
Received May 9, 2019, accepted June 27, 2019, date of publication July 2, 2019, date of current version July 23, 2019.

Digital Object Identifier 10.1109/ACCESS.2019.2926418

New QAM Complementary Sequences for Control
of Peak Envelope Power of OFDM Signals
YUE ZENG1, LISHENG ZHANG1, FANXIN ZENG 2, XIPING HE 2,
GUIXIN XUAN3, AND ZHENYU ZHANG 4
1College of Software Engineering, Chongqing University of Posts and Telecommunications, Chongqing 400065, China
2Chongqing Engineering Laboratory for Detection, Control and Integrated System, Chongqing Technology and Business University, Chongqing 400067, China
3College of Communication Engineering, Chongqing University, Chongqing 400044, China
4Communication NCO Academy, PLA Army Engineering University, Chongqing 400035, China

Corresponding author: Fanxin Zeng (fzengx@cqu.edu.cn)

This work was supported by the National Natural Science Foundation of China (NSFC) under Grant 60872164, Grant 61002034,
Grant 61271003, and Grant 6147366.

ABSTRACT By developing new mathematical descriptions of 4q (integer q ≥ 2) quadrature amplitude
modulation (QAM) constellation, a novel construction producing 4q-QAM complementary sequences (CSs)
of length 2m (integer m ≥ 2) is presented. The proposed sequences include the known 4q-QAM CSs
constructed from Cases I to III constructions, proposed by Li, as special cases. For 16-QAMCSs, the number
of the resultant sequences is determined precisely. New sequences have a larger family size so as to increase
the code rates. When used in orthogonal frequency-division multiplexing (OFDM) systems, new sequences
possess the same peak envelope power (PEP) upper bounds as those of the known sequences referred to
above.

INDEX TERMS Quadrature amplitude modulation complementary sequences, standard Golay-Davis-
Jedwab complementary sequences, generalized Boolean function, code rates, peak envelope power (PEP).

I. INTRODUCTION
IN contemporary communication, orthogonal frequency-
division multiplexing (OFDM) communication systems are
preferred, due to their own special advantages. However,
high peak envelope power (PEP) of OFDM signals brings
great challenge for OFDM systems’ implementation. It has
been proven that OFDM signals, encoded by complementary
sequences (CSs), possess low peak envelope power (PEP)
upper bounds [1]–[3]. On the other hand, quadrature ampli-
tude modulation (QAM) symbols are widely applied to high
rate OFDM transmissions. Hence, it is natural to explore
QAM CSs [4]–[11].

In general, QAM CSs are produced by employing mathe-
matical descriptions of QAM constellation. There exist two
such descriptions. One of them is based on quadriphase
inputs [4], which is called Q-type description for short
(see Section IV for its concept). The other is on basis
of binary inputs, which is referred to as B-type descrip-
tion [26]. Q-type description can be divided into Q-type-1
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and Q-type-2 cases (see Section IV for their concepts). Based
on Q-type-1 description, a large number of QAM CSs are
presented [4]–[18]. In 2003, Chong et al. [4] constructed
16-QAM CSs by adding an offset and a pair difference (see
Theorem 6 in Section V for their definitions). In 2006, Lee
and Golomb [5] proposed 64-QAM CSs by adding two off-
sets and gave some conjectures. In 2008, Li [6] made some
comments to both [4] and [5]. In 2010, Chang et al. [7]
gave new 64-QAM CSs and completed the verification of
the conjectures in [5]. Also, Li [8] gave general QAM CSs’
construction, called Cases I-III constructions, by adding sev-
eral offsets, and determined their family size. Interestingly,
Cases I-III constructions in [8] includes all previously known
QAM CSs as special cases. It should be noted that the family
size of this general construction is mainly determined by the
number of the offsets, which implies a possible approach of
expansion of family size: enlarging the number of the offsets.
In 2013, Liu et al. [9] presented Cases IV-V constructions
by introducing nonsymmetrical Gaussian integer pair and
constructed the larger family size for fairly long QAM CSs
(typically, length > 2122 for 64-QAM CSs). Notice that all
the aforementioned constructions are on the basis of standard

VOLUME 7, 2019 This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see http://creativecommons.org/licenses/by/4.0/ 89901

https://orcid.org/0000-0002-7320-400X
https://orcid.org/0000-0003-3922-3319
https://orcid.org/0000-0001-8985-7083


Y. Zeng et al.: New QAM CSs for Control of PEP of OFDM Signals

quadrature phase shift keying (QPSK) Golay-Davis-Jedwab
(GDJ) CSs [3]. However, there exist a large number of non-
standard QPSK GDJ CSs [19] [20]. In 2014, Zeng et al. [10]
proposed 16-QAM CSs from non-standard QPSK GDJ CSs.
In the following year, Zeng and Zhang [11] gave a brief
derivation on Cases I-III constructions. In addition, it should
be noted that the lengths of all the QAMCSs referred to above
must be a power of 2. Fortunately, many researchers [12]- [18]
provided the QAM CSs with more lengths so as to overcome
such length confinement.

Family size of QAM CSs is important, due to the fact that
code rates are decided by this parameter. In [4], it has been
pointed out that in an OFDM system, number of sub-carriers
with code rate not excelling one is not fit. As a consequence,
expansion of family size of QAMCSs is an efficient approach
for improving code rates.

In this paper, by developing new mathematical descrip-
tion Q-type-2 of QAM constellation, a new family of
4q-QAMCSs is presented. New sequences include ones from
Cases I-III constructions in [8] as special cases, and have
lager family size so as to increase the code rates. Besides, [8]
and this paper have the same PEP upper bounds.

The rest of this paper is organized as follows. In Section II,
we briefly recall definitions of CSs and generalized Boolean
functions (GBFs), and relevant conclusions. In Section III,
roles of CSs in the control of PEP of OFDM signals are
introduced. In the following section, Q-type mathematical
description of QAM constellation is investigated. New QAM
CSs from Q-type-2 description are presented in Section V.
In Section VI and VII, family size and PEP upper bounds
of the resultant sequences are discussed, respectively. Com-
parisons between the existing relevant QAM CSs and two
examples follow in next two sections, respectively. Finally,
the conclusion remarks appear in Section X.

