particle Swarm Optimization) algorithm for
search-based test data generation. Two objective functions
namely production of optimal data and maximum branch
coverage are introduced in it. For the production of optimal
test data and extraction of their coverage and convergence

VOLUME 7, 2019

A. Kiran et al.: Comprehensive Investigation of Modern Test Suite Optimization Trends, Tools and Techniques

IEEE Access

performance, a tool named MOTestGen is also developed.
Results reveal that when the population size increase then
coverage becomes maximum.

Zamli et al. [42] present an approach named ATLBO
(Adaptive Teaching Learning-based Optimization), which is
centred on the mamdani-type fuzzy inference system strategy
for exploitation and exploration. The experimental environ-
ment consists of a PC running on Windows 10 with 2.9 GHz
core i5 processor and 16 GB RAM along 512 MB flash
hard-disk drive. According to results, test data is minimized
systematically with the help of ATLBO technique based
on given interaction strength. Sugave et al. [43] present a
novel algorithm i.e. DDF(Diversity Dragonfly Algorithm) for
determining the best suite based on the hunting procedure of
the dragonfly that uses a minimum objective function. The
experiment is carried out using five subject programs taken
from SIR using Net-Beans IDE 7.3. It is found that cost of
the proposed DDF is low and the reduction capability of
the DDF is better than existing methods. In another work,
Sugave et al. [44] develop two techniques for reducing test
suite. In the first technique, ATAP measure is developed while
in second one DI Versity-based BAT algorithm is devised. For
assessment of propose techniques, eight programs written in
C language are utilized from SIR repository. Results prove
that DIV-TBAT outclasses the entire present approaches in
test suite reduction. Alsewari et al. [45] propose a new
technique based on flower pollination algorithm called Test
Generator Flower Pollination Strategy (TGFP) for minimiza-
tion of test cases. Results of two experiments show that
with different interaction strengths TGFP performs better as
compared to existing strategies of combinatorial testing with
respect to execution time.

A Pareto based harmony search algorithm for test case
selection in regression testing is taken into consideration
by Choudhary et al. [46]. An empirical evaluation of its
performance with bat and cuckoo search algorithm is also
done in this study. It is evident from the results that in
most of the cases propose approach performs better than
the other two approaches. Zheng et al. [47] adapt a multi-
objective evolutionary algorithm based on decomposition
(MOEA/D) for regression testing. For the purpose of exper-
imentation, authors employed VoidAuth program and six
programs retrieved from SIR. Comparison of proposed algo-
rithm with four approaches shows that for the purpose of
multi objective optimization, MOEA/D with tuning produce
most effective results in all of the experiments. In another
work, Wei et al. [48] develop a many-objective optimization
approach for regression test suite minimization based on
mutation testing. Evaluation perform on six many-objective
evolutionary algorithms depicts that with no change in
the capability of fault detection, a considerable reduction
in the cost of testing is achieved using this technique.
Agarwal et al. [49] presents a novel method referred as
fault coverage-based test suite optimization (FCBTSO) for
regression test suite optimization. Proposed approach is based
on Harrolds—Gupta—Soffa (HGS) test suite reduction method.

VOLUME 7, 2019

The computational experiments performed on 12 versions
of benchmarked programs retrieved from SIR indicates that
FCBTSO outperforms other approaches with respect to the
execution time.

From Table 8, it is analyzed that different meta-heuristic
approaches are proposed to generate an optimized test suite.
Each of these meta-heuristic approaches focus on different
performance objectives e.g. MFO provides branch cover-
age, two objective functions i.e. production of optimal data
and maximum branch coverage are introduced in MOPSO,
ATLBO focuses on size of test suite, in Pareto based harmony
search algorithm fault coverage is utilized as performance
measures, algorithm execution time is taken into consid-
eration by TGFP as well as Pareto based harmony search
approach, MPFA algorithm provides better convergence rate,
and DDF and DIV-TBAT exhibits low cost and higher reduc-
tion capability.

C. HYBRID ALGORITHM CATEGORY

Some studies aim to combine the advantages of two or more
algorithms to form a hybrid algorithm, while simultaneously
trying to minimize any significant disadvantage in order
to reduce test cases, such as the use of genetic and parti-
cle swarm optimization algorithm together. From the pool
of 58 selected studies, 6 researches which deal with the
hybrid approach are placed in this category. In Table 9,
the summary of the data extracted from the research stud-
ies that incorporate a hybrid approach is presented. Each
study is evaluated with the help of parameters defined
in Section 3.

Nasser et al. [50] proposes a hybrid algorithm employs
integration student phase of Teaching Learning Based Opti-
mization (TLBO), named learning cuckoo search strategy.
Experimental study shows that the proposed algorithm per-
forms better as compared to original cuckoo search and
other existing strategies. Singhal et al. [51] empirically
analyze the hybrid GA and BCO technique, known as
MHBG_TCS, according to time constraint. For all values
of TC, MHBG_TCS tool is practically evaluated on seventeen
open source programs. It is found that proposed technique is
a near optimal and maximum reduction in terms of size is
achieved.

Anwar et al. [52] present a novel technique for optimiza-
tion of test suites and named it as hybrid adaptive neuro-
fuzzy interface system, which is tuned with GA and PSO.
Benchmark test suites are used for evaluation and it shows
that higher requirement coverage in terms of test suite reduc-
tion without affecting the rate of fault detection is attained.
The basic aim of this research study by Khan et al. [53] is
to customize the cost and time for the testing process after
the automatic test case generation. According to performed
analysis, these two optimization techniques namely cuckoo
search and genetic algorithm produce better result together
as compared to a single one. Saraswat and Singhal [54]
propose a hybrid GA_PSO algorithm and implement it
in java. A case study of e-learning website is taken into

89103

IEEE Access

A. Kiran et al.: Comprehensive Investigation of Modern Test Suite Optimization Trends, Tools and Techniques

TABLE 9. Summary of investigation for hybrid technique.

Running Environment

Sr# Ref Algorithm Objective Tool Dataset
oS Processor RAM
1 [50] Learning Cuckoo Search Convergence rate N/A N/A N/A N/A N/A
Genetic algorithm . .
2 [51] L. Execution time reduction ~MHBG _TCS N/A N/A N/A 17 programs
Bee Colony Optimization
Genetic algorithm Requirement coverage, . . .
3 [52] . N/A Linux Core i7 8GB Benchmark test suites
PSO Fault detection
Cuckoo Search Execution time Randomly generated
4 [53] . . _ N/A N/A N/A N/A
Genetic algorithm reduction data
5 [54] Hybrid GA_PSO Fault detection N/A Linux N/A N/A Case study
. . L . . . 3 optimization
6 [55] Cluster-based genetic algorithm Execution time reduction jMetal Mac Core i7 16GB

problems

consideration for validation of proposed approach. Test suite
prioritization is also performed with this algorithm and the
final outcome shows that the proposed hybrid method is
capable of producing optimized test suite. To solve the
multi-objective test optimization problem, Pradhan ez al. [55]
introduces a cluster-based genetic algorithm with the elitist
strategy (CBGA-ES). The results show that CBGA-ES signif-
icantly improves the quality of the solutions and it outclasses
other algorithms with respect to achieved objectives for the
selected test optimization problem.

From Table 9 it is obvious that although useful, existing
work has not sufficiently dealt with hybrid algorithms as the
strength for test suite optimization. Out of 58 selected studies,
only 6 of them deal with hybrid approaches for optimization
purposes. Three (3) of them focus on reducing the execution
time of test cases [51], [53], [55], other two deals with fault
detection [52], [54] while in [52] requirement coverage is
also considered as well. Finally, one study [50] deals with
the convergence rate.

D. CLUSTERING ALGORITHM

In designing of test cases, many redundant test cases may
appear. An increase in cost and time of software testing can
be caused due to these redundancies. By use of clustering
techniques, test cases can be optimized and the efficiency of
testing software can be improved. Rather than checking the
overall test cases, the whole program can be checked through
any clustered test case.

According to pre-defined parameters in Section 3, we have
summarized the data extracted from the studies that lie in
Clustering category (Table 10). The details about running
environment i.e. OS, memory and RAM, is not given any
of cluster-based optimization study. Therefore, this specific
parameter is not included in Table 10.

Liu et al. [56] employ the k-mediod clustering algorithm
for test suite optimization. They have also utilized the greedy
algorithm for ensuring that test requirements are covered

89104

properly with generated test cases. In this study, Eclemma
is used for calculating coverage and complexity of the test
case generated by CodeproAnalytix and experiments are con-
ducted on eclipse 4.2. According to experimental results,
this technique features low complexity with higher cover-
age rate under the same quantity of streamlined test suite.
Coviello et al. [57] propose a prototype tool named CUTER
i.e. ClUstering-based TEst suite Reduction, for inefficient
reduction of test cased. This tool implements the clustering
technique and instances from its fundamental procedure. On
19 different versions of 4 Java programs, CUTER is applied
as an eclipse plug-in. In another work, Coviello et al. [58]
use hierarchical agglomerative clustering for inadequate test
suite reduction. They consider 19 experimental objects of
four java based software systems reduction of the test suite.
For the implementation of four selected approaches, RAISE
tool is used and their coverage information is gathered using
JaCoCo. Results suggest that the proposed technique gives
better test suite size reduction rate at the cost of the minor
deficit in fault-detection ability.

Reichstaller er al. [59] evaluate two clustering techniques
i.e. dissimilarity-based sparse subset selection and affinity
propagation, for reduction of test cases. An evaluation case
and a running example are introduced for the assessment of
proposed techniques. It is evident from the results that drastic
reduction in test suite along sound mutation score is achieved
with these methods. Rosero et al. [60] utilize a combination of
DB schema, random values and unit tests with unsupervised
clustering for determining new features which are added to
software products linked with databases or the test cases
which relates to changes. Two DB applications are taken
into consideration for examining different metrics like recall,
precision, fault detection capability, test suite reduction and
the F-measure. DBUnit and JUnit are also used for designing
and implementation of test cases. Experimental results imply
that effective clusters of test cases are achieved with the
proposed method.

VOLUME 7, 2019

A. Kiran et al.: Comprehensive Investigation of Modern Test Suite Optimization Trends, Tools and Techniques

IEEE Access

TABLE 10. Summary of investigation for clustering technique.

Sr# Ref. Algorithm Objective Tool Dataset

1 [56] K-medoids Code coverage g:li 61:;)rrr(l)aAnalytix, Test cases generated by Codepro Analytix
2 [57] Hierarchical agglomerative clustering Statement Coverage Jclbjn{gR’ JaCoCol, 19 versions of 4 Java programs

3 [58] Hierarchical agglomerative clustering ~ Statement Coverage ~ RAISE, JaCoCo SIR objects

4 [59] Affinity Propagation, Dissimilarity- Mutation score N/A Case Study

based Sparse Subset Selection

5 [60] Expectation-Maximization Fault detection

DBUnit, JUnit Two DB applications

From Table 10, it is analyzed that out of 5 cluster-
ing based research studies, 2 of them focus on statement
coverage [57], [58], other three studies deal with fault detec-
tion [60], mutation score [59], and code coverage [56]
respectively.

E. GENERAL CATEGORY

In General Category, we have placed twelve (12) research
studies which do not belong to a specific technique or algo-
rithm. They have provided extensive work on test suite
optimization using different approaches such as probability
model, integer linear or non-liner programming. All such
studies are put under this category and analyzed with respect
to major parameters defined in Section 3. Table 11 is devel-
oped to determine the prominence of this category.

Choi et al. [61] introduce an approach based on SwiftHand
and Random algorithm for reducing large test data which
is generated by an automated Android GUI testing tool.
A prototype tool named DetReduce is used for implemen-
tation of the algorithm. By testing DetReduce on 18 apps,
it is found that test suites effectively reduce with the help
of proposed technique. Marijan ef al. [62] propose a test
suite optimization technology for increasing the time-and
cost-efficiency of testing highly configurable software, called
TITAN. This technology visualizes several attributes of test
suites like redundancy and coverage so that engineers can
perform an evaluation of quality and status at various phases.
Liu et al. [63] propose a test suite reduction approach based
on the probability model. It is different from traditional
methods of reduction which are centred on coverage. Grep
system with 50 versions is taken into account for validation
of proposed technique. The result shows that it is not essential
for the proposed approach to cover each test requirement.
However, it still depicts the equivalent ability of fault detec-
tion as the original test suite.

Lin et al. [64] propose a framework called Nemo for the
formulation of multi-criteria test-suite minimization prob-
lem as integer non-linear programming problem. From
a publicly available dataset, five open-source C projects

VOLUME 7, 2019

i.e. make, grep, sed, flex, and gzip are selected. Results
of the experiment reveal that with modern solvers we
can use Nemo to competently find an optimum solution
for the problem of multi-criteria test-suite minimization.
Palomo-Lozano et al. [65] focus on testing WS-BPEL com-
positions and present a search-based technique for test
suite minimization whilst preserving the mutation coverage.
For reducing the testing effort along good results, integer-
liner programming technique is used. C.R Panigrahi and
Panigrahi and Mall [66] proposes a technique based on
improved precision slices for selection of regression test
cases aimed at the reduction of test suite size. Seven java
programs are used to test the effectiveness of this technique.
The result indicates that size of the regression test suite is
reduced effectively by by using this approach, devoid of
worsening fault detection efficiency. Vahabzadeh et al. [67]
propose a model to facilitate analysis of test code at state-
ment level and present a technique along with a tool for
minimization of substantial redundancies in the statement
of test cases, named as Tesler. Empirical evaluation of
the technique is done on fifteen subjects. Tesler reduces the
partially surplus test cases in less time and preserves the
coverage of the original test suite as well as production
method call behaviour. Carlsson et al. [68] present a novel
approach for constraint optimization that takes into account
a sophisticated search heuristic along GlobalCardinality and
NValue constraints. Experimental evaluation is done on stan-
dard benchmarks and arbitrarily generated instances with the
help of Flower/C tool. For the process of constraint opti-
mization, this tool is compared with current tools and results
depict the competitiveness of the proposed approach with
tools on benchmarks and random instances. Fu et al. [69]
introduce a similarity centred TSR approach to improve local-
ization of faults based on the spectrum. GCOV is used for
collecting execution traces of different test cases, Siemens
and UNIX utility programs are used to conduct experiments.
It is evident from the outcomes that the effectiveness of
fault localization can be considerably improved with propose
technique.

89105

IEEE Access

A. Kiran et al.: Comprehensive Investigation of Modern Test Suite Optimization Trends, Tools and Techniques

TABLE 11. Summary of investigation for general category.

S Algorithn/ o Running Environment
I. Ref . Objective Tool Dataset
4 Technique (ON] Processor RAM
Execution time
1. [61] DetReduce . DetReduce N/A N/A N/A 18 apps
reduction
Requirement coverage .
2. [62] TITAN X TITAN N/A N/A N/A 15 test suites
Fault detection
3. [63] Probability models Requirement coverage N/A N/A N/A N/A 40,450 test cases
. C projects
Integer nonlinear Statement coverage
4. [64] . . Nemo N/A N/A N/A Grep, Flex, Sed, Make,
programming Fault detection .
and Gzip
Integer linear X . 8 GiB
5. [65] . Mutation coverage N/A laptop Core i5 N/A
programming DDR3L
6. [66] Improved slicing Fault detection IReTEST Windows XP N/A N/A 7 Java programs
Statement & Branch X
7. [67] Tesler . Testler N/A N/A N/A 15 projects
coverage, Fault detection
Constraint . Quad core 8MB cache
8. [68] L Feature coverage Flower/C. Ubuntu Linux 9 random datasets
optimization 2.8GHz per core
Similarity centered L . . .
9. [69] Fault localization GCoV Ubuntu Core i2 4GB Siemens, Unix utility
approach
Statement & Branch
Multi-objective coverage, Fault .
10. [70]) ‘g) Selenium N/A N/A N/A Web apps
approach detection, Execution
time reduction
Dynamic TACS program from
oy _ Fault detection MILU N/A N/A N/A prog
Programming SIR. Triangle problem
ReduceDomains Path coverage, Execution . Core i3-
12. [72] . . . N/A Windows 7 2 GB 55,566 test cases
algorithm time reduction 2310

Sivaji et al. [70] propose a multi-objective technique for
efficiently and effectively detecting faults in regression test-
ing. The validation of proposed approach done on several
web applications shows that it can select test cases accurately
with reduction in execution time and increase in Average
Percentage of Faults Detected (APFD). Jatana er al. [71]
introduce a dynamic programming based approach for test
suite reduction. This approach is conceptually similar to that
used by Floyd—Warshall’s algorithm. Evaluation performed
on TCAS code and triangle problem depicts that proposed
approach runs in polynomial time and it is effective in finding
a minimized test suite that can detect faults in the program
under test. The proposed method by Singh and Singh [72] is
based on the parallel execution to cover all independent paths.
According to the results, the proposed method achieves lower
execution time using parallelism as well as reduction in test
cases.

89106

From Table 11, it is analyzed that out of twelve (12)
studies there are five (5) researches in which tools are devel-
oped or proposed i.e. DetReduce, Nemo, TITAN, I-ReTest
and Tesler. There are two studies that deals with fault localiza-
tion [69] [71]. Finally, mutation coverage [65], requirement
coverage [63] and feature coverage [68]. Multi-objectives
[70], [72] are taken into consideration by remaining studies.

F. TEST SUITE OPTIMIZATION TOOLS

From 58 selected papers, we have overall identified 32 tools
in which 25 tools are existing and 7 tools are newly devel-
oped or customized.

1) EXISTING TOOLS

In Table 12, existing tools which are used in the selected
research studies are listed. The following parameters are
summarized: 1) Name signifies the name of tool that is

VOLUME 7, 2019

A. Kiran et al.: Comprehensive Investigation of Modern Test Suite Optimization Trends, Tools and Techniques

IEEE Access

TABLE 12. Identified tools for test suite optimization.