II. DEFINITION OF CSs AND STANDARD 2h-PSK GDJ CSs
Consider two complex sequences: A = (A0,A1, · · · ,AN−1)
and B = (B0,B1, · · · ,BN−1) of length N . We define

CA,B(τ ) =



N−1−τ∑
i=0

AiBi+τ 0 ≤ τ ≤ N − 1

N−1+τ∑
i=0

Ai−τBi 1− N ≤ τ < 0

0 |τ | ≥ N .

(1)

If A = B, we refer to CA,A(τ ) as an aperiodic autocorrelation
function, otherwise, we say CA,B(τ ) to be an aperiodic cross-
correlation function.

If two sequences A and B satisfy

CA,A(τ )+ CB,B(τ ) = 0 (∀ τ 6= 0), (2)

we say these two sequences to be CSs, and each of them is
referred to as a Golay sequence.

Up to now, there have existed many methods produc-
ing CSs, therein the methods based on standard GBFs are

attractive [3], and the resultant CSs are called standard 2h

phase shift keying (PSK) Golay-Davis-Jedweb (GDJ) CSs.
Here, we briefly recall standard 2h-PSK GDJ CSs and their
main conclusions.

Let Z2h = {0, 1, 2, · · · , 2
h
− 1} (integer h ≥ 1). The

following GBFs:

f (x) = 2h−1
m−1∑
k=1

xπ (k)xπ (k+1) +
m∑
k=1

ckxk + c, (3)

are said to be standard GBFs, where π means a permutation
of the symbol set {1, 2, · · · ,m}, and c, ck ∈ Z2h (1 ≤
k ≤ m). Apparently, for given m-dimensional vector x =
(x1, x2, · · · , xm) ∈ Zm2 , we have the Boolean function value
f (x) ∈ Z2h . When them-dimensional vector x ranges over the
range from (0, · · · , 0) to (1, · · · , 1), 2m − 1 function values
in Z2h are educed. Note that the m-dimensional vectors from
(0, · · · , 0) to (1, · · · , 1) are exactly the binary representations
of the integers from 0 to 2m − 1. Thus, we can obtain a
sequence, denoted by f = (f0, f1, · · · , f2m−1) regardless of
the difference between the integers and the vectors, of length
N = 2m over Z2h , where fi = f (i1, i2, · · · , im), and i =
m∑
k=1

ik2m−k . The relevant conclusions of the standard 2h-PSK

GDJ CSs [3] are stated below.
Lemma 1 ( [3], Corollary 4): Let{

a(x) = f (x)
b(x) = f (x)+ 2h−1xπ (1) + c′,

(4)

where c′ ∈ Z2h . Then, the sequences a and b form 2h-PSK
CSs over Z2h with length N = 2m.
Lemma 2 ( [3], Corollary 4): There are 2h(m+1)(m!/2)

standard GBFs over Z2h or standard 2h-PSK Golay
sequences a’s.
Lemma 3 ( [3]): Under Lemma 1, consider two non-

negative integers τ (0 < τ ≤ N − 1) and i (0 ≤ i ≤ N − 1).
Let ξ = exp(2π j/2h) (j =

√
−1). If iπ (1) = (i + τ )π (1),

for 1 ≤ k ≤ m and given τ there must exist two integers i′

(0 ≤ i′ ≤ N − 1), and v (1 ≤ v ≤ m) satisfying

v = inf{k|iπ (k) 6= (i+ τ )π (k), 1 ≤ k ≤ m} (5a)
iπ (k) + (i′ + τ )π (k) = 1 (k < v) (5b)
(i+ τ )π (k) + i′π (k) = 1 (k < v) (5c)

iπ (k) = i′π (k) (k ≥ v) (5d)

(i+ τ )π (k) = (i′ + τ )π (k) (k ≥ v) (5e)
ξai′−ai′+τ = −ξai−ai+τ , (sf)

and there exists a 1-1 corresponding between the integer pairs
(i, i+ τ ) and (i′, i′ + τ ).
Lemma 3 is educed by the derivation of Case 2 in

Theorem 3 in [3]. For the reader who needs more detailed
explanations of Lemma 3, please see Case 1 in Theorem 4
in [4].

89902 VOLUME 7, 2019



Y. Zeng et al.: New QAM CSs for Control of PEP of OFDM Signals

III. REDUCTION OF PEP OF ENCODED OFDM SIGNALS
The PEP of OFDM signals, encoded by CSs, can be better
controlled, which owes to complementary correlation prop-
erty of CSs. By employing well-designed CSs of length N
over binary, quaternary, or polyphase constellations, upper
bound of accompanying PEP does not exceed 2N .
In an OFDM communication system of N sub-carriers,

its i-th sub-carrier has the frequency fi, where fi = f0 + i1f
(0 ≤ i ≤ N − 1), f0 is the carrier frequency, and 1f is the
spacing frequency between sub-carriers. A complex signal
su(r) (t) (0 ≤ t ≤ Ts), encoded by the sequence u(r) =
(u(r)0 , u

(r)
1 , · · · , u

(r)
N−1) of length N , is expressed by

su(r) (t) =
N−1∑
k=0

u(r)k e2π jfk t . (6)

Thus, the transmitted OFDM signal in the OFDM system
is exactly the real part of su(r) (t). Further, the instantaneous
envelope power Pu(r) (t) of the transmitted OFDM signal can
be calculated by [4]

Pu(r) (t) = |su(r) (t)|
2

= Cu(r),u(r) (0)+
∑
l 6=0

Cu(r),u(r) (l)e
2π jl1ft . (7)

It has been proved that the instantaneous envelope power
of an OFDM system is bounded by [3]

Pu(r) (t) ≤ N
2, (8)

and the worst case can be attained when this system is
uncoded, that is, u(r) = (1, · · · , 1).