Sr. No Tool Name Reference Purpose Language support Open source
1 GCOV [16] [35][69] Statement coverage C, FORTRAN v
2 EMMA [17][23] Fitness testing/ Statement coverage Java v
3 Monkey [17] Test case generation N/A v
4 KLEE [19] Determine set of in-scope entities N/A v
5 MILU [19][71] Mutated versions generation C v
6 PIT [20] Line and mutation coverage Java v
7 JUnit [23]1[57]1[60] Fitness testing/ Branch coverage/ Unit testing Java v
8 Randoop [25] Test suite generation Java v
9 Spark [27] PGAS implementation N/A v
10 Mockito [28] Mock objects creation Java v
11 EvoSuite [30] Algorithm implementation N/A v
12 QuestaSim [31] Execution of UVM-based verification N/A v
13 Callgrind [47] It generate-s a log that encompasses data related to Linux programs v
the execution of system under test

14 MHBG_TCS [51] Optimal test suite C++, Java ,C# X
15 jMetal [55] CBGA-ES implementation Java v
16 Codepro Analytix [56] Test case generation Java v
17 Eclemma [56] Coverage, complexity calculation Java v
18 JaCoCo [57] [58] Branch coverage Java v
19 RAISE [58] Implementation Java v
20 DBUnit [60] Unit testing of code and DB Java v
21 Graphviz [66] Graphical visualization DOT language v
22 ANTLR [66] [-ReTEST component development Java v
23 MuClipse [66] Fault injection Java v
24 Flower/C [68] Implementation of constraint optimization models N/A X
25 Selenium [70] Testing of software application C#, Java, Perl, PHP,

Python and Ruby

used to achieve the optimized test suite, 2) Reference of
each corresponding study is presented for further details, and
3) Purpose represents the basic aim for the usage of tool e.g.
statement coverage, test case generation, branch coverage,
mutation coverage, complexity calculation etc. 4) Language
supportsignifies the programming languages which are sup-
ported in the corresponding tool. 5) Opensource shows that
whether the tool is freely available for users or not.

From Table 12, we have scrutinized four tools that are
used in the greedy algorithm based category (i.e. Android
Monkey, KLEE, MILU, PIT). Seven tools (i.e., EvoSuite,
EMMA, Randoop, QuestaSim, Spark, Callgrind and Mock-
ito) are used in the meta-heuristic category. We have identi-
fied two tools (i.e. MHBG_TCS tool, jMetal) in the hybrid

VOLUME 7, 2019

category. Five tools have been extracted from clustering
category (i.e. Codepro Analytix, CUTER, RAISE, JaCoCo,
DBUnit). In the general category, Flower/C, ANTLR,
Graphviz, Selenium and MuClipse are used. JUnit is used in
both genetic and clustering category while GCOV is used in
greedy, meta-heuristic as well as general category.

2) PROPOSED TOOLS

In Table 13, seven tools are listed which are either developed
or customized to attain optimization of test suites which helps
in the testing of software products. We have summarized
the name of the tool, reference of study from which tool is
identified, the specific purpose of the tool and its availability
as open source, in the table above.

89107

IEEE Access

A. Kiran et al.: Comprehensive Investigation of Modern Test Suite Optimization Trends, Tools and Techniques

TABLE 13. Proposed tools for test suite optimization.

Sr. No Tool Name Ref. Purpose Open Source

1 MOTestGen [41] Convergence, coverage performance extraction X
2 CUTER [57] Test-suite reduction

3 DetReduce [61] Test-suite reduction

4 TITAN [62] Test suite optimization X
5 Nemo [64] Optimal solution generation v
6 I-ReTEST [66] Effectiveness measurement /Regression test case selector X
7 Testler [67] Minimization of substantial redundancies in test cases statement X

In selected research studies, seven tools are modified/
developed to accomplish optimal test suite.
Gopi et al. [41] develop MOTestGen tool for the production of
optimal test data and extraction of their coverage and conver-
gence performance. Coviello et al. [57] propose a prototype
tool as an Eclipse plug-in named CUTER i.e. ClUstering-
based TEst suite Reduction, for inefficient test suite reduc-
tion. Choi et al. [61] introduce a prototype tool named
DetReduce for implementing test reduction algorithm. It can
be used for GUI supporting platforms but mainly it works for
android applications. An average factor of 14.7x in running
time and 16.9x in size during 14.6 hours is noticed during
test suite reduction by DetReduce. D Marijan et al. [62]
use TITAN tool for timely detection of faults, reduction in
redundancies and quality as well as status visualization of the
testing process.

Lin et al. [64] implement a prototype tool called Nemo
for finding optimal solution of multi-criteria test-suite
minimization. Panigrahi and Mall [66], develop I-ReTest
(Improved-Regression TEST case selector) for implementa-
tion of I-RTS methodology. Vahabzadeh et al. [67] employ
Testler for evaluation of their approach. Results depict that
43% of test statement redundancies are removed which
mainly result in a 52% decrease in partially redundant tests.
It also reduces the execution time up to 37% without affecting
the actual statement coverage, test assertions, branch cover-
age, and fault detection capability.

3) PLATFORM SUPPORTS

Itis noted that different platform supports and frameworks are
being used along with test suite optimization tools in selected
research studies. From the 58 selected studies, we have found
fourteen platform supports. In Table 14, we have summa-
rized the name of supporting platform which is used for the
implementation of optimization algorithms, 2) References of
studies from which platform support is identified, 3) Purpose
of each platform support and 4) Totalnumber of studies from
which these platform supports are extracted.

89108

From Table 14, it is obvious that several frameworks,
software and platforms are utilized in selected literature for
performing different tasks of test suite optimization process.
MATLAB is used in four studies for the computation task.
Xposed framework, Dev C++ IDE, DbUtils, GNU compiler
and visual studio are used in literature for performing tasks
related to test suite optimization. NetBeans IDE is used in
six studies while Eclipse is used in four studies for applica-
tion development. JRE is exploited in one research whereas
JDK is used in four studies exploited performing compilation.
Spring and Apache CXF are used for development of TITAN
tool while Java swing is used for development of user inter-
face for I-ReTEST tool. Lastly, in one study Hadoop is used
for processing of data.

In most of the studies i.e. six (6) researches, NetBeans
IDE is exploited as it provides support for the development
of Java application.

G. COMPARISON OF CATEGORIES
The comparison among different optimization algorithms is
based on performance metrics that are widely adopted in
the literature. In the context of test case generation, these
metrics give a reasonable estimation of the effectiveness and
efficiency of the test case optimization techniques. In this
SLR, we intend to perform a comparison of 58 selected
studies on the basis of all journals. But, only one journal paper
lie is clustering as well as hybrid category. Therefore, after
performing a careful analysis, eighteen high-quality studies
are considered that provide comprehensive details about their
test suite optimization approach. So, in order to determine
the strengths and weaknesses of defined categories, we have
conducted a comparative analysis on eighteen (18) research
studies i.e. three (3) studies from each category/sub-category.
As shown in Table 15, we evaluate: 1) Objective type
i.e. whether the study deals with multi-objective or single-
objective optimization problem, 2) Coverage criteria of
the corresponding study i.e. path coverage, branch cover-
age, statement coverage, 3) Fault detection effectiveness of

VOLUME 7, 2019

A. Kiran et al.: Comprehensive Investigation of Modern Test Suite Optimization Trends, Tools and Techniques

IEEE Access

TABLE 14. The platform supports for test suite optimization.

Sr. No Platform Support Purpose Reference Total
1. MATLAB Computation [24][26] [40] [49] 4
2. Xposed framework Customization [17] 1
3. NetBeans IDE Application development [39][41][43] [42] [45][50] 6
4. DbUtils Collect info about fault associated to failures [33] 1
5. Dev C++ IDE Program compilation [34] 1
6. JRE 8.0 Run a compiled Java program [45] 1
7. Eclipse Application development [56][66] [70][72] 4
8. Spring TITAN implementation [62] 1
9. Apache CXF Services development [62] 1
10. JDK Programs creation and compilation [44]1[45][27][43] 4
11. Hadoop 2.4 Data processing [27] 1
12. Java Swing Development of I-ReTEST UI [66] 1
13. GNU Compiler Collection of statement coverage information [47] 1
4 Visual Studio For developing computer programs, as well as [47] .

websites, web apps, web services and mobile apps.

proposed methodology i.e. whether the corresponding study
is effective in terms of fault detection or not, 4) Cost/benefit
analysis of proposed techniques and, 5) Execution time i.e.
whether the proposed approach results in less time taken for
execution. If the corresponding study satisfies the comparison
parameter, it is marked with v'.

As evident from the literature, researchers have proposed
approaches that consider more than one kind of test require-
ment. However, most of these existing methods are static and
single-objective. In single objective optimization, selected
test suite may skip many important test cases and resultant
test suite is not optimized, suitable and safe for use [73].
It focuses either on effectiveness (i.e., to obtain minimal
RS size) or cost (i.e., to improve the fault detection capability
loss), but not both. However, as required by real-world prob-
lems researchers need to incorporate multi-objective opti-
mization by taking into account multiple alternatives to find
an optimal tradeoff between cost and effectiveness as focused
by multi-objective optimization [74]. Another major concern
of single-criterion minimization is that minimizing a test suite
could severely compromise its ability to reveal faults [64].
On the other hand, multi-objective optimization is often a
set of solutions that do not dominate each other, thereby
forming the trade-offs between constraints. The insight into
the trade-offs may provide additional information that is hard
to obtain otherwise [75]. Therefore, results suggest that the
two-objective versions outperform the single-objective ones.