Let u(r) and u(s) form the CSs. By making use of the
definition of CSs, we apparently have

Pu(r) (t)+ Pu(s) (t) = Cu(r),u(r) (0)+ Cu(s),u(s) (0). (9)

Let C be a code whose codewords consist of sequences.
We define

PEP(ur ) = sup
t∈[0,Ts]

Pu(r) (t)

PEP(C) = max{PEP(u(r))|∀ u(r) ∈ C}. (10)

When an OFDM signal is encoded by well-designed CSs
over binary, quaternary, or polyphase constellations, the fol-
lowing lemma holds.
Lemma 4 ( [3]): Let code C consist of binary, quaternary,

or polyphase CSs of length N . Then, the PEP of the code C
satisfies

PEP(C) ≤ 2N . (11)

Lemma 4 is fit for binary, quaternary, and polyphase
CSs [21]. However, for QAM CSs, the conclusion on their
PEP upper bound is given by
Lemma 5 ( [8]): Let code C consist of 4q-QAM general

CSs of length N from Cases I-III constructions in [8]. Then,
the PEP of the code C satisfies

PEP(C) ≤
6N (2q − 1)
2q + 1

. (12)

Here is an example to highlight the importance of CSs for
reduction of PEP.
Example 1: Consider 4 sub-carriers system. Take the

16-QAM CSs A = 1
√
10
(1 + j, 1 + j, 1 + j, 1 + j) and

B = 1
√
10
(1+ j,−1+3j, 1−3j,−1− j), of length N = 4 [23].

Apparently, for the encoded OFDM signal, we have

PA(t)+ PB(t) = CA,A(0)+ CB,B(0) = 3.2 = 0.8N .

Fig.1 simulates the uncoded and encoded OFDM signals,
respectively. Clearly, the uncoded OFDM signal has maxi-
mum magnitude 4. Whereas, the encoded OFDM signal is
bounded to maximum magnitude 2. Hence, the improvement
of PEP of the encoded OFDM system is obvious.

FIGURE 1. 4 sub-carriers uncoded and coded OFDM signals.

IV. Q-TYPE DESCRIPTIONS OF QAM CONSTELLATION
The QAM constellation with order 4q (positive integer q ≥ 2)
is the following symbol set: [22]

�4q-QAM
def
= {a+ bj| − 2q + 1 ≤ a, b ≤ 2q − 1, a, b odd}.

There are two methods to produce 4q-QAM constellation,
therein, one of them is based on quaternary inputs, called
Q-type descriptions for short, including two cases: Q-type-1
and Q-type-2.
Q-type-1 [12], [22]: The Q-type-1 description consists of

q independent quaternary input variables below.{
(1+ j)

q−1∑
p=0

2pju
(p)
|u(p) ∈ Z4, 0 ≤ p ≤ q− 1

}
. (13)

When the q-dimensional vector (u(0), u(1), · · · , u(q−1))
ranges over the range from (0, · · · , 0) to (3, · · · , 3) (total
number 4q), Q-type-1 is exactly equivalent to 4q-QAM con-
stellation. This description is important due to the fact that all
the existing QAM CSs in [4]- [18] are educed by it.
Q-type-2:This is a new description presented by this paper,

and is also the fundamental of the coming QAM CSs’ inves-
tigation. The Q-type-2, consisting of 2q − 1 independent
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quaternary input variables, is given by{
(1+ j)

2q−2∑
p=0

jv
(p)
|v(p) ∈ Z4, 0 ≤ p ≤ 2q − 2

}
. (14)

Proof: We need to verify two cases: (1) each symbol in
Q-type-2 must belong to the set �4q-QAM; (2) each 4q-QAM
symbol can be produced by Q-type-2.

(1) For ∀ (v(0), v(1), · · · , v(2
q
−2)) ∈ Z2q−1

4 whose symbol
distribution is given by

n0 = |{p|v(p) = 0, 0 ≤ p ≤ 2q − 2}|
n1 = |{p|v(p) = 1, 0 ≤ p ≤ 2q − 2}|
n2 = |{p|v(p) = 2, 0 ≤ p ≤ 2q − 2}|
n3 = |{p|v(p) = 3, 0 ≤ p ≤ 2q − 2}|,

(15)

Q-type-2 description produces the symbol:

A = (1+ j)
2q−2∑
p=0

jv
(p)
= (1+j)

[
(n0 − n2)+j(n1 − n3)

]
= (n0 − n2 − n1 + n3)+ j(n0 − n2 + n1 − n3).

Notice that n0 + n2 + n1 + n3 = 2q − 1 (odd number).
Hence, in these four integers n0, n1, n2, and n3, only two
cases: ‘‘one odd-three even’’ or ‘‘one even-three odd’’ appear.
Clearly, both two cases result in the fact that both the integers
‘‘n0−n2−n1+n3’’ and ‘‘n0−n2+n1−n3’’ are odd. On the
other hand, apparently, we have

−(2q − 1) ≤ n0 − n2 − n1 + n3, n0 − n2
+ n1 − n3 ≤ 2q − 1.

Summarizing the above, we come to the conclusion: A ∈
�4q-QAM.
(2) Consider ∀ a+ jb ∈ �4q-QAM. We set

2q−2∑
k=0

jv
(k)
=
a+ jb
1+ j

=
a+ b
2
+ j

b− a
2

. (16)

Now, we need to determine the components of (2q −
1)-dimensional vector (v(0), v(1), · · · , v(2

q
−2)) over Z2q−1

4 to
guarantee that (16) holds. A direct scheme is given below.
Step 1: Arbitrarily choose | a+b2 | ‘‘0’s’’ or ‘‘2’s’’ in this

vector, depending on a+b
2 positive or negative.

Step 2: Arbitrarily choose | b−a2 | ‘‘1’s’’ or ‘‘3’s’’ in the
other components except those components chosen in Step 1,
depending on b−a

2 positive or negative.
Step 3: Arbitrarily and pairwise choose ‘‘0 and 2’’ or ‘‘1

and 3’’ in the unused components in Steps 1 and 2 so that the
sum of powers of j from these unused components vanishes.
To clarify this, we set a = 2a0 + 1 and b = 2b0 + 1 due to
the fact that both a and b are odd, hence we have both a+b

2 =

a0+b0+1 = (b0−a0)+(2a0+1) and b−a
2 = b0−a0, which

implies that | a+b2 | and |
b−a
2 | must be ‘‘one odd-one even’’.

Therefore, the number 2q − 1− | a+b2 | − |
b−a
2 | of the unused

componentsmust be even, whichmeans that didymous choice
operation in Step 3 is feasible.

The above discussions suggest that for each in the set
�4q-QAM, there exists at least a (2q − 1)-dimensional vector
over Z2q−1

4 so that it is yielded by Q-type-2 description.
Thus, we verify that Q-type-2 description produce all

the symbols in the set �4q-QAM when the input vector
(v(0), v(1), · · · , v(2

q
−2)) ∈ Z2q−1

4 ranges over the range from
(0, · · · , 0) to (3, · · · , 3).
Remark: (1) Q-type-1 is a special case of the proposed

description.
Apparently, when we set

v(2
p
−2+r)

= u(p) (0 ≤ p ≤ q− 1, 1 ≤ r ≤ 2p), (17)

Q-type-2 exactly degenerates to Q-type-1.
(2) A 4q-QAM symbol may be mapped by multiple (2q −

1)-dimensional vectors in Q-type-2.

TABLE 1. Distribution of the symbols in 16-QAM constellation.

TABLE 2. Distribution of the symbols in 64-QAM constellation.

For example, consider the symbol ‘‘1+3j’’ in 16-QAM
constellation. Apparently, this symbol can be mapped by
three 3-dimensional vectors (0, 0, 1), (0, 1, 0), and (1, 0, 0).
Tables 1 and 2 give the distributions of the symbols from
Q-type-2 in 16- and 64-QAM constellations, respectively,
where the frequency n in the symbol set {±a±bj}means every
symbol in this set appears n times when (2q−1)-dimensional
vector (v(0), v(1), · · · , v(2

q
−2)) ∈ Z2q−1

4 ranges over the range
from (0, · · · , 0) to (3, · · · , 3).

V. NEW QAM CSs FROM Q-TYPE-2
Based onQ-type-2 description, in this section, wewill present
new QAM CSs. The author’s idea is inspired by Chong,
et al.’s method in [4].
Theorem 6: Consider quaternary GBFs f (x)’s with h = 2

in (3). Let

a(0)(x) = a(x) = f (x)

b(0)(x) = a(0)(x)+ µ(x) = a(x)+ µ(x)

a(1)(x) = a(x)+ s(1)(x)

b(1)(x) = a(1)(x)+ µ(x) = a(x)+ s(1)(x)+ µ(x)
...

a(2
q
−2)(x) = a(x)+ s(2

q
−2)(x)

b(2
q
−2)(x) = a(2

q
−2)(x)+ µ(x)

= a(x)+ s(2
q
−2)(x)+ µ(x).

(18)
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By employing Q-type-2 description in (14), we construct
4q-QAM sequences A = (A0,A1, · · · ,AN−1) and B =
(B0,B1, · · · ,BN−1) with length N = 2m by

Ai = δγ
2q−2∑
p=0

ja
(p)
i

Bi = δγ
2q−2∑
p=0

jb
(p)
i ,

(19)

where δ = 1
√
(4q−1)/3

and γ = eπ j/4. In comparison with (14),

a constant 1
√
2(4q−1)/3

in (19) is added as done in [8]. Then,
the proposed QAM sequences A and B are 4q-QAM CSs if
the offsets s(p)(x) (1 ≤ p ≤ 2q−2) and the pairing difference
µ(x) satisfy one of the following cases, where d (p)l ∈ Z4 (1 ≤
p ≤ 2q − 2, 0 ≤ l ≤ 2).

Case I: µ(x) = 2xπ (m)

s(p)(x) = d (p)0 + d
(p)
1 xπ (1) (1 ≤ p ≤ 2q − 2). (20)

Case II: µ(x) = 2xπ (1)

s(p)(x) = d (p)0 + d
(p)
1 xπ (m) (1 ≤ p ≤ 2q − 2). (21)

Case III: µ(x) = 2xπ (1) or 2xπ (m)

s(p)(x) = d (p)0 + d
(p)
1 xπ (w) + d

(p)
2 xπ (w+1)

with 2d (p)0 + d
(p)
1 + d

(p)
2 ≡ 0 (mod 4)

(1 ≤ p ≤ 2q − 2, 1 ≤ w ≤ m− 1). (22)

Proof: In accordance with (1), for ∀ τ > 0 the aperi-
odic autocorrelation function of the sequence A in (19) is
counted by

1
δ2
CA,A(τ ) =

N−τ−1∑
i=0

( 2q−2∑
p=0

ja
(p)
i

)( 2q−2∑
r=0

j−a
(r)
i+τ

)

=

2q−2∑
p=0

2q−2∑
r=0

Ca(p),a(r) (τ )

=

2q−2∑
p=0

Ca(p),a(p) (τ )+
∑

0≤p,r≤2q−2
p 6=r

Ca(p),a(r) (τ ).

Similarly, we have

1
δ2
CB,B(τ ) =

2q−2∑
p=0

Cb(p),b(p) (τ )+
∑

0≤p,r≤2q−2
p 6=r

Cb(p),b(r) (τ ).