VOLUME 7, 2019

Because of simplicity and ease of implementation, most
research studies utilize a greedy algorithm for testing pur-
poses. Greedy Algorithm is an implementation of the ‘next
best’ search philosophy. It works on the principle that the
element with the maximum weight is taken first, followed
by the element with the second highest weight and so on,
until a complete, but possibly sub—optimal solution has been
constructed [76]. Many studies reported that essential expec-
tations are satisfied by the greedy approach. In spite of this,
a greedy algorithm carries a crucial weakness: it stuck into
local search space and produce sub-optimal solutions [29].
It can work effectively for the nearest solutions but for global
solutions, it is not successful. The basic reason behind this
limitation is that the greedy approach greedily picks the best
test case one at a time regarding the defined objective until the
termination conditions are satisfied. Sometimes, the greedy
approach assigns equal weights to each objective those results
in the conversion of multi-objective problem into a single
objective one. This result in a loss of optimal solutions that
hold the same quality [55]. The greedy algorithm attains
a higher percentage of killed mutants as compared to the
IP approach but reduction ability of greedy is less than IP.
It can be defined by the fact that more number of test cases are
executed in a greedy approach that results in a higher number
of killed mutants [17]. As depicted in Table 15, greedy algo-
rithm based studies have mostly focused on increasing the
fault detection effectiveness. Greedy based techniques also

89109

IEEE Access

A. Kiran et al.: Comprehensive Investigation of Modern Test Suite Optimization Trends, Tools and Techniques

TABLE 15. Comparative analysis of selected studies.

Ref. # Objective Type Coverage Fault detection Cost/Benefit Execution time
Path Req. Branch Statement
GREEDY ALGORITHM
15. Single-objective X X X v v X X
18 Single-objective X X X X v v X
21 Multi-objective X X X X v v v
META-HEURISTIC
Genetic Algorithm
25 Multi-objective X X X X X X v
26 Multi-objective X v X X v v v
27 Single-objective X X X X X X v
Ant Colony Algorithm
35 Single-objective X v X X X v X
36 Multi-objective X X X X v v v
37 Single-objective v X X X X X X
Other Meta-Heuristic Techniques
38 Multi-objective v X X X v v v
40 Single-objective X X v X X X v
46 Multi-objective X X X X v X v
HYBRID
51 Single-objective v X X X X X v
52 Multi-objective X v X X v v X
53 Single-objective v X X X X X X
CLUSTERING
56 Single-objective X X v X X X X
57 Single-objective X X X v X X X
58 Single-objective X X X v X X X

result in good cost reduction capability. However, the com-
petency of fault detection gets worse in general and the time
taken for performing reduction task monotonically increases
for these techniques as soon as the complexity of test suite
increase [18].

Metaheuristics has been developed to tackle nonlin-
ear, complex optimization problems for which exact opti-
mization techniques fail to offer satisfactory results. It is
implemented through an iterative generation process that
guides subordinate heuristics in exploration and exploita-
tion of the search space to efficiently find near-optimal
solutions. Metaheuristic algorithms are not problem and
domain specific, and they are capable of locating good
quality solutions in a relatively shorter time, compared to
traditional optimization techniques [77]. It is also evident
from the comparative analysis (Table 15) that meta-heuristics

89110

based approaches primarily aim to reduce the execution
time.

Different researchers use an evolutionary search-based
approach named Genetic Algorithm (GA) for the purpose
of software testing. Genetic algorithm is an evolutionary
approach to computing, which has the ability to deter-
mine appropriate approx. solutions to optimization problems.
It uses the principles of selection and evolution to produce
solution for various complex problems. Therefore, it must
be noted that genetic algorithms are not always the best
choice in random scenarios. Sometimes they might take quite
a while to run and are therefore not always feasible for
real time use. They are, however, one of the most power-
ful methods with which high quality solutions are created
quickly to a problem. Genetic algorithms are a very general
algorithm and so they will work well in any search space [78].

VOLUME 7, 2019

A. Kiran et al.: Comprehensive Investigation of Modern Test Suite Optimization Trends, Tools and Techniques

IEEE Access

The genetic algorithm provides a good result in terms of
reduced execution time. But, it also has some shortcomings
like other methods. The genetic strategy attempts to support
higher interaction strengths but for small strengths, it exhibits
lower efficiency as compared to other techniques [24]. For
getting a better result in benchmarks, parameter settings play
a crucial role. But, choosing a good parameter setting for the
genetic algorithm is a big issue. Another limitation of the
genetic algorithm is its intrinsic randomness i.e. a stable result
cannot be obtained by a single run [27], [30]. So as to alleviate
that threat and getting the best outcome, executions related to
genetic algorithm based experiments must be executed for a
large number of times and default parameter settings should
be used [26], [30].

Ant Colony Optimization (ACO) is also a meta-heuristic
approach, which tries to find the smallest path from all test
cases, but it does not cover all the test cases, which are
required [36]. Like a greedy algorithm, ACO also gets trapped
in local optimum and its convergence rate is slow to some
extent [35], [36]. This problem of convergence can be solved
with the help of improved quantum ant colony algorithm
and modified ant colony optimization. Another problem with
ACO algorithms is its biased elite solutions, which result in
the diversity loss [37]. To enhance the performance of these
approaches, we can adopt some strategies e.g. for updating
parameters at every iteration. However, these strategies are
also limited [39]. Global optimum is achieved in a meta-
heuristic approach through exploration and exploitation.

Exploitation attempts to get closer to the best solution(s)
iteratively but this can result in a local optimum problem.
Exploration can be used to negotiate this problem by explor-
ing different areas in the search space that may contain
the global optimum. But, this can divert the search away
from the current best solution. However, the combination
of exploitation and exploration can make a negotiation in
order to reach an appropriate solution without being stuck
at a local optimum. Another Meta-heuristic technique named
Moth Flame Optimization (MFO) can achieve full branch
coverage, but for the sake of accuracy of the statistical results
every experiment has to be holding many times and it does
not put any restrictions on array size [40].

Many researchers utilize k-means clustering algorithm for
test suite optimization but this algorithm is unstable and
seldom considers the coverage rate of such test cases. There-
fore, the k-medoids clustering algorithm characterized by
cyclomatic complexity and code coverage rate is preferred.
A greedy algorithm can also be utilized in this process to
streamline test suite while guaranteeing the cases cover-
age rate and the error detection rate. This method features
a higher coverage rate with lower complexity under the
streamlined test suite of the same quantity [56]. Two
existing clustering techniques, Affinity Propagation and
Dissimilarity-based Sparse Subset Selection can also be used
to drastically reduce the original test suite while retaining a
good mutation score [59]. In several applications, hierarchi-
cal clustering is preferred because it produces deterministic

VOLUME 7, 2019

=
[0 B e TR 0y I BN ¥

Path Statzement Fault

[aw]

Execution Multi COthers
Time Ohjective

MNo. ef research studies

Objective type

FIGURE 5. Distribution of selected studies w.r.t objective type.

output and leads to a greater reduction in test suite size
at the expense of a small loss in fault-detection capability.
It produces results in the form of a dendrogram. The cuts
of dendrogram can be customized according to requirements
e.g. for obtaining a small-sized test suite the value of the cut
level on dendrogram must be lower while if the objective is
to get a low fault-detection loss, the value for the cut level
must be higher. But, in the case of supervised clustering, it
is sometimes required to have added information along with
the data, such as the sizes and number of the clusters to be
formed, which makes the process costly and puts a limitation
on the procedure as well [60].

As evident from this comparative analysis, every approach
has its strengths and weaknesses. There is no single approach
that is superior to all test suite optimization problems. Like,
the genetic algorithm provides a good result in terms of
reduced execution time but it must be executed for a large
number of times in order to obtain stable results. Greedy
based techniques result in good cost reduction capability and
they increase fault detection rate as well. But the competency
of fault detection gets worse in general, and the time complex-
ity monotonically increases for it as soon as the complexity of
test suite increase. Therefore, it entirely depends on the given
test suite optimization problem that which approach should
be taken into consideration for achieving optimization of the
test suite.

From 58 selected studies, it is analyzed that researchers
have used different type of objectives for the purpose of test
suite optimization e.g. path coverage, statement coverage,
fault coverage, executions time reduction. In Figure 5, the
distribution of all studies with respect to objective type is
presented. The percentages of algorithms’ performances in
terms of size reduction, execution time and fault detection
extracted from selected studies is given in Figure 6, Figure 7
and Figure 8, respectively.

The results presented in [15] shows that it can effectively
optimize the test suite with 100% path coverage along 50%
reduction in test suite size. But, the basic reason behind this
higher coverage rate is that the size of test data is quite small.
Therefore, it is essential to perform the experimentation on
larger dataset in order to validate the wider applicability of
these approaches. Jabbarvand et al. [17] employed eCoverage

89111

IEEE Access

A. Kiran et al.: Comprehensive Investigation of Modern Test Suite Optimization Trends, Tools and Techniques

120%
100%

80%
60%
40%
HH L,
0%

[15] [17] [19] [51] [52] [58] [60] [61]
References

Size Reduction

[63] [66]

FIGURE 6. Distribution of selected studies w.r.t size reduction %.

120%

100%
80%
60%
40%
20% I
0%
[19] [46] [52] [60] [63] [66] [69]

Refe1 ences

Fault Coverage

FIGURE 7. Distribution of selected studies w.r.t fault coverage %.