According to Lemma 1, the sequences a(p) and b(p) (0 ≤
p ≤ 2q − 2) form Golay CSs. Consequently, for the sake
of guaranteeing that the sequences A and B are CSs, it is
sufficient for us to have∑
0≤p,r≤2q−2

p 6=r

(
Ca(p),a(r) (τ )+Cb(p),b(r) (τ )

)
=0 (∀ τ > 0). (23)

For ease of presentation, we write the left-hand side of (23)
as Lhs(τ ). Further, Lhs(τ ) can be equivalently expressed by

Lhs(τ ) =
2q−2∑
r=1

[
Ca(0),a(r) (τ )+ Cb(0),b(r) (τ )

+Ca(r),a(0) (τ )+ Cb(r),b(0) (τ )
]

+

∑
1≤p<r≤2q−2

[
Ca(p),a(r) (τ )

+Cb(p),b(r) (τ )+ Ca(r),a(p) (τ )+ Cb(r),b(p) (τ )
]
. (24)

Notice that we have

ja
(p)
i −a

(r)
i+τ = jai+s

(p)
i −ai+τ−s

(r)
i+τ = jai−ai+τ js

(p)
i −s

(r)
i+τ

and

jb
(p)
i −b

(r)
i+τ = jai+s

(p)
i +µi−ai+τ−s

(r)
i+τ−µi+τ

= jai−ai+τ js
(p)
i −s

(r)
i+τ jµi−µi+τ ,

where s(0)i = s(0)i+τ = 0.
On the basis of (1), by substituting just above two equations

into (24), Lhs(τ ) can be equivalently represented as

Lhs(τ ) =
2q−2∑
r=1

h1(τ, r)+
∑

1≤p<r≤2q−2

h2(τ, p, r), (25)

where

h1(τ, r) =
N−τ−1∑
i=0

jai−ai+τ
[
js
(r)
i +j−s

(r)
i+τ

]
·

[
1+ jµi−µi+τ

]
(26)

and

h2(τ, p, r) =
N−τ−1∑
i=0

jai−ai+τ
[
js
(p)
i −s

(r)
i+τ + js

(r)
i −s

(p)
i+τ

]
·

[
1+ jµi−µi+τ

]
. (27)

Case III: Due to jµi−µi+τ = (−1)iπ (1)−(i+τ )π (1) , apparently,
whenever iπ (1) 6= (i + τ )π (1) we have both h1(τ, r) = 0
and h2(τ, p, r) = 0 for ∀ τ > 0, p, r . As a consequence,
the key point to verify that (23) holds is that for ∀ τ > 0, p, r ,
the functions h1(τ, r) and h2(τ, p, r) vanish simultaneously
whenever iπ (1) = (i+ τ )π (1).

For given τ > 0, we denote

Iτ = {i|iπ (1) = (i+ τ )π (1), 0 ≤ i ≤ N − τ − 1}. (28)

In accordance with Lemma 3, we have{
Iτ = I1,τ

⋃
I2,τ

I1,τ
⋂
I2,τ = φ (empty set),

(29)

where

I1,τ = {i|(i, i′) defined by Lemma3, 0 ≤ i, i′ ≤ N − τ − 1}

and

I2,τ = {i′|(i, i′) defined by Lemma3, 0 ≤ i, i′ ≤ N − τ − 1}.
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Note that 1 + jµi−µi+τ = 2 whenever iπ (1) = (i + τ )π (1).
Hence, the functions h1(τ, r) and h2(τ, p, r) are respectively
reduced to

h1(τ, r) = 2
∑
i∈I1,τ

jai−ai+τ
[
js
(r)
i + j−s

(r)
i+τ

]
+ 2

∑
i′∈I2,τ

jai′−ai′+τ
[
js
(r)
i′ + j−s

(r)
i′+τ

]
(30)

and

h2(τ, p, r) = 2
∑
i∈I1,τ

jai−ai+τ
[
js
(p)
i −s

(r)
i+τ + js

(r)
i −s

(p)
i+τ

]
+ 2

∑
i′∈I2,τ

jai′−ai′+τ
[
js
(p)
i′
−s(r)

i′+τ + js
(r)
i′
−s(p)

i′+τ

]
. (31)

Consider integers i, i′, and v defined by Lemma 3. Since
the offset s(f )(x) (1 ≤ f ≤ 2q − 2) in (22) satisfies one of the
following two cases.
Case A: w ≥ v.
According to (5d) and (5e) in Lemma 3, we have{

s(f )i = s(f )i′
s(f )i+τ = s(f )i′+τ ,

(32)

which results in that in (30) and (31), the following two
equations:

js
(r)
i + j−s

(r)
i+τ = js

(r)
i′ + j−s

(r)
i′+τ (33)

and

js
(p)
i −s

(r)
i+τ + js

(r)
i −s

(p)
i+τ = js

(p)
i′
−s(r)

i′+τ + js
(r)
i′
−s(p)

i′+τ (34)

hold.
Combining (5f), (33), and (34), we come to the conclusion

that both integers i and i′ contribute zero to both the functions
h1(τ, r) and h2(τ, p, r). After all the integer pairs (i, i′)’s
defined by Lemma 3 are used, the functions h1(τ, r) and
h2(τ, p, r) vanish synchronously.
Case B: w < v.
According to (5b) and (5c) in Lemma 3, and (22), we have
s(f )i + s

(f )
i′+τ = 2d (f )0 + d

(f )
1 [iπ (w) + (i′ + τ )π (w)]+

d (f )2 [iπ (w+1) + (i′ + τ )π (w+1)] = 2d (f )0 + d
(f )
1 + d

(f )
2 ≡ 0

s(f )i+τ + s
(f )
i′ = 2d (f )0 + d

(f )
1 [(i+ τ )π (w) + i′π (w)]+

d (f )2 [(i+ τ )π (w+1) + i′π (w+1)] = 2d (f )0 + d
(f )
1 + d

(f )
2 ≡ 0.

(35)

Thus, from (35) we obtain
js
(r)
i = j−s

(r)
i′+τ

j−s
(r)
i+τ = js

(r)
i′

js
(p)
i −s

(r)
i+τ = js

(r)
i′
−s(p)

i′+τ

js
(r)
i −s

(p)
i+τ = js

(p)
i′
−s(r)

i′+τ ,

(36)

which results in that (33) and (34) hold synchronously. With
the same reasons in Case A, thus, the functions h1(τ, r) and
h2(τ, p, r) must vanish synchronously.
By summarizing the above, the conclusion in Case III

follows immediately.
Cases I and II: Employ the technique used in [4]. For

Case II, (33) and (34) must hold due to w = m ≥ v.
Go through the same discussions as Case A in Case III,
the conclusion in Case II holds. For Case I, by employing
the mapping π ′(w) = m− 1−π (w), the conclusion in Case I
is direct.

Finally, all the solutions of the congruence equation in (22)
are given in Table 3 [8].

TABLE 3. All the solutions of congruence equation in (22).

VI. FAMILY SIZE OF NEW QAM CSs
The family size of CSs is important, due to the fact that the
family size influences the choice of sub-carrier number of an
OFDM system. In [4], the code rate is introduced to guide
the choice of sub-carrier number. Let a code C consist of
sequences of length N . The code rate of the code C is given
by [4]

R(C) =
log|C|2

N
, (37)

where |C| stands for cardinality of the code C .
It has been known that such a choice of sub-carrier number

with code rate not excelling 1 is not fit, and high code rates
are always anticipated [4].

In order to investigate the improvement of the code rate of
new QAM CSs, their family size needs to be calculated. For
the sake of easy discussion, we consider two cases: 16-QAM
CSs and higher-order QAM CSs.
Case i: 16-QAM CSs.
In this case, our construction in (19) is simplified asAi = δγ

(
ja

(0)
i + ja

(0)
i +s

(1)
i + ja

(0)
i +s

(2)
i

)
Bi = δγ

(
ja

(0)
i +µi + ja

(0)
i +s

(1)
i +µi + ja

(0)
i +s

(2)
i +µi

)
,

(38)

which implies that for given the GBF f (x) and the pair
difference µ(x), the 16-QAM CS pair (A,B) is determined,
only depending on the offset pair (s(1)(x), s(2)(x)). As a result,
it is sufficient to calculate the number of the offset pairs for
the family size of the proposed 16-QAM CSs. Notice that for
two arbitrary offset pairs (g(x), k(x)) and (u(x), v(x)), when
they satisfy both g(x) = v(x) and k(x) = u(x), the two
16-QAM CS pairs, educed by these two offset pairs referred
to above, are identical. We call such two offset pairs overlap-
ping. Hence, the crux to calculate the family size is to count
the number of non-overlapping offset pairs. We consider two
cases below.
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(1). s(1)(x) = s(2)(x).
In this case, our construction degenerates to the one in [8].

By using the results in Corollary 3 in [8], we have 12m+ 14
non-overlapping offset pairs.
(2). s(1)(x) 6= s(2)(x).
Employing themethod in [4] so as to divide possible offsets

into the following five sets with empty pairwise intersection.
Combining the possible offset coefficients (d (p)0 , d (p)1 , d (p)2 )’s
which are listed in Table 1 in [8], we have

S1 = {d0|d0 = 0, 1, 2, 3};

S2= {d0 + d1xπ (1)|d0, d1 ∈ Z4, d1 6= 0};

S3= {d0 + d1xπ (m)|d0, d1 ∈ Z4, d1 6= 0};

S4= {d0 + d1xπ (w)|(d0, d1) = (1, 2), (3, 2)} (2≤ w≤m−1);

S5= {d0 + d1xπ (w)+d2xπ (w+1)|(d0, d1, d2) = (0, 1, 3),

(0, 2, 2), (0, 3, 1), (1, 1, 1), (1, 3, 3), (2, 1, 3), (2, 2, 2),

(2, 3, 1), (3, 1, 1), (3, 3, 3)} (1 ≤ w ≤ m− 1),

where the sets S2 and S3 belong to Cases 1 and 2, respectively,
and the sets S1, S4, and S5 are in Case 3 in Theorem 6 syn-
chronously.
In order to obtain non-overlapping offset pairs (s(1)(x),

s(2)(x))’s, we use the following selection strategy. Consider
selection of offset pairs in Si (1 ≤ i ≤ 5). Step 1: arbi-
trarily choose an offset in Si, written by 41, as s(1)(x), and
arbitrarily take an offset in Si − 41 for s(2)(x), which can
produce |Si| − 1 possible offset pairs. Step 2: in Si − 41,
arbitrarily choose an offset (written by 42), and arbitrarily
take an offset in Si −41 −42 for s(2)(x), which can produce
|Si| − 2 possible offset pairs. So continue, until we have
|Si − 41 − 42 − · · · | ≤ 1. Summarizing up the above,
we obtain (|Si| − 1) + (|Si| − 2) + · · · + 1 possible offset
pairs with no overlaps to one another.

According to the above strategy, (a) in S1, we have 3+2+
1 = 6 possible offset pairs; (b) in S2, we have 11 + 10 +
· · · + 1 = 66 possible offsets pairs; (c) in S3, this case is the
same as Case (b); (d) in S4, only one pair exists. However,
the parameterw can vary from 2 tom−1. Hence, we havem−
2 possible offset pairs; (e) in S5, there are 9+8+· · ·+1 = 45
possible offset pairs, in which each has the parameter w that
can vary from 1 to m− 1. Thus, this case has 45(m− 1) pairs
in total. Summarizing up (a)-(e), we totally have 46m + 91
possible offset pairs.

Summing up Cases (1) and (2), we come to the conclusion
that the total number of non-overlapping offset pairs is (12m+
14)+(46m+91) = 58m+105.According to Lemma 2, hence,
the family size of new sequences is given by the following
theorem.
Theorem 7: The number of 16-QAM CSs, educed by

Theorem 6, of length 2m is

(58m+ 105)(m!/2)4m+1 (m ≥ 2, q ≥ 2). (39)

TABLE 4. Comparison of the code rates and family sizes of 16-QAM CSs.

Table 4 gives the comparison of the code rates and family
sizes between [8] and this paper, in which it is intuitive that
this paper results in the increase of code rates.
Case ii: Higher-order QAM CSs.
Due to the fact that the number of the offsets increases

exponentially, the enumeration of the proposed QAM CSs
becomes difficult, since the method in Case i does not work
well. The authors would like to invite the reader to join us so
as to solve such an enumeration.
Open Problem: How many are the resultant higher-order

QAM CSs?