80%
60%
40%

20%

Execution Time

0%
[26] [28] [51] [61] [65] [67]

References

FIGURE 8. Distribution of selected studies w.r.t time reduction %.

for test suite reduction. Results indicate that 81% reduction
in size with 67% eCoverage is achieved using the proposed
approach. Miranda and Bertolino [19] used three datasets
namely grep, gzip and sed for experimentation. For grep,
they obtained 88.7% reduction in test suite size with 30.72%
impact on Fault Detection Capability (FDC). In the case
of gzip and sed, 97.3% and 97.4% reduction in terms of
size and 36.16% and 47.62% fault detection capability is
attained respectively. Coviello et al. [S8] employed hierarchi-
cal agglomerative clustering algorithm for reducing the size
of test suite on the basis of statement coverage. Results depict
that 27.06% reduction in test suite size with 95% statement
coverage is achieved using the proposed approach. The pro-
posed approach by Rosero et al. [60] exhibits an improve-
ment in the effectiveness of a regression test with respect
to a complete regression test. In general, on average, this
approach reduced the number of test cases to 14% in

89112

product 1 (Estafeta) and 40% in product 2 (Silabo), both of
them with a fault detection capacity of 100%. The proposed
approach by Choi et al. [61] named DetReduce reduces a
test-suite by an average factor of 16.9x in size and 14.7x
in running time. In [63], Liu er al. presents a test suite
reduction approach based on probability models in regres-
sion testing. The average test suite reduction ratio of this
approach reaches 38.27% (on average) with 100% FDR.
The proposed technique by Panigrahi and Mall [66] reduces
the regression test suite size by 11.25 % as compared to
a related approach, without degrading the fault revealing
effectiveness. The proposed based harmony search algorithm
by Choudhary [46] is able to detect all the faults with
respect to different test suite sizes. The approach presented by
Anwar et al. [52] can reduce the size of test suite up to 48%
with no loss in FDR. Saraswat and Singhal [54] detected
89.78% faults for case studyl using the proposed approach
while for the second case study 90.85% faults are identified.
In [69], Fu et al. presents an approach to improve fault
localization and the results suggest that it can detect 100%
faults.

Several studies have used execution time reduction as
the main objective for the purpose of optimizing the test
suites. Like, Garousi et al. [26] presented an approach
that can achieve 100% requirement coverage with 52.1%
reduction in execution time. Similarly, Turner et al. [28]
employed execution time reduction as the optimization objec-
tive. The proposed approach results in ~50% reduction
in terms of execution time. The MHBG_TCS technique
proposed by Singhal ef al. [51] can achieve almost 71%
reduction in execution time with more than 80% reduction
in size of test suite. The optimization technique given by
Palomo-Lozano et al. [65] results in 22.59% reduction in
execution time. Lastly, the analysis of approach given by
Vahabzadeh et al. [67] shows that it can reduce 52% partly
redundant test cases with a reduction of 20% in execution
time.

Experimentation plays a vital role in providing insights
about the quality of a research study. Kitchenham et al. [14]
emphasized on reporting guidelines, which are useful to
all types of empirical studies. However, most of the
researchers have not used any standard to systematically
conduct and report the outcomes of their experiments
related to test suite optimization and thus may pose valid-
ity threats related to their results. The current literature
lacks information on exact percentages of results achieved
in terms of reduced size, fault detection and execution time
reduction etc.

IV. ANSWERS OF RESEARCH QUESTIONS
RQ1: For improving the test suite optimization process, what
are the primary approaches reported so far?

Answer: 58 significant researches published from 2016 to
2019 have been characterized as per inclusion and exclusion
criterion (Section 2.2.1). These researches are grouped into
six subsequent categories. The details are as follows:

VOLUME 7, 2019

A. Kiran et al.: Comprehensive Investigation of Modern Test Suite Optimization Trends, Tools and Techniques

IEEE Access

o Seven research studies (12.06%) have been found in the
Greedy Algorithm Category (Section 3.1)

o Twenty-eight researches (48.27%) have been found
and enumerated in the Meta-Heuristic Category
(Section 3.2) and it is sub-categorized into genetic
algorithm that comprises of 13 studies (Section 3.2.1),
ant colony algorithm which incorporates 4 studies
(Section 3.2.2) and other meta-heuristic algorithms i.e.
Bat, Dragon-fly, Moth flame optimization and Flower
algorithm etc. embodies 11 studies (Section 3.2.3)

o Six research studies (10.34%) have been found and listed
in the Hybrid Category (Section 3.3)

o Five research studies (8.62%) have been found and listed
in the Clustering Category (Section 3.4)

o Twelve research studies have been found in the General
category (Section 3.5)

It is evident that most of the research studies are associated
with different meta-heuristic algorithms in order to achieve
optimization of test suites. On the other hand, clustering
based test suite reduction has obtained less consideration by
researchers, as out of 58 researches selected from widely
known databases only 8.62% studies fall in this category.

RQ2: What are the primary tools employed/developed for
the process of test suite optimization?

Answer: By performing the systematic review of the lit-
erature, we have identified 25 existing tools that support
optimization process as given in Table 12. Evaluation of
these tools is also done by considering significant tool param-
eters and their classification is done according to defined
categories (Section 2.1). From Table 12, we have scruti-
nized four tools that are used in the greedy algorithm based
category (i.e. Android Monkey, KLEE, MILU, PIT). Seven
tools (i.e., EvoSuite, EMMA, Randoop, QuestaSim, Call-
grind, Spark, and Mockito) are used in the meta-heuristic
category. We have identified two tools (i.e. MHBG_TCS tool,
jMetal) in the hybrid category. Five tools have been extracted
from clustering category (i.e. Codepro Analytix, CUTER,
RAISE, JaCoCo, DBUnit). In the general category, Flower/C,
ANTLR, Graphviz, Selenium and MuClipse are used. JUnit
is used in both genetic and clustering category while GCOV
is used in greedy, meta-heuristic as well as general category.

In selected research studies, seven tools are proposed/
developed (Table 13) attain an optimal test suite.
Gopi et al. [41], developed MOTestGen tool for the pro-
duction of optimal test data and extraction of their coverage
and convergence performance. Coviello et al. [57], pro-
posed a prototype tool as an Eclipse plug-in named CUTER
i.e. ClUstering-based TEst suite Reduction, for inefficient
reduction of the test suite. Choi et al. [61], introduced
a prototype tool named DetReduce for implementing test
reduction algorithm. Marijan et al. [62], used TITAN tool
for timely detection of faults, reduction in redundancies and
quality as well as status visualization of the testing process.
Jun-Wei Lin et al. [64], implemented a prototype tool Nemo
for finding the optimal solution of multi-criteria test-suite
minimization. Panigrahi and Mall [66], developed I-ReTest

VOLUME 7, 2019

i.e. Improved-Regression TEST case selector, for implemen-
tation of I-RTS methodology. Vahabzadeh et al. [67], used
Testler for evaluation of their approach.

RQ3: What are the supporting platforms for optimization
tools used in literature?

Answer: During this SLR, we performed a comprehen-
sive analysis of test suite optimization tools and identified
14 supporting platforms (Table 14) that have been used along
identified tools. These supporting platforms include Java 1.7,
JDK 1.7, Netbeans, Visual studio, DButils, Dev C++ IDE,
GNU compiler, Eclipse, Spring, Hadoop, Matlab, Xposed
framework and Apache CXF. Xposed framework is used
for customization on one research study. NetBeans IDE is
used in six studies while Eclipse is used in four studies for
application development. JRE is exploited in one research
whereas JDK is employed in four studies for performing com-
pilation task. Similarly, Matlab is exploited in four studies
for the purpose of computation. Spring and Apache CXF are
used for development of TITAN tool while Java swing is
used for development of user interface for I-ReTEST tool.
GNU compiler is used in one study for the purpose of
collecting statement coverage information. Dev C++ IDE
and visual studio are also used in one study for performing
compilation tasks. In one study, DButils is used for collecting
information about a fault associated to certain failures. Lastly,
in one study Hadoop is used for processing of data. It is
evident that in most of the studies i.e. six (6) researches, Net-
Beans IDE is exploited as it provides support for the imple-
mentation of Java based test suite optimization approaches.

RQ4: How to improve modern test suite optimiza-
tion approaches to accommodate the future technological
advancements?

Software industry is rapidly growing with the passage of
time. To facilitate the testing of software, different optimiza-
tion techniques have been proposed by researchers. As seen
from Table 6, Table 7, and Table 8, most studies have incor-
porated different meta-heuristic approaches for optimizing
the test suites. Similarly, greedy algorithm based reduction
techniques (Table 5) are also an active area of research in
software industry. However, less attention is given to hybrid
(Table 9) and clustering based approaches (Table 10).

Although these approaches have achieved significant
results in terms of optimization but there are several future
directions to cope with the rapid advancements in tech-
nology. Basically, regression testing focus on generation of
test input and monitoring output for anticipated results and
failures. Current AI (Artificial Intelligence) methods such
as classification and clustering algorithms rely on just this
type of primarily repetitive data to train models to forecast
future outcomes accurately. These methods show the greatest
promise for automating software testing today as they are
capable to recognize complex patterns and make intelligent
decisions based on training data. Similarly, standard machine
learning and more specifically deep learning methods can be
trained with data generated by cycles of user input, combined
with the corresponding output of the system under test. For

89113

IEEE Access

A. Kiran et al.: Comprehensive Investigation of Modern Test Suite Optimization Trends, Tools and Techniques

example, reinforcement learning is a technique that is well-
tuned to design an adaptive method capable to learn from
its experience of the execution environment [79]. Likewise,
the neural network is shown to be a promising method of
testing a software as it is also capable of learning new versions
of evolving software [80]. The value of training deep learning
models to forecast user input and system output is incremen-
tal, and grows increasingly accurate as data accumulates in
each test cycle. Therefore, in future, different Al and machine
learning approaches can be integrated with optimization algo-
rithms to increase the effectiveness of software testing.