VII. PEP UPPER BOUNDS
In this section, the PEP of new QAM CSs will be
investigated.
Theorem 8: Let the code C consist of 4q-QAM CSs from

Theorem 6 with length N = 2m. Then, the PEP of the code C
is bounded by

PEP(C) ≤
6N (2q − 1)
2q + 1

. (40)

Proof: For ∀A ∈ C , let (A,B) is a pair of 4q-QAMCSs from
Theorem 6 with length N = 2m. The PEP of the sequence A

satisfies PEP(A) ≤ 2
N−1∑
i=0
|Ai|2 [8]. From (19), we have

|Ai|2 =
∣∣∣δ 2q−2∑

p=0

ja
(p)
i

∣∣∣2 ≤ δ2 2q−2∑
p=0

1 =
3(2q − 1)
2q + 1

. (41)

According to (10), this theorem follows immediately.
Compared with Lemma 5, 4q-QAM CSs in [8] and this

paper have the same PEP upper bounds.

VIII. RELEVANT COMPARISONS
Only consider the existing 4q-QAM CSs based on the stan-
dard GBFs, which can be divided into quaternary input and
binary input. The former includes the references [4], [5], [6],
[7], [8], [9], [11], and this paper, and the latter is rare, only
including [24], [25], and [26].

A. NEW 4q-QAM CSs INCLUDE ONES FROM CASES I-III
CONSTRUCTION AS SPECIAL CASES
Notice that [8] includes the references [4], [5], and [7] as
special cases. Consequently, it is sufficient to compare [8] and
this paper.
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[8] is based on Q-type-1 and this paper is on basis of
Q-type-2. Apparently, when we set

s(0)(x) = s(1)(x) = · · · = s(2
q−1
−1)(x) = 0

s(2
q−1)(x) = s(2

q−1
+1)(x) = · · · = s(2

q−1
+2q−2−1)(x)

s(2
q−1
+2q−2)(x) = s(2

q−1
+2q−2+1)(x) = · · ·

= s(2
q−1
+2q−2+2q−3−1)(x)

...

s(2
q−1
+2q−2+···+2q−(q−2))(x)

= s(2
q−1
+···+2q−(q−2)+2q−(q−1)−1)(x),

(42)

new construction in Theorem 6 in this paper is exactly the
same as the construction in (6) in Theorem 2 in [8], which
implies that [8] is a special case of this paper.

In order to clarify the aforementioned conclusion, we con-
sider 16-QAM and 64-QAM CSs of length 2m, respectively,
as follows.

1) 16-QAM CSs
In this case, [8] has the construction to produce 16-QAMCSs
below. 

Ai =
1+ j
√
10

[
2ja

(0)
i + ja

(1)
i

]
Bi =

1+ j
√
10

[
2jb

(0)
i + jb

(1)
i

]
,

(43)

which can be produced by (19) under the condition
a(0)i = a(1)i .

Apparently, if the following condition

a(k)(x) 6= a(r)(x) (0 ≤ k, r ≤ 2 and k 6= r), (44)

holds, new construction from (19) is
Ai =

1+ j
√
10

[
ja

(0)
i + ja

(1)
i + ja

(2)
i

]
Bi =

1+ j
√
10

[
jb

(0)
i + jb

(1)
i + jb

(2)
i

]
,

(45)

which is fairly different with (43).

2) 64-QAM CSs
In this case, [8] has the construction to produce 64-QAMCSs
below. 

Ai =
1+ j
√
42

[
4ja

(0)
i + 2ja

(1)
i + ja

(2)
i

]
Bi =

1+ j
√
42

[
4jb

(0)
i + 2jb

(1)
i + jb

(4)
i

]
,

(46)

Clearly, (19) includes lots of new constructions which do
not exist in Cases I-III constructions in [8]. Typically, two
examples are given below. If we set the following condition:a

(1)(x) = a(2)(x) = a(3)(x)

a(4)(x) = a(5)(x) = a(6)(x)
(47)

to be held, new construction from (19) is
Ai =

1+ j
√
42

[
ja

(0)
i + 3ja

(1)
i + 3ja

(4)
i

]
Bi =

1+ |
√
42

[
jb

(0)
i + 3jb

(1)
i + 3jb

(4)
i

]
,

(48)

and if we let

a(2)(x) = a(3)(x) = a(4)(x) = a(5)(x) = a(6)(x), (49)

new construction educed by (19) is given by
Ai =

1+ j
√
42

[
ja

(0)
i + ja

(1)
i + 5ja

(2)
i

]
Bi =

1+ j
√
42

[
jb

(0)
i + jb

(1)
i + 5jb

(2)
i

]
.

(50)

FIGURE 2. Relationship between [8] and this paper.

Fig. 2 clearly depicts the relationship between [8] and
this paper. Table 5 compares the relevant parameters in the
existing 4q-QAM CSs from standard GBFs. Due to lack of
family size for higher-order QAM CSs in this paper, only
16-QAM CSs are compared. The comparison suggests that
the resultant sequences in this paper have good performance.

B. A RELATIONSHIP BETWEEN Q-TYPE AND
B-TYPE CONSTRUCTIONS
In order to avoid symbol confusion in the comparison, the
construction of 4q-QAM CSs, based on B-type-2, in [26] is
rewritten by new symbols below.
Ai =

1
√
2(4q − 1)/3

[ 2q−2∑
p=0

(−1)u
(p)
i + j

2q−2∑
p=0

(−1)u
(2q−1+p)
i

]
Bi =

1
√
2(4q − 1)/3

[ 2q−2∑
p=0

(−1)v
(p)
i + j

2q−2∑
p=0

(−1)v
(2q−1+p)
i

]
,

(51)

where u(p)i ’s and v(p)i ’s (0 ≤ p ≤ 2(2q − 1)) are binary GBFs’
values. In fact, in [26] the symbols u(p)i and v(p)i are written by
a(p)i and b(p)i , respectively.
It is not difficult for the careful reader to find that (19) and

(51) are identical under the following conditions.

a(p)(x) ∈ {binary GBFs} (0 ≤ p ≤ 2q − 2)

b(p)(x) ∈ {binary GBFs} (0 ≤ p ≤ 2q − 2)

u(p)i = u(2
q
−2+p)

i = a(p)i (0 ≤ p ≤ 2q − 2)

v(p)i = v(2
q
−2+p)

i = b(p)i (0 ≤ p ≤ 2q − 2).

(52)
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TABLE 5. Comparison of relevant parameters in 4q-QAM CSs with length N = 2m.

FIGURE 3. Relation between [26] and this paper.

Whereas, when the conditions in (52) are broken, (19) and
(51) result in their own 4q-QAMCSs in which both are differ-
ent at all. Hence, [26] and this paper have a small overlapping
area.

Fig. 3 clearly depicts the relationship between [26] and this
paper.

IX. TWO EXAMPLES
Here are two examples to highlight the effects of Theorem 6.
Example 2: Consider 16-QAM CSs of length N =

24 = 16. Let π (i) = i (1 ≤ i ≤ 5), h = 2, and
(c, c1, c2, c3, c4) = (3, 2, 1, 3, 1). Consequently, the standard
GBFs are

f (x) = 2
4∑

k=1

xkxk+1 + 2x1 + x2 + 3x3 + x4 + 3.

Consider new construction in (45). Take µ(x) = 2x1,
w = 1, (d (1)0 , d (1)0 , d (1)0 ) = (1, 1, 1), and (d (2)0 , d (2)0 , d (2)0 ) =
(0, 1, 3). Consequently, the offsets are given by{

s(1)(x) = 1+ x1 + x2
s(2)(x) = x1 + 3x2.

Thus, we have

a(0)(x) = 2(x1x2 + x2x3 + x3x4)+ 2x1 + x2
+3x3 + x4 + 3

b(0)(x) = a(0)(x)+ 2x1
a(1)(x) = a(0)(x)+ 1+ x1 + x2
b(1)(x) = a(1)(x)+ 2x1
a(2)(x) = a(0)(x)+ x1 + 3x2
b(2)(x) = a(2)(x)+ 2x1,

which implies 
a(0)(x) 6= a(1)(x)

a(0)(x) 6= a(2)(x)

a(1)(x) 6= a(2)(x),

in other words, (45) holds. Hence, the resultant 16-QAMCSs
can be not produced by [8]. After calculation, the resultant
16-QAM CSs of length N = 16 are

A = (3− j, 1+ 3j,−1− 3j,−3+ j, 1− j, 1+ j, 1+ j,

1− j,−1− j, 1− j,−1+ j, 1+ j, 3+ j,−1+ 3j,

−1+ 3j, 3+ j)

and

B = (3− j, 1+ 3j,−1− 3j,−3+ j, 1− j, 1+ j, 1+ j,

1− j, 1+ j,−1+ j, 1− j,−1− j,−3− j, 1− 3j,

1− 3j,−3− j),

the sum of whose aperiodic autocorrelation functions is

CA,A(τ )+ CB,B(τ )

= (19.2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

Thus, we have

PA(t)+ PB(t) = 19.2 = 1.2N .

Example 3: Consider 64-QAM CSs of length N = 25 =
32. Let π (i) = i (1 ≤ i ≤ 5), h = 2, and (c, c1, c2, c3,
c4, c5) = (1, 3, 0, 1, 2, 0). Consequently, the standard GBFs
are

f (x) = 2
4∑

k=1

xkxk+1 + 3x1 + x3 + 2x4 + 1.

Consider new construction in (50). Take µ(x) = 2x1,
w = 3, (d (1)0 , d (1)0 , d (1)0 ) = (2, 3, 1), and (d (p)0 , d (p)0 , d (p)0 ) =
(3, 0, 2) (p = 2, 3, 4, 5, 6). As a result, the offsets are
given by {

s(1)(x) = 2+ 3x3 + x4

s(p)(x) = 3+ 2x4 (2 ≤ p ≤ 6).
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FIGURE 4. Sum of aperiodic autocorrelation functions of the sequences A and B in Example 2.

Thus, we have

a(0)(x) = 2(x1x2 + x2x3 + x3x4 + x4x5)+ 3x1 + x3+

2x4 + 1

b(0)(x) = a(0)(x)+ 2x1

a(1)(x) = a(0)(x)+ 2+ 3x3 + x4

b(1)(x) = a(1)(x)+ 2x1

a(p)(x) = a(0)(x)+ 3+ 2x4 (2 ≤ p ≤ 6)

b(p)(x) = a(p)(x)+ 2x1 (2 ≤ p ≤ 6).

Then, the resultant 64-QAM CSs of length N = 32 are

A= (5+ 5j, 5+ 5j, 5+ 3j,−5− 3j,−5+ 3j,−5+ 3j,

5− 5j,−5+ 5j, 5+ 5j, 5+ 5j, 5+ 3j,−5− 3j, 5−3j,

5−3j,−5+5j, 5− 5j, 5−5j, 5−5j, 3− 5j,−3+5j,

3+5j, 3+5j,−5−5j, 5+5j,−5+ 5j,−5+5j,−3+5j,

3− 5j, 3+ 5j, 3+ 5j,−5− 5j, 5+ 5j)

and

B= (5+ 5j, 5+ 5j, 5+ 3j,−5− 3j,−5+ 3j,−5+ 3j,

5− 5j,−5+ 5j, 5+ 5j, 5+ 5j, 5+ 3j,−5−3j, 5−3j,

5−3j,−5+5j, 5−5j,−5+5j,−5+5j,−3+5j, 3−5j,

−3− 5j,−3−5j, 5+5j,−5−5j, 5−5j, 5−5j, 3−5j,

−3+ 5j,−3−5j,−3− 5j, 5+ 5j,−5− 5j),

the sum of whose aperiodic autocorrelation functions is

CA,A(τ )+CB,B(τ ) = (64, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0),

which is depicted in Fig.4. Apparently, the sum of aperi-
odic autocorrelation functions of the sequences A and B is
impulse-like. Besides, these two sequences satisfy

PA(t)+ PB(t) = 64 = 2N .

Clearly, the resulting PEP is well controlled.
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X. CONCLUSION
From a novel mathematical description of QAM constel-
lation, this paper presents the new construction producing
4q-QAM CSs of length 2m with larger family size. However,
the enumeration of higher-order is unknown, which is a com-
ing work.
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