V. DISCUSSION AND LIMITATIONS

The main goal of this literature review is the classification of
test suite optimization researches and their evaluation on the
basis of different parameters in order to provide the details
of the latest approaches and tools that support optimization.
Grouping of optimization approaches into four categories i.e.
genetic, meta-heuristic, hybrid and clustering is done. The
main difference in these categories is the use of different algo-
rithms. Greedy based approaches typically employ different
types of greedy algorithms, meta-heuristic based category
use various meta-heuristic algorithms such as ant-colony and
genetic algorithm, and hybrid approaches exploit two or more
algorithms in order to give improved and effective results by
utilizing the strengths of different methods. Similarly, clus-
tering based category make use of different type of clustering
algorithms and techniques to achieve optimal test suite.

Classification of test suite optimization approaches is
shown in Table 4. Amongst fifty-two (58) selected research
studies, seven (7) fall into greedy algorithm based category,
meta-heuristic based category includes twenty-eight (28)
studies from selected literature and six (6) researches utilize
hybrid approach for test suite optimization. However, less
attention has been given to clustering based approaches i.e.
five (5) studies are found in this category. Subsequently,
32 leading tools that support different optimization activities
have been presented. Besides tools evaluation, this research
study also examines the utilization of different supporting
platforms for the development of optimization approaches.
Consequently, a comprehensive comparative analysis is also
performed on the identified optimization approaches by con-
sidering various important optimization parameters, such as
the type of objective i.e. single or multi-objective problem,
coverage criteria, analysis of time/cost benefit and execution
time.

It is obvious that each approach has some potential bene-
fits as well as shortcomings. Like, genetic algorithm results
in reduced execution time, while greedy based approaches
provide better fault coverage in addition to reduced cost.
But, a large number of execution is required for genetic
algorithm whereas time complexity increase in case of greedy
approach. These approaches are utilized according to a
given optimization problem. However, the extension can be
done to incorporate different fault localization techniques,
e.g. control flow based and information flow based fault

89114

localization along multi-criteria optimization algorithms. For
accessing the performance of the proposed approach, dif-
ferent effectiveness measures, such as size of the reduced
test suite, cost and coverage are used by researchers. But,
it is essential to examine the performance of proposed
approaches with cost as well as effective measures for broader
acceptance. Subsequently, in most of the selected studies,
publically available datasets e.g. Siemens and Space Pro-
grams taken from Software Infrastructure Repository (SIR),
are used. But, the implementation of proposed approaches
on large scale industrial projects is essential to measure their
effectiveness. In addition, most of the selected research stud-
ies do not incorporate the proper details about the experimen-
tal setup required for the implementation of their proposed
approach. In this context, different test suite optimization
approaches, platform supports and important tools used for
the development of these approaches are publicized under this
single research which is rarely available to the best of our
knowledge.

Although we entirely abide by the strategies of SLR [14]
and strictly obeyed the developed review protocol for incor-
porating current research studies as much as possible, we’re
not able to find considerable amount of research studies that
are published during 2016-2019. The basic reason is that
we have chosen four prominent scientific repositories for
this systematic review i.e. ACM, Springer, IEEE and Sci-
ence Direct. Subsequently, the search process is performed in
only these four repositories from 2016-2019. Studies related
to testing suite optimization are published in several other
databases as well, but the reliability of those researches is
uncertain. Therefore, any research study which is published in
other scientific databases is not taken into account. We con-
sider that the elimination of such research studies does not
conspicuously affect the results of this SLR.

VI. CONCLUSION

This research study presents state-of-the-art approaches, tools
as well as platforms that support test suite optimization
published during 2016-2019. In order to achieve this goal,
a systematic review of the literature has been performed
and 58 research studies are identified. Because of different
optimization approaches, selected studies are then grouped
into five different categories. Consequently, a comprehen-
sive comparative analysis is performed on the identified
optimization approaches by considering various important
optimization parameters, such as the type of objective i.e. sin-
gle or multi-objective problem, coverage criteria, analysis of
time/cost benefit and execution time. Subsequently, 32 lead-
ing tools that support different optimization activities have
been presented. Besides tools evaluation, this research study
also examines the utilization of 14 different supporting plat-
forms for the development of optimization approaches. Thus,
test suite optimization approaches, platform supports and
important tools for the development of these approaches are
publicized under single research which is rarely available to
the best of our knowledge. This research will definitely facili-

VOLUME 7, 2019

A. Kiran et al.: Comprehensive Investigation of Modern Test Suite Optimization Trends, Tools and Techniques

IEEE Access

tate researchers, practitioners and developers to select appro-
priate optimization approaches and tools along platforms
according to their requirements. Furthermore, it is noted that
several optimization studies aim at solving the problem of
single-objective optimization. Therefore, researchers should
focus on test suite optimization based on solving the multi-
objective problem, as multi-objective versions outperform the
single-objective ones. Moreover, less attention has been given
to clustering based approaches. In future, we recommend
to explore machine learning and artificial intelligence based
approaches for test suite optimization as they are capable to
make intelligent decisions based on training data.

REFERENCES

[1]
[2]
[3]
[4]
[51

[6]

[71

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

I. Sommerville, Software Engineering (International Computer Science
Series). Reading, MA, USA: Addison-Wesley, 2004.

X.Zhang, H. Shan, and J. Qian, ‘“‘Resource-aware test suite optimization,”
in Proc. 9th Int. Conf. Qual. Softw., 2009, pp. 341-346.

R. Mall, Fundamentals of Software Engineering. New Delhi, India: PHI
Learning, 2014.

R. Gupta and M. L. Soffa, “Employing static information in the generation
of test cases,” Softw. Test., Verification Rel., vol. 3, no. 1, pp. 29-48, 1993.
P. McMinn, “Search-based software test data generation: A survey,” Softw.
Test., Verification Rel., vol. 14, no. 2, pp. 105-156, 2004.

M. Dorigo and G. Di Caro, “Ant colony optimization: A new
meta-heuristic,” in Proc. Congr. Evol. Comput. (CEC), vol. 2, 1999,
pp. 1470-1477.

X.-Y. Ma, Z.-F. He, B.-K. Sheng, and C.-Q. Ye, “A genetic algorithm for
test-suite reduction,” in Proc. IEEE ICSMS, Oct. 2005, pp. 133-139.

Z. Anwar and A. Ahsan, “Comparative analysis of MOGA, NSGA-II and
MOPSO for regression test suite optimization,” Int. J. Softw. Eng., vol. 1,
no. 7, pp. 41-56, 2014.

J. Kennedy and R. C. Eberhart, “Particle swarm optimization,” Proc. IEEE
Int. Conf. Neural Netw., vol. 4, Nov./Dec. 1995, pp. 1942-1948.

S. Tallam and N. Gupta, ““A concept analysis inspired greedy algorithm for
test suite minimization,” ACM SIGSOFT Softw. Eng. Notes, vol. 31, no. 1,
pp. 35-42, 2006.

M. L. Zepeda-Mendoza and O. Resendis-Antonio, ‘“‘Hierarchical agglom-
erative clustering,” in Encyclopedia of Systems Biology. New York, NY,
USA: Springer, 2013, pp. 886-887.

G. Kumar and P. K. Bhatia, “Software testing optimization through test
suite reduction using fuzzy clustering,” CSI Trans. ICT, vol. 1, no. 3,
pp. 253-260, 2013.

S. U. R. Khan, S. P. Lee, N. Javaid, and W. Abdul, “A systematic review
on test suite reduction: Approaches, experiment’s quality evaluation, and
guidelines,” IEEE Access, vol. 6, pp. 11816-11841, 2018.

B. Kitchenham, “Procedures for performing systematic reviews,” Keele
Univ., Keele, U.K., Tech. Rep. EBSE-2007-01, Version 2.3, 2004,
pp. 1-26, vol. 33.

S. Singh and R. Shree, “A combined approach to optimize the test suite
size in regression testing,” CSI Trans. ICT, vol. 4, nos. 24, pp. 73-78,
2016.

K.-C. Wang, T.-T. Wang, and X.-H. Su, “Test case selection using multi-
criteria optimization for effective fault localization,” Computing, vol. 100,
no. 8, pp. 787-808, 2018.

R. Jabbarvand, A. Sadeghi, H. Bagheri, and S. Malek, ‘‘Energy-aware test-
suite minimization for Android apps,” in Proc. 25th Int. Symp. Softw. Test.
Anal., 2016, pp. 425-436.

C.-T. Lin, K.-W. Tang, J.-S. Wang, and G. M. Kapfhammer, “Empirically
evaluating Greedy-based test suite reduction methods at different levels
of test suite complexity,” Sci. Comput. Program., vol. 150, pp. 1-25,
Dec. 2017.

B. Miranda and A. Bertolino, “Scope-aided test prioritization, selec-
tion and minimization for software reuse,” J. Syst. Softw., vol. 131,
pp. 528-549, Sep. 2017.

A. Shi, A. Gyori, S. Mahmood, P. Zhao, and D. Marinov, “Evaluating test-
suite reduction in real software evolution,” in Proc. 27th ACM SIGSOFT
Int. Symp. Softw. Test. Anal., 2018, pp. 84-94.

VOLUME 7, 2019

(21]

(22]

(23]

[24]

[25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

(34]

(35]

(36]

(371

(38]

(391

(40]

(41]

(42]

X. Wang, S. Jiang, Gao, X. Ju, R. Wang, and Y. Zhang, ““Cost-effective
testing based fault localization with distance based test-suite reduction,”
Sci. China Inf. Sci., vol. 60, no. 9, 2017, Art. no. 092112.

R. Khan, M. Amjad, and A. K. Srivastava, “Optimization of automatic
generated test cases for path testing using genetic algorithm,” in Proc.
2nd Int. Conf. Comput. Intell. Commun. Technol. (CICT), 2016,
pp. 32-36.

S. Kothari and A. Rajavat, “Minimizing the size of test suite using genetic
algorithm for object oriented program,” in Proc. Int. Conf. ICT Bus. Ind.
Government (ICTBIG), 2016, pp. 1-5.

S. Esfandyari and V. Rafe, “A tuned version of genetic algorithm for
efficient test suite generation in interactive 7-way testing strategy,” Inf.
Softw. Technol., vol. 94, pp. 165-185, Feb. 2018.

A. Schuler, “Application of search-based software engineering method-
ologies for test suite optimization and evolution in mission critical mobile
application development,” in Proc. 11th Joint Meeting Found. Softw. Eng.,
2017, pp. 1034-1037.

V. Garousi, R. Ozkan, and A. Betin-Can, “Multi-objective regression test
selection in practice: An empirical study in the defense software industry,”
Inf. Softw. Technol., vol. 103, pp. 40-54, Nov. 2018.

R.-Z. Qi, Z.-J. Wang, and S.-Y. Li, ““A parallel genetic algorithm based on
spark for pairwise test suite generation,” J. Comput. Sci. Technol., vol. 31,
no. 2, pp. 417-427, Mar. 2016.

A.J. Turner, D. R. White, and J. H. Drake, ‘““Multi-objective regression test
suite minimisation for mockito,” in Proc. Int. Symp. Search Based Softw.
Eng. Cham, Switzerland: Springer, 2016, pp. 244-249.

A. Yamug, M. O Cingiz, G. Biricik, and O. Kalipsiz, “Solving test suite
reduction problem using greedy and genetic algorithms,” in Proc. 9th Int.
Conf. Electron., Comput. Artif. Intell. (ECAI), 2017, pp. 1-5.

A. Panichella, F. M. Kifetew, and P. Tonella, “Automated test case gener-
ation as a many-objective optimisation problem with dynamic selection
of the targets,” IEEE Trans. Softw. Eng., vol. 44, no. 2, pp. 122-158,
Feb. 2017.

M. Zacharidova, M. Kekelyova-Beleovd, and Z. Kotdsek, “Regression test
suites optimization for application-specific instruction-set processors and
their use for dependability analysis,” in Proc. Eur. Conf. Digit. Syst. Design
(DSD), 2016, pp. 380-387.

A. Sabbaghi and M. R. Keyvanpour, “A novel approach for combinatorial
test case generation using multi objective optimization,” in Proc. 7th Int.
Conf. Comput. Knowl. Eng. (ICCKE), 2017, pp. 411-418.

A. Marchetto, G. Scanniello, and A. Susi, “Combining code and require-
ments coverage with execution cost for test suite reduction,” IEEE Trans.
Softw. Eng., vol. 45, no. 4, pp. 363-390, Apr. 2019.

D. B. Mishra, R. Mishra, K. N. Das, and A. A. Acharya, “Test case
generation and optimization for critical path testing using genetic algo-
rithm,” in Soft Computing for Problem Solving. Singapore: Springer, 2019,
pp. 67-80.

Y.-N. Zhang, H. Yang, Z.-K. Lin, Q. Dai, and Y.-F. Li, “A test suite
reduction method based on novel quantum ant colony algorithm,” in Proc.
4th Int. Conf. Inf. Sci. Control Eng. (ICISCE), 2017, pp. 825-829.

S. Kumar, P. Ranjan, and R. Rajesh, “Modified ACO to maintain diversity
in regression test optimization,” in Proc. 3rd Int. Conf. Recent Adv. Inf.
Technol. (RAIT), 2016, pp. 619-625.

X.-C. Han, H.-W. Ke, Y.-J. Gong, Y. Lin, W.-L. Liu, and J. Zhang,
“Multimodal optimization of traveling salesman problem: A niching ant
colony system,” in Proc. Genetic Evol. Comput. Conf. Companion, 2018,
pp. 87-88.

A. Ansari, A. Khan, A. Khan, and K. Mukadam, “Optimized regres-
sion test using test case prioritization,” Procedia Comput. Sci., vol. 79,
pp. 152-160, Jan. 2016.

M. N. Kabir, J. Ali, A. A. Alsewari, and K. Z. Zamli, “An adaptive
flower pollination algorithm for software test suite minimization,” in Proc.
3rd Int. Conf. Elect. Inf. Commun. Technol. (EICT), 2017, pp. 1-5.

A. S. Metwally, E. Hosam, M. M. Hassan, and S. M. Rashad, “WAP:
A novel automatic test generation technique based on moth flame optimiza-
tion,” in Proc. IEEE 27th Int. Symp. Softw. Rel. Eng. (ISSRE), Oct. 2016,
pp. 59-64.

P. Gopi, M. Ramalingam, and C. Arumugam, “Search based test data
generation: A multi objective approach using MOPSO evolutionary algo-
rithm,” in Proc. 9th Annu. ACM India Conf., 2016, pp. 137-140.

K. Z. Zamli, F. Din, S. Baharom, and B. S. Ahmed, “Fuzzy adaptive
teaching learning-based optimization strategy for the problem of gener-
ating mixed strength z-way test suites,” Eng. Appl. Artif. Intell., vol. 59,
pp. 35-50, Mar. 2017.

89115

IEEE Access

A. Kiran et al.: Comprehensive Investigation of Modern Test Suite Optimization Trends, Tools and Techniques

[43]

[44]

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[65]

S. R. Sugave, S. H. Patil, and B. E. Reddy, “DDF: Diversity dragonfly
algorithm for cost-aware test suite minimization approach for software
testing,” in Proc. Int. Conf. Intell. Comput. Control Syst. (ICICCS), 2017,
pp. 701-707.

S. R. Sugave, S. H. Patil, and B. E. Reddy, “DIV-TBAT algorithm for test
suite reduction in software testing,” IET Softw., vol. 12, no. 3, pp. 271-279,
2018.

A. A. Alsewari, H. C. Har, A. A. B. Homaid, A. B. Nasser, K. Z. Zamli,
and N. M. Tairan, “Test cases minimization strategy based on flower
pollination algorithm,” in Proc. Int. Conf. Rel. Inf. Commun. Technol.
Cham, Switzerland: Springer, 2017, pp. 505-512.

A. Choudhary, A. P. Agrawal, and A. Kaur, “An effective approach for
regression test case selection using Pareto based multi-objective harmony
search,” in Proc. 11th Int. Workshop Search-Based Softw. Test., 2018,
pp. 13-20.

w. Zheng, R. M. Hierons, M. Li, X. Liu, and V. Vinciotti, “Multi-objective
optimisation for regression testing,” Inf. Sci., vol. 334, pp. 1-16, Mar. 2016.
Z. Wei, W. Xiaoxue, Y. Xibing, C. Shichao, L. Wenxin, and L. Jun,
“Test suite minimization with mutation testing-based many-objective evo-
lutionary optimization,” in Proc. Int. Conf. Softw. Anal., Test. Evol. (SATE),
2017, pp. 30-36.

A.P. Agrawal, A. Choudhary, A. Kaur, and H. M. Pandey, “‘Fault coverage-
based test suite optimization method for regression testing: Learning
from mistakes-based approach,” Neural Comput. Appl., vol. 31, pp. 1-16,
Feb. 2019.

A. B. Nasser, A. Alsewari, and K. Z. Zamli, “Learning cuckoo search
strategy for t-way test generation,” in Proc. Int. Conf. Comput., Anal. Netw.
Singapore: Springer, 2017, pp. 97-110.

S. Singhal, B. Suri, and S. Misra, “An empirical study of regression test
suite reduction using MHBG_TCS tool,” in Proc. Int. Conf. Comput. Netw.
Inform. (ICCNI), 2017, pp. 1-5.

Z. Anwar, “A hybrid-adaptive neuro-fuzzy inference system for multi-
objective regression test suites optimization,” Neural Comput. Appl.,
vol. 29, pp. 1-15, Jun. 2018.

R. Khan, M. Amjad, and A. K. Srivastava, “Optimization of automatic test
case generation with cuckoo search and genetic algorithm approaches,” in
Advances in Computer and Computational Sciences. Singapore: Springer,
2018, pp. 413-423.

P. Saraswat and A. Singhal, “A hybrid approach for test case prioritization
and optimization using meta-heuristics techniques,” in Proc. Ist India Int.
Conf. Inf. Process. (IICIP), 2016, pp. 1-6.

D. Pradhan, S. Wang, S. Ali, T. Yue, and M. Liaaen, “CBGA-ES: A cluster-
based genetic algorithm with elitist selection for supporting multi-objective
test optimization,” in Proc. IEEE Int. Conf. Softw. Test., Verification Vali-
dation (ICST), 2017, pp. 367-378.

F. Liu, J. Zhang, and E.-Z. Zhu, “Test-suite reduction based on K-Medoids
clustering algorithm,” in Proc. Int. Conf. Cyber-Enabled Distrib. Comput.
Knowl. Discovery (CyberC), 2017, pp. 186-192.

C. Coviello, S. Romano, and G. Scanniello, “‘Poster: CUTER: ClUstering-
based TEst suite reduction,” in Proc. IEEE/ACM 40th Int. Conf. Softw.
Eng., Companion (ICSE-Companion), May/Jun. 2018, pp. 306-307.

C. Coviello, S. Romano, G. Scanniello, A. Marchetto, G. Antoniol, and
A. Corazza, “Clustering support for inadequate test suite reduction,” in
Proc. IEEE 25th Int. Conf. Softw. Anal., Evol. Reeng. (SANER), Mar. 2018,
pp. 95-105.

A. Reichstaller, B. Eberhardinger, H. Ponsar, A. Knapp, and W. Reif, “Test
suite reduction for self-organizing systems: A mutation-based approach,”
in Proc. 13th Int. Workshop Automat. Softw. Test, 2018, pp. 64-70.

R. H. Rosero, O. S. Gémez, and G. Rodriguez, “Regression testing of
database applications under an incremental software development setting,”
IEEE Access, vol. 5, pp. 18419-18428, 2017.

W. Choi, K. Sen, G. Necula, and W. Wang, “DetReduce: Minimizing
Android GUI test suites for regression testing,” in Proc. 40th Int. Conf.
Softw. Eng., 2018, pp. 445-455.

D. Marijan, M. Liaaen, A. Gotlieb, S. Sen, and C. Ieva, “TITAN: Test suite
optimization for highly configurable software,” in Proc. IEEE Int. Conf.
Softw. Test., Verification Validation (ICST), Mar. 2017, pp. 524-531.

P. Liu, J. Ai, and Z. Xu, “Probability model-based test suite reduction,”
ACM SIGSOFT Softw. Eng. Notes, vol. 42, no. 3, pp. 1-6, 2017.

J.-W. Lin, R. Jabbarvand, J. Garcia, and S. Malek, ‘“Nemo: Multi-criteria
test-suite minimization with integer nonlinear programming,” in Proc.
IEEE/ACM 40th Int. Conf. Softw. Eng., May/Jun. 2018, pp. 1039-1049.
F. Palomo-Lozano, A. Estero-Botaro, I. Medina-Bulo, and M. Nufez,
“Test suite minimization for mutation testing of WS-BPEL compositions,”
in Proc. Genetic Evol. Comput. Conf., 2018, pp. 1427-1434.

89116

[66]

[67]

[68]

[69]

[70]

(71]

(72]

(73]

[74]

[75]

[76]

(77]

(78]

[79]

(80]

C. R. Panigrahi and R. Mall, and S. Engineering, “Regression test size
reduction using improved precision slices,” Innov. Syst. Softw. Eng.,
vol. 12, no. 2, pp. 153-159, 2016.

A. Vahabzadeh, A. Stocco, and A. Mesbah, “Fine-grained test minimiza-
tion,” in Proc. 40th Int. Conf. Softw., 2018, pp. 210-221.

M. Carlsson, A. Gotlieb, and D. Marijan, “Software product line test suite
reduction with constraint optimization,” in Proc. Int. Conf. Softw. Technol.
Cham, Switzerland: Springer, 2016, pp. 68—87.

W. Fu, H. Yu, G. Fan, X. Ji, and X. Pei, “A test suite reduction approach to
improving the effectiveness of fault localization,” in Proc. Int. Conf. Softw.
Anal., Test. Evol. (SATE), 2017, pp. 10-19.

U. Sivaji, A. Shraban, V. Varalaxmi, M. Ashok, and L. Laxmi, “Optimizing
regression test suite reduction,” in Proc. 1st Int. Conf. Artif. Intell. Cogn.
Comput. Singapore: Springer, 2019, pp. 187-192.

N. Jatana, B. Suri, and P. Kumar, “Mutation testing-based test suite
reduction inspired from Warshall’s algorithm,” in Software Engineering.
Singapore: Springer, 2019, pp. 357-364.

L. Singh and S. N. Singh, “A path coverage-based reduction of test cases
and execution time using parallel execution,” in Software Engineering.
Singapore: Springer, 2019, pp. 623-630.

Z. Anwar and A. Ahsan, “Multi-objective regression test suite opti-
mization with fuzzy logic,” in Proc. INMIC, Lahore, Pakistan, 2013,
pp- 95-100.

N. Mansour and K. El-Fakih, “Simulated annealing and genetic algorithms
for optimal regression testing,” J. Softw. Main., Res. Prac., vol. 11, no. 1,
pp. 19-34, 1999.

S. Yoo and M. Harman, “Regression testing minimization, selection and
prioritization: A survey,” Softw., Test. Verification Rel., vol. 22, no. 2,
pp. 67-120, 2012.

T. H. Cormen, C. E. Leiserson, R. L. Rivest, and C. Stein, Introduction to
Algorithms. 3rd ed. Cambridge, MA, USA: MIT Press, 2009.

N. Xiong, D. Molina, M. L. Ortiz, and F. Herrera, ‘A walk into metaheuris-
tics for engineering optimization: Principles, methods and recent trends,”
Int. J. Comput. Intell. Syst., vol. 8, no. 4, pp. 606—636, 2015.

A. Sharma, P. Rishon, and A. Aggarwal, “Software testing using genetic
algorithms,” Int. J. Comput. Sci. Eng. Surv., vol. 7, no. 2, pp. 21-33, 2016.
H. Spieker, A. Gotlieb, D. Marijan, and M. Mossige, “Reinforcement
learning for automatic test case prioritization and selection in continuous
integration,” in Proc. 26th ACM SIGSOFT Int. Symp. Softw. Test. Anal.,
Jul. 2017, pp. 12-22.

M. Vanmali, M. Last, and A. Kandel, “Using a neural network in the
software testing process,” Int. J. Intell. Syst., vol. 17, no. 1, pp. 45-62,
2002.

AYESHA KIRAN received the B.S. degree in software engineering from
the Government College University, Faisalabad, Pakistan. She is currently
pursuing the M.S. degree in software engineering with the Computer and
Software Engineering Department, College of Electrical and Mechanical
Engineering, National University of Sciences and Technology, Pakistan. Her
research interest includes test suite optimization.

WASI HAIDER BUTT is currently an Assis-
tant Professor with the Department of Computer
and Software Engineering, College of Electrical
and Mechanical Engineering, National Univer-
sity of Sciences and Technology, Pakistan. His
research interests include model driven software
engineering, web development, and requirement
engineering.

VOLUME 7, 2019

A. Kiran et al.: Comprehensive Investigation of Modern Test Suite Optimization Trends, Tools and Techniques

IEEE Access

VOLUME 7, 2019

MUHAMMAD WASEEM ANWAR is currently
pursuing the Ph.D. degree with the Department of
Computer and Software Engineering, College of
Electrical and Mechanical Engineering, National
University of Sciences and Technology, Pakistan.
He is a Senior Researcher and an Industry Practi-
tioner in the field of model-based system engineer-
ing (MBSE) for embedded and control systems.
His major research interest includes MBSE for
complex and large systems.

FAROOQUE AZAM is currently an Adjunct
Faculty with the Department of Computer and
Software Engineering, College of Electrical and
Mechanical Engineering, National University of
Sciences and Technology, Pakistan. He is teaching
various software engineering courses, since 2007.
His areas of interests include model driven soft-
ware engineering, business modeling for web
applications, and business process reengineering.

BILAL MAQBOOL received the M.S. degree
in software engineering from the Computer and
Software Engineering Department, College of
Electrical and Mechanical Engineering, National
University of Sciences and Technology (NUST),
Pakistan, in 2018. From 2017 to 2018, he was a
Research Assistant with the NUST, where he is
currently a Senior Researcher in the field of soft-
ware engineering. His research interests include
business process automation through model driven

software engineering (MDSE) and natural language processing (NLP).

89117

	INTRODUCTION
	REVIEW PROTOCOL
	CATEGORIES DEFINITION
	INCLUSION AND EXCLUSION RULES
	SEARCH PROCESS
	QUALITY ASSESSMENT
	DATA EXTRACTION AND SYNTHESIS

	RESULTS AND ANALYSIS
	GREEDY ALGORITHM CATEGORY
	META-HEURISTIC ALGORITHM CATEGORY
	GENETIC ALGORITHM
	ANT COLONY ALGORITHM
	OTHER META-HEURISTIC ALGORITHMS

	HYBRID ALGORITHM CATEGORY
	CLUSTERING ALGORITHM
	GENERAL CATEGORY
	TEST SUITE OPTIMIZATION TOOLS
	EXISTING TOOLS
	PROPOSED TOOLS
	PLATFORM SUPPORTS

	COMPARISON OF CATEGORIES

	ANSWERS OF RESEARCH QUESTIONS
	DISCUSSION AND LIMITATIONS
	CONCLUSION
	REFERENCES
	Biographies
	AYESHA KIRAN
	WASI HAIDER BUTT
	MUHAMMAD WASEEM ANWAR
	FAROOQUE AZAM
	BILAL MAQBOOL